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Abstract. Radial diffusers are the basic geometry for thematic valves in reciprocating hermetic compressdhe
present work considers the numerical modeling ohitear flow in radial diffuser with axial feeding.h& bi-
dimensional governing equations are numericallyvedl using the finite volume methodology with miketerian
Lagrangian method. The numerical model was ableatadle irregular geometries making use of a reguteash, and
was validated through comparisons with experimefise numerical results presented in this work ahe t
dimensionless axial force acting on the valve disd the dimensionless effective flow and force et are
important efficiency parameters for the modellingdadesign of reciprocating hermetic compressorse €&fficiency
parameters are presented and explored in termgffe#rents Reynolds numbers varying from 1000 to02&@d three
values of the gap between valve reed and valve Bkaherical results of pressure distribution on thent disk
surface for different flow conditions when compatedhe experimental data indicated that with a Brolaamfer of 8
at the outlet of the valve feeding orifice, thécefhcy parameters were improved for example, gfedorce and flow
area were increased.
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1. INTRODUCTION

The geometry of automatic valves in hermetic comsgues can be approximed by a radial diffuser angr yo
geometric parameters as shown in Figs. 1a andeHpectively. In this geometry the fluid flows alkyathrough a
feeding orifice with diameted, and then is deflected along the radial direcbgrthe frontal disk, represented in the
figure by the valve reed with diamet@r. In the present investigation the flow is assunheminar and axially
symmetric.

Both suction and discharge valves in hermetic cesgors function according to the existing pressiifference
between the interior of the cylinder and the suctad discharge chambers, respectively, and theirggp@and closing
forces resulted from the pressure difference actatdid by the piston reciprocating movement. Geooadty, among
the main components that can be optimized in thiabees are the dimensions and shape of the sedlinfgorifice and
reed. Optimum valves operate at high efficiencyollis evaluated by two parameters: effective flow éorce areas.
Those two parameters play an important role in Hieg@nd designing of automatic valves.

The literature on radial flow is extensive and samgresentative contributions are due to Hayashil. (1975),
Ervin et al. (1989) and Tabatabai and Pollard (1987). For tdidiev in the context of compressor valves the eyad
referred to Ferreira and Driessen (1986), Ferreiraal. (1989), Prata and Ferreira (1990), Prataal (1995),
Deschampst al (2000) and Possameti al (2001).

Ferreira and Driessen (1986) presented a discussidhe flow patterns encountered in reed type esmhand
reviewed the literature up to then. A numerical axgerimental solution for the laminar isocoricwldield of air in
radial diffusers, for small separation between gjisgas explored by Pratt al. (1995), Ferreiraet al. (1989) and
Possamaet al. (2001). More recently numerical and experimengslutted for the turbulent flow were presented by
Deschampst al. (2000). Following this line Salinas-Casanova (9084d Matos (2002) presented a numerical and
experimental solution for three dimensional turbtilBow field of air in radial diffussers, usingehmodels ke and
RNG k-& Mariani (2002, 2006) investigated the modificatithe geometric parameters on radial diffuser aglvi
laminar flow for differents separation between diand for various Reynolds numbers. Of the previeoik on radial
diffuser investigated only Pu#t al. (1992) and Mariani (2002, 2006) studied the geomearameter explored in the
present work.
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Figure 1. Geometry of radial diffuser with axiaétng, without chanfre in seat.

Valve geometry has a significant influence on tffeative flow and force areas, and one of the psgsoof the
present work is to investigate the influence of rgetric parameters such as seat inclination on thremkionless
effective flow and force areas. With this objectigepresented the Figs. 2a and 2b, respectivety,ggometry of
automatic valves with a chanfre in seat and yowr@pmation by a three dimensional radial diffuserd your
geometric parameters.
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Figure 2. Geometry of radial diffuser with axiabféng and chanfre in seat.

