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Abstract. The slug flow is characterized by the succession of liquid pistons and long gas bubbles which are neither 
periodic in time nor in  space. The gas content transported by the long bubble gives a compressibility to the gas-liquid 
mixture which, in the presence of liquid velocity disturbances, behave as a non-linear oscillator. The objective of this 
work is to study the oscillatory behavior of a single long gas bubble flowing between two liquid slugs disclosing the 
amplitude, phase and natural frequency. The analysis applies slug tracking physical model to describe the bubble to 
liquid slug interaction. The model solution is obtained using a numerical and analytical procedure. The former one is 
considered complete and embodies all non-linear terms of the physical model. The last one is an approximated solution 
given by a linearized version of the physical model. An analytical expression for the natural frequency in terms of the 
slug flow parameters is presented within the limit of validity of the linear domain. 
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1. INTRODUCTION  
 

In laboratory conditions the slug flow is formed by continuous mixing of gas with liquid streams at the pipe inlet. 
Downstream the mixer the flow pattern is mostly described as a churn flow which eventually evolves to the slug flow 
pattern further downstream the mixer. Pressure fluctuations are developed during the process of mixing, propagate 
through out the line and induce oscillations into the liquid slugs and gas bubbles as they travel along the pipe. It is not 
clear yet if the induced gas bubble oscillations lead to bubble coalescence but certainly it is a mechanism which must be 
investigated. This motivation arises from similar studies with induced oscillations in spherical bubbles. The natural 
frequency and the vibration modes of spherical bubbles are described by the Rayleigh-Plesset equation, Leighton (1994) 
and Swift (2002). Also, it is generally recognized that the spherical bubble coalescence, in acoustically driven liquids, is 
mainly governed by interaction forces exerted by bubbles in response to the imposed acoustic field.  

The oscillations of gas bubbles occurring in slug flow are still a new subject. Liang and Ma (2004) employ a 
mechanical oscillator analogy to describe the pressure and velocity oscillations happening in slug flow inside capillary 
tubes. Also Vergniolle and Brandeis (1996), Vergniolle et al. (1996) and James et al. (2004) studying the rising of a 
single gas bubbles in volcano lava channel propose an analytical expression for the natural frequency of bubble 
oscillation and a experimental set up in lab-scale to measure it. A straight forward transposition of these findings to the 
slug flow applied to the oil industry is not obvious. Nonetheless the gas bubble in slug flow, similarly to the study of 
induced oscillations in spherical bubbles, bear an analogy with mechanical oscillator where the spring constant is 
represented by the gas compressibility while the mass and the damping coefficient are represented by the slug mass and 
the wall friction. Due to the existence of several liquid pistons followed by gas bubbles flowing simultaneously inside a 
pipe the analysis becomes complex since we have several oscillators in series and the coupling between neighbors is not 
linear.  

The oscillation phenomenon in multiple gas bubbles occurring in a slug flow is too complex to a first approach to 
this problem. It was decided to study a simpler case in which we are interested in the response of a single bubble to the 
impulse function in terms of its natural frequency, amplitude and phase. The knowledge of a single bubble natural 
frequency is still relevant to the study of multiple bubbles to give us a solid basis in terms of the physics of the 
phenomena to move to the complex case. The case study is described in Figure 1 as a single bubble with length LB 
comprised by two non-aerated liquid slugs with lengths and velocities of LS0, U0 and LS1, U1, respectively. The pipe 
length is L and its diameter is D. The bubble front and tail are represented by the coordinates Y1 and X0, respectively. 
The oscillating phenomenon is studied numerically employing the slug tracking model and also analytically by 
linearizing the transport equations.  

 



 
 

Figure 1 – Schematic diagram of the gas bubble inside the pipe and the used nomenclature.  
 