The governing differential equations in cylindricaordinates for the problem considered here amaenigally
integrated using the finite volume methodology. &ese the solid surfaces for different shapes ofsdat do not
coincide with the cylindrical coordinates employad the domain discretization, use was made of Huderian
Lagrangian Algorithm For INterface Trackin(ELAFINT). The ELAFINT methodology (Udaykumat al, 1996; Ye
et al, 1999) shapes the volumes with irregular fornhett tare in the interface between fluid and solidthwhis
methodology the control volumes are regular ang@rdor discretization in cylindrical coordinatedthin the flow
passages, and at the flow boundaries the volun@sieetrapezoidal to accommodate for the solid walls

This paper presents the results experimental anterical exploring the pressure distribution onyhére reed as a
function of the gap between the disks and the fRaynolds number. In that follows, dimensionlesgetffe flow and
force areas for different magnitudes of seat imtion and different valve diameters, for variousMiReynolds number
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and valve separations are presented. These rem@tsalculated for laminar incompressible flow &od small
distances between valve and seat.

The present work is organized according to thegmeform: next section explores the partial diffgi@ equations
that model the flow field across the valve; sectitmee validates the numerical solution and the EINY
methodology comparing dimensionless pressure profitained both numerically and experimentally; ienerical
results presented in section four are pressur@gsain the valve disc, the dimensionless axiatdacting on the valve
disc and the dimensionless effective flow and faneas; and in the last section some conclusianeféered.

2. PROBLEM FORMULATION

The geometries of radial diffusers with modifiedgraeters investigated in the present work are pteden Figure
2. As the flow is axially symmetric, only one angte studied along the diffuser circumference, satio a bi-
dimensional problem. The basic assumptions emplagesimplifying the problem are isothermal, isocorsteady
laminar flow of Newtonian fluid. Continuity and Nav-Stokes equations in axial and radial directi@me the
governing equations that describe the flow andosawritten as,
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wherep (=1.205 kg/m) is the air density to 2@, ¢/ (=1.81x10° Pa.s) is the absolute viscosityandv are, respectively,
the axial and radial velocity components gnds the pressure. Equations (1) to (3) can be sspck by a single
equation for the generigvariable as,
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wheregtakes on the unitary value for Eqg. (1), ana@ndv for Egs. (2) and (3), respectivelf” andS” are the diffusion
coefficients and source terms, respectively.

Attention will now be devoted to the boundary cdiatis that should be applied to the governing dquoat At the
outflow boundary local parabolic flow conditionapplied, that isqrv)/ar = u =0. Atr = 0 the condition i = du/dr =
0. At the solid walls the non-slip condition is ioged,v = u = 0. At the entrance of the feeding orifice theabhxelocity
is determined from the prescribed Reynolds numberU = pRe(od), and a null radial component of the velocity is
imposed.

For the integration of the general governing défeial equation, Eq. (4), using the finite volumethodology, the
solution domain is divided in small non-overlappiogntrol volumes. Next the differential equations @ntegrated
along each control volume yielding a set of algebemjuations. The continuity equation is then ¢farmed in an
equation for pressure using the SIMPLE algorith@tgRkar, 1980), and the algebraic equations aveddly a Gauss-
Seidel iterative procedure. It should be noted Wia¢n Eq. 4 is integrated along the control voluties intercept the
solid walls, the ELAFINT methodology (Udaykumer al, 1996; Yeet al, 1999) is employed to capture the actual
shape of the solid-fluid interface. Further detafishe numerical methodology including a full déigton of ELAFINT
can be found in Mariani (2002, 2006).

3. SOLUTION METHODOLOGY

A finite volume discretization scheme was used hersolve the governing differential equations. éwling to
this practice the solution domain is divided intmadl non-overlapping control volumes and the caritin and
momentum differential equations are integrated @asmh control volume (Patankar, 1980; VersteegMaldlasekera,
1995). The resulting system of algebraic equatisrsolved using a combination of Thomas algorithmd the Gauss-
Seidel method (see Patankar, 1980). The Semi linpliethod for Pressure Linked Equations (SIMPLE)swesed
through of discretized form of continuity equatimansformed into an equation for pressure.

An accuracy of the numerical solution is in theeipblation scheme employed to evaluate the vasahaiehe
control volume faces. In this work the Power Lawff@®encing Scheme (PLDS) described in Patankar @198
considered of first order accuracy for the inteaped values.