2. PHYSICAL MODEL 
 

The coupling between the gas bubble and the liquid slug is expressed by the gas conservation equation and liquid 
momentum, Eqs. (1) and (2):  

 

= − B1 G1 1
1 0

1

L R dH
U U

H dt
, (1) 

 
1

1 atm S1
dU

H H L
dt

= + , (2) 

 
where U, LB1 and LS1 are as defined in Figure 1, H1 and Hatm is the bubble and outlet pressure and density ratio, 
respectively, and RG1 is the gas volumetric fraction within the pipe volume taken by the gas bubble, shortly known as 
the bubble void fraction. The set of equations links the velocity difference of the liquid slugs with the time rate of the 
pressure and also the pressure difference with the acceleration of the liquid slug ahead of the gas bubble. The equations 
describe the displacement and velocity of the gas bubble and of the non-aerated liquid slug for a horizontal, isothermal 
and frictionless flow. Equations (1) and (2) are continuous in time but condensed in space, nonetheless they represent a 
hyperbolic system which carries the U and P information along characteristic lines defined by the bubble nose velocity. 
These equations constitute the basis of the slug tracking model shown in Franklin (2004) and Grenier (1997). For 
simplicity, it is used the ideal gas law for the state equation for the gas component.  

The gas bubble oscillation study is based on the model output described by Eqs. (1) and (2). The initial condition is 
a steady flow state with the liquid slugs ahead and behind the gas bubble having the same velocities, U0 = U1. Since the 
flow is frictionless the outlet pressure prevails along the pipe, therefore the bubble pressure is also Hatm. At a time t0 > 0, 
the velocity of the liquid slug behind the gas bubble, U0, is disturbed for an instant and then returned to its initial value. 
The bubble oscillation analysis starts just after ceasing the velocity disturbance. Equations (1) and (2) are solved 
employing a numerical technique as shown in section 2.1 as well as analytically by linearizing the equation set as 
described in section 2.2. 

 
2.1. Numerical Method 

 
The set of equations (1) and (2) is discretized using the Crank Nicholson method (α= 0.5) accordingly to Eq.(3) and 

is readily integrated in time. 
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where the super-indexes O and N represent, respectively, the previous and actual time and Dt is the time step and H is 
the ratio between the pressure and liquid density (H=P/ρL). As an implicit method it is intrinsically stable but, to ensure 
result with numerical accuracy it is necessary to enforce a Courant number less than 10-3.  

It is necessary to know the bubble length and bubble velocity to advance in time the numerical solution of the 
Eq. (3). The bubble length is determined enforcing the gas mass, within the bubble, to be constant in time and space: 
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where X and Y are the coordinates describing, respectively, the liquid piston front and the gas bubble front as shown in 
Figure 1. The bubble front advance in space accordingly to the product of the bubble nose velocity with the time step:  
 

= +N O
1 1 BY Y V t∆ ,  (5) 

 
where VB is the bubble front velocity given by the kinematical relation proposed by Nicklin et. al (1962): 
 

= +B 0 1 0V C U V , (6) 
 
where C0 e V0 are constants which, accordingly to Bendiksen (1984), are: 
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and Fr is the Froude number based on the velocity of the liquid slug ahead of the bubble: = 1Fr U gD .  

The initial conditions have the liquid slugs traveling with the same speed, U0 =U1 and the bubble front traveling 
accordingly to Eq. (6) . The slugs and bubble velocities remain constant until a disturbance is applied in U0. The 
disturbance is characterized rectangular pulse with width of Dtd in time and height of ‘a’. During the disturbance the 
liquid slug velocity is suddenly raised to U0 + a, after ceasing the disturbance it attains its initial value, U0. The 
frequency, phase and amplitude of the pressure and velocity signals are analyzed employing Fast Fourier Transform 
(FFT) algorithm. Equations (3) to (7) plus the signal analysis are assembled in a program developed to this application 
using Compaq Visual Fortran compiler.  

 
2.2. Analytical Method  

 
The set of equations (1) and (2) is not linear if we recognize that LB, LS change as the bubble oscillates in time or its 

front advances in space. An analytical solution for the equation system is sought by means of an approximate through 
linearization techniques. Considering that the velocity disturbance in U0 will cause a periodic disturbance on U1 and P1, 
and then it is possible to express the instantaneous values as a sum of mean value plus its fluctuation. In this case the 
instantaneous values of LB, U, LS and P are represented by: 

 
= +B B BL L L� , = +U U U� , = +S S SL L L�  and = +H H H�  (8) 

 
where the super-scritp ‘–’  means the averaged term and ‘~’ its fluctuation. Equation (8) neglects the changes in RG 
during the bubble oscillation. Substituting Eq.(8) in Eqs. (1) and (2) we have:  
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After ceasing the disturbance the inlet velocity is equal to the outlet velocity, therefore: 
 