Due to the strong non-linearity of the equationsdar relaxation coefficients were required. For ¥edocity
components these coefficients were 0.1 and forspres0.2. Convergence was stopped when the maxirasicual of
the algebraic equations was less thaf. 20 results to be presented were obtained witlaegrage mesh consisted of a
x b =100 x 240 grid points (radial axial). All points were hand placed with highemcentration in the regions of

steeper gradients. The final mesh adopted in paifay the computations was chosen after severaligdependence
tests were carried out.

4. RESULTS AND DISCUSSIONS

Validation of the numerical solution including tBeAFINT methodology is performed comparing compiatal
and experimental pressure profiles along the viaded for a situation where the valve is inclin€aviith respect to the

horizontal position, as depicted in Figure 3. Théve parameters for the situation in the Figs.8&presented in Tab.
1.

Table 1 — Characteristics of computational simalagi

D (m) e [m] D [m] S Re
0.0349 0.0145 0.1047 0.012 1000
2000
0.0349 0.0145 0.1047 0.02 1000
2000
0.0349 0.0145 0.1047 0.03 1600
2000

Figures 3-5 present numerical and experimentalteefar the dimensionless pressure profiles aldegualve reed.
The dimensionless pressure is definegras 2p/(0U% and is presented as a function of three dimertessrdistance
between valve seat and valve reedd(s 0.012; 0.02 and 0.03), and two Reynolds nusifee = 1000 and 2000 for
cases A and B and 1600 and 2000 for case C). Tperiexental results were obtained from an existixgeeimental
setup which was employed in previous investigati@eg for instance Ferreiedal, 1989).

Overall a good agreement prevailed between conipotaind experiment, except at the stagnation reditme
agreement forg& = 0.02 tend to be better that that fgds= 0.012, so as the agreement {éd s 0.03 tend to be better
that that for gd = 0.02. It should be pointed due to small distahetween the valve seat and reed, where very high
gradients are encountered for both pressure amaityefields in this region. Those gradients imposany difficulties
in solving the differential equation as well agperforming accurate experiments. For a descripifdine experimental
uncertainty and the pressure sensitivity to smiadingies in the diffuser geometry the interestedaradreferred to
Ferreiraet al (1989). According to Ferreirat al (1989) it is most likely that the large deviatibatween experiment
and computation observed in the flat region of F&35 are due to experimental difficulties, spdgiabnsidering that a
mesh refinement did not improved the numericalltesu this region.
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Figure 3. Numerical and experimental results faspure distribution along valve reed for
Re = 1000 and 2000,/d = 0.012 anar = 5°.
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Figure 4. Numerical and experimental results faspure distribution along valve reed for
Re = 1000 and 2000,/¢ = 0.02 andx = 5°.

Figure 5. Numerical and experimental results faspure distribution along valve reed for
Re = 1600 and 2000,/¢ = 0.03 andx = 5°.

In Figs. 6 to 11 are presented numerical resuit®&ynolds numbers: 1000, 1500, 2000 and 2500ratticiations
seat: 6, 5° and 32.

The Figs. 6-8 shows that with the increase of tlegriRlds number the pressure profiles along theevaded
decrease, because the fluid is acelerated withhtinease of the velocity in the diffuser entranod aonsequently it has
a decreasing in the pressure levels. In thesedigisrperceived that with the gap increase betwésks (reed and seat)
tends to reduce pressure values. The use of anatioh of 5° in the seat (one chanfre in the difluentrance) makes
with that the pressure levels have a significartekese however modifying this inclination for appnoeately 30° does
not perceive significant alterations.

As explored before, three parameters are very itapbm valve modeling and design: the force, tfiective flow
and force areas. Those parameters are generalliyinsgumerical simulation of reciprocating hermeatmmpressors
and can also be employed to evaluate the efficieftlye valves.

The effective flow area, & is directly related to the pressure drop througle. For a given pressure drop.8an
yield the mass flux through the valve. Thus, ttghkri the A the better is the performance of the valve widpeet to
the flow through it (Ussyk, 1984). The effectiveuil area is defined as
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where mis the mass flow rate through the valvgs Pan/Pu, Pam iS the atmospheric pressurg, ip the pressure
upstream the valve, k 3/c,, R is the gas constant, and i$ the temperature upstream the valve. The diroafess
effective flow area is calculated byd= 4A.JTVd’.