=1 0U U , (11) 
 

furthermore, since 0U  does not change in time so does 1U , then: 
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At last, since we are using a frictionless model, 1H  does not change in time or in space so: 

 

 and = =1
1 atm

dH 0 H H
dt

. (13) 

 
Replacing Eqs. (11) to (13) into Eqs. (9) and (10), we find the equation set for the fluctuating components of 1P� and 

1U� : 
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The coefficients multiplying the derivatives depend on the averaged plus fluctuating components of LB, LS and P. If 

we consider small disturbances in such way that    and << << <<B1 B1 S1 S1 B1 B1L L 1; L L 1 H H 1� � �  then we can 
approximate the instantaneous values by the averaged values: 
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Substituting Eqs. (16) thru (18) into Eqs. (14) and (15), we have the reduced form for the fluctuating components 

equations: 
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The first order system of ODEs can be represented as a second order ODE substituting Eq. (19) into Eq.(20): 
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Equation (21) represents the fluctuating pressure equation with a forcing term given by the first order derivative of 
0U�  representing the velocity disturbance given by the Dirac Delta: 

 
( )= −0 0U V t tδ� , (22) 

 
where the constant V is defined by the product of the height by the width of the numerical pulse, V = a.Dtd. The second 
order ODE, Eq.(21), has variable coefficients since S1L  changes with time as = − ⋅

iniS1 S1 BL L V t . Although, if we 

consider a slow change in time of S1L  in such way that: 
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where ω0 is the natural frequency, we can further approximate Eq. (21) to a ODE with constant coefficients. The 
analytical solution comes from Laplace transform. The fluctuating pressure is: 
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and the natural frequency ω0 arises from the homogenous part f Eq.(21) : 
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Substituting the definition of the fluctuating pressure, Eq. (24) into Eq. (19) we get the liquid slug velocity 

fluctuation: 
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3. RESULTS 
 

The study of the frequency, phase and amplitude of the pressure and velocity fluctuations P1 and U1 starts with the 
comparison of the numerical and analytical solution. This comparison is based on a test case with water flowing in a 
pipe with 26.5 mm in diameter and 20 m long with its outlet open to the atmosphere, Pout = 100 kPa. The pipe has an air 
bubble with void fraction of RG = 0.7 and length LB = 0.8 m with noise placed at Y = 1.2 m from the pipe inlet. The slug 
length at time begin was LS1 = 18.8 m. The initial velocities are U0 = U1 = 0.5 m/s and the velocity disturbance is set at 
1s after the start up. The U0 disturbance is shown in having a height of 0.1 m/s and a width of 0.2 s. The time series of 
the ratio between the instantaneous to the averaged value of P, U0 and U1 are shown in Figure 2.a. The extra ‘x’ axis on 
the figure represents the length of the liquid piston ahead of the bubble nose. The slug length ahead of the bubble and 
the time are related by the bubble nose traveling velocity, Eq. (6). The bubble pressure and the liquid piston velocity 
start oscillating after the disturbance with no damping on the amplitude due to the frictionless assumption. The pressure 
and velocity lags of a 90 degree phase. Also the fluctuating amplitude of the pressure and velocity are of 3% and 12%, 
respectively, of the averaged values. Figure 2.b exhibits the analytical solution evaluated at the same conditions and 
having the constant V in Eq. (22) determined by the product of the velocity disturbance height and width defined 
before, V = 0.01 m/s. As seen in Figure 2.b, the pressure and velocity also lags of a 90 degree phase due to the character 
of the Cos and Sin functions embodied in Eqs. (24) and (26). The amplitudes of the fluctuating components of pressure 
and velocity are, respectively, of: 2.5% and 7% which values comparable to the numerical estimates.  

 



 
(a) 

 

 
(b) 

 
Figure 2 – Instantaneous to averaged ratio of H1, U1 and U0 as a function of time or length of the liquid piston ahead of 

the bubble nose. Inlet conditions defined in the test case: (a) numerical results; (b) analytical results. 
 