The effective flow area is important in predictithg mass flow rate through the valve during suctind discharge.
However, to calculate the valve movement it is seaey to know the force acting on the reed durichenstant of
time. This force is a result of the difference mnegsure acting on both sides of the valve and dipen the flow and on
the opening of the reed (Schwerzler and Hamiltd32). Usually the force on the valve is calculatebugh the
effective force area, defined as,

Act = FlApy (6)

whereAp, is the pressure difference through the valve.

The integration of the pressure distribution aldimg valve disc yielded the total force on the valiee force is
obtained by expression

(D12)
F=2mr j prdr . (7

0
Results for the dimensionless force

- 2F
A hd?

*

, (8)

are given in Fig. 9 for two gap between disks stddn this work and for all Reynolds number.
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Figure 6. Numerical results for pressure distrimutalong valve reed for
Re = 1500 and 2500/d = 0.0120 = (° - 32.



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasilia, DF

9|

K0l

-

Figure 7. Numerical results for pressure distrimutalong valve reed for
Re = 1500 and 2500,/d = 0.02,0 = @ - 32

Figure 8. Numerical results for pressure distrimutalong valve reed for
Re = 1500 and 2500/d = 0.03,0 = ( - 32

Figures 9 to 11 present numerical values of theedsionless force, effective force and flow areassfol = 0.012
and 0.020 as a function of three inclinations anrtdial diffuser having the Reynolds number aseparameters.

Figure 9 presents theeinfluence on the dimensionless axial force. Fergmall values of &l the force decreases as
o increases because the stagnation pressure inetttealcregion of the disc also diminishes. Howe¥er, certain
combinations of Re and/d (higher values) F increases witfds For those valve separation and flow rates Kiteseat
inclination tends to reduce the recirculating regio the flow field which is responsible for theepence of the negative
pressure region on the valve disc.

Figure 10 show the variation of the dimensionkef§sctive force area (4= 4A./(Td?) for s/d = 0.012 and 0.020
as a function of the geometry inclination modifioas, for Reynolds numbers varying from 1000 to @5Bor both
spacing between seat and reedj s 0.012 and 0.020, the dimensionless effectoreef area exhibits a monotonic
behavior similar to that observed for the effectil@v area, that is, as the modification parameétereases the
effective force area increases. As seen in thadiguhe use of inclination at the orifice outlatises an increase in the
effective force area that has a reduced impadafger values of the inclination angle.

In general, the dimensionless effective flow aad increases with the increasing value of the seatbnation
and of the Reynolds numbers. The presence of taeiselination at the outlet of the feeding orifipeovides a
substantial increase in the dimensionless effedtbve area, as observed in Figure 11. This resalk also observed by



Puff et al. (1992), and can be explained noticing that thesqree of the chamfer decelerates the fluid at thiketoof
the feeding orifice which in turn increases thespures by the Bernoulli effect. In Figure 11 ibisserved that the use
of the inclination results in expressive augmeatatiof the effective flow area when the angle ckarfgpom G to 5.
However, for inclinations larger tharf 8ttle influence is observed in the.4 value, especially for&l = 0.012, no
matter which Reynolds number is considered.

4= Dd= L =
1
=
o0 P £
2 o &
§ *__ ; = i
é ] o . é :h * 4
:= e =z

M
Mt

Driivue nigion lesg
D ngion lusy

wmmi inclinmdion ¢

ve force area.

smas imclination (¥

Figure 10. Influence of seat’s inclinations on th@ensionless effecti
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Figure 11. Influence of seat’s inclinations on tlmensionless effective flow area.
5. CONCLUSIONS

The current work numerically investigated the flowadial diffusers, such geometry approximatesgbemetry of
automatic valves in reciprocating hermetic compressvhich is the most common compressor employatbimestic
refrigerators. Performance of those valves is elyticontrolled by the flow itself, and for desiggipurposes it is
convenient to express the mass flow rate throughwidves and the force acting on their reed in $eoh three
parameters known as force, effective flow and fomoeas. The present work explored the impact tivatllsseat’s
incliation changes of the valve have on the pressfarce, effective flow and force areas. The aurranalysis
concluded that small modifications on the seatdimations valve geometry cause a significant iaseein effective
flow and force areas. For example, a seat inctmatif only 5 is capable of altering the effective flow area3fy%
which is an expressive change.
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