The natural frequency is one of the most relevant information of this work. It was disclosed in an analytical 
expression, Eq. (25), based on an the approximate analysis developed on section 2.2. The square of the natural 
frequency is directly proportional to the bubble pressure and inversely proportional to the liquid density, bubble void 
fraction, bubble length and the liquid slug length ahead of the bubble nose. Since Eq. (21) was approximated by an 
ODE with constant coefficients a straight forward analogy with the mechanical oscillator can be drawn. Recognizing 

the natural frequency of a mechanical oscillator is defined by =0
1 k

2 m
ω

π
 where k and m represent the spring constant 
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and the mass, respectively. It is possible to define the analog to the spring constant to the mass of the oscillator in terms 
of the properties of the slug flow by comparing this definition of natural frequency with the one given by Eq. (25): 
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The spring stiffness increases with the increase of the gas pressure or with the decrease of the bubble length and void 
fraction. The mass of the system is the mass of liquid ahead of the bubble nose.  

The natural frequency expression is valid as long Eq. (23) is true or, introducing the parameter ε: 
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A comparison of the numerical and analytical estimates of the natural frequency for the given conditions on the test 

case is done in Figure 3 as a function of the parameter ε defined in Eq. (28). The changes during the test case are due to 
the changes on LS because the bubble traveled along the pipe thus diminishing the liquid slug ahead of it. As seen on 
Figure 3 the analytical solution approaches asymptotically the numerical solution as ε increases. Complementary, as 
length of the liquid slug ahead of the bubble nose decreases the deviation between the numerical and analytical solution 
increases.  

 

 
 

Figure 3 – Comparison between the numerical and analytical estimates of the natural frequency as a function of the 
parameter ε for the configuration defined on the test case. 

 
A series of numerical simulations were performed changing pipe diameter, liquid velocity, bubble length, bubble 

void fraction, liquid slug length and discharge pressure to capture the influence of different parameters on the numerical 
determined natural frequency. The accuracy of the analytical expression is accessed comparing its output against the 
numerical solution as a function of the parameter ε defined in Eq. (28). Figure 4 shows the relative difference between 
the numerical and analytical results as a ε function. As expected, the relative difference on the natural frequency 
estimates decreases with ε increase. The relative difference can be as high as 35% at ε < 10. For ε > 50 the relative 
difference exhibits a bias of 17% with data scattered within ±10%. It is not clear at the moment the reason for the 17% 
bias between the numerical and analytical estimates even for values of ε →∞. On the other hand, the biggest relative 
differences are associated to ε < 10 and reflect the dominance of the non-linearity introduced by the H1 coefficient from 
Eq. (21).  

 



 
 

Figure 4 – Natural frequency relative difference as a function of parameter ε. 
 

The accuracy of the analytical solution depends on the degree of ‘linearity’ of Eq.(14). It can be accessed drawing 
the solution trajectory on the phase plane P1 – U1. Figure 5 brings the numerical solution of P1 and U1 for the test case 
plotted on the phase plane. The equilibrium point have coordinates (P1, U1) of (100kPa, 0,5m/s). The trajectories are 
ellipses, centered at the equilibrium point, with semi-major and semi-minor axes very close to each other. If the semi-
axes had the same sizes we would have circular trajectories which are representative of the linear system with P1 and 
U1 described by Sin and Cos functions as shown by Eqs. (24) and (26). The lack of circularity on the trajectories is 
associated to degree of non-linearity of the system. The agreement of the analytical solution with the numerical one 
relies on the fact that the circular trajectories are good approximations to the elliptical trajectories.  

 

 
 

Figure 5 – Numerical solution trajectory on the phase plane P1-U1 for the test case.  
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4. CONCLUSIONS 
 

A slug flow characterized by a single and long gas bubble flowing between two liquid slugs can be viewed as fluid 
non-linear oscillator. The system can be set to oscillate when a liquid velocity disturbance is introduced. The set of 
equations describing the bubble pressure and slug velocity can be linearized to render analytical solution. The analytical 
solution approaches asymptotically the numerical solution when the parameter ε increases. The bubble pressure and the 
liquid slug lag 90 degree in phase. The natural frequency of the single bubble oscillator is given by Eq. (25) within the 
linear approximation domain, i.e., ε > 50. It is proportional to the bubble pressure and inversely proportional to the 
product of: bubble length, slug length, liquid density and bubble void fraction.  
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