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Abstract. This work presents derivations of double diffisuve  transport for turbulent buoyant flows in trapezoidal  
permeable  structures. Equations are developed following two distinct procedures. The first method considers time 
averaging of the local instantaneous mass transport equation before the volume average operator is applied. The 
second methodology employs both averaging operators but in a reverse order. This work is intended to demonstrate 
that both approaches lead to equivalent equations when one takes into account both time fluctuations and spatial 
deviations of velocity and mass concentration. A modeled form for the final transport equation is presented where 
turbulent double diffusive transported is based on a macroscopic version of the k-ε  model. 
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1. INTRODUCTION 
 

During last years many experimental and numerical studies have been carried out concerning convective 
phenomena. Most of these studies deal with fluid motion due only to temperature gradients. Nevertheless, fluid motion 
may be induced by density variations due to gradients of other scalar quantities. On of these quantities can be pollutant 
concentration within the fluid. Such a phenomenon, combining temperature and concentration buoyancy forces, is 
called double-diffusion. 

The study of double-diffusive natural convection in porous media has many environmental and industrial 
applications, including grain storage and drying, petrochemical processes, oil and gas extraction, contaminant 
dispersion in underground water reservoirs, electrochemical processes, etc (Mamou et al., 1995), Mohamad & 
Bennacer, (2002), (Goyeau et al., 1996), (Nithiarasu et al., 1997), (Mamou et al., 1998), (Bennacet et al., 2001), 
(Bennacet et al., 2003). In some specific applications, the fluid mixture may become turbulent and difficulties arise in 
the proper mathematical modeling of the transport processes under both temperature and concentration gradients. 

Modeling of macroscopic transport for incompressible flows in rigid porous media has been based on the volume-
average methodology for either heat or mass transfer Bear (1972), Bear & Bachmat, (1967), Whitaker (1966), Whitaker 
(1967). If time fluctuations of the flow properties are considered, in addition to spatial deviations, there are two possible 
methodologies to follow in order to obtain macroscopic equations: a) application of time-average operator followed by 
volume-averaging Masuoka & Takatsu, (1996), (Kuwahara et al., 1996), Kuwahara & Nakayama, (1998), Nakayama & 
Kuwahara, (1999), or b) use of volume-averaging before time-averaging is applied Lee & Howell, (1987), Wang & 
Takle, (1995), Antohe & Lage, (1997), (Getachewa et al., 2000). This work intends to present a set of macroscopic 
mass transport equations derived under the recently established double decomposition concept Pedras & de Lemos, 
(2000), Pedras & de Lemos, (2001a), Pedras & de Lemos, (2001b), Pedras & de Lemos, (2001c), through which the 
connection between the two paths a) and b) above is unveiled. That methodology, initially developed for the flow 
variables, has been extended to heat transfer in porous media where both time fluctuations and spatial deviations were 
considered for velocity and temperature Rocamora & de Lemos, (2000). Buoyant flows de Lemos & Braga, (2003) and 
mass transfer de Lemos & Mesquita, (2003) have also been investigated. Recently, a general classification of all 
proposed models for turbulent flow and heat transfer in porous media has been published de Lemos & Pedras, (2001) 
and  . Here, double-diffusive turbulent and laminar natural convection flow in porous media is extended for the case 
there was study of a binary mixture saturating a trapezoidal enclosure filled with porous material. 
 
2. LOCAL INSTANTANEOUS TRANSPORT EQUATION 
 

The steady-state microscopic instantaneous transport equations for an incompressible binary fluid mixture with 
constant properties are given by: 



 
u⋅∇             (1) 

 
( ) guuu ρµρ +∇+−∇=⋅∇ 2p           (2) 

 
( ) ( )TTc p ∇⋅∇=⋅∇ λρ u           (3) 
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where u  is the mass-averaged velocity of the mixture, ∑=
l

lluu m , lu  is the velocity of species l , lm  is the mass 

fraction of component lm , defined as ρρll =m , lρ  is the mass density of species l  (mass of l  over total mixture 
volume), ρ  is the bulk density of the mixture ( ∑=

l
lρρ ), p  is the pressure, µ is the fluid mixture viscosity, g  is the 

gravity acceleration vector, pc  is the specific heat, T  is the temperature and λ  is the fluid thermal conductivity. The 

generation rate of species l  per unit of mixture mass is given in (4) by lR . 
An alternative way of writing the mass transport equation is using the volumetric molar concentration lC  (mol of l  

over total mixture volume), the molar weight lM  (g/mol of l ) and the molar generation/destruction rate *Rl  (mol of l  
/total mixture volume), giving: 

 
∗+⋅∇ lllll RM = )C (M Ju           (5) 

 
Further, the mass diffusion flux lJ  (mass of l  per unit area per unit time) in (4) or (5) is due to the velocity slip of 

species l , 
 

llllllll CDMmD)( ∇−=∇−=−= ρρ uuJ         (6) 
  
 

where lD  is the diffusion coefficient of species l  into the mixture. The second equality in equation (6) is known as 
Fick’s Law, which is a constitutive equation strictly valid for binary mixtures under the absence of any additional 
driving mechanisms for mass transfer. Therefore, no Soret or Dufour effects are here considered. 

Rearranging (5) for an inert species, dividing it by lM  , 
 

)CD( = )C ( ll ∇⋅∇⋅∇ u           (7) 
 

If one considers that the density in the last term of (2) varies with temperature and concentration, for natural 
convection flow, the Boussinesq hypothesis reads, after renaming this density Tρ , 
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where the subscript ref indicates a reference value and β  and lCβ  are the thermal and salute expansion for chemical 
species l  coefficients, respectively, defined by, 
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Equation (8) is an approximation of (9) and shows how density varies with temperature and concentration in the 

body force term of the momentum equation. 
Further, substituting (8) into (2), one has, 
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Thus, the momentum equation becomes, 
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ll
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where gρ−∇=∇ p)p( *  is a modified pressure gradient. 

As mentioned, there are, in principle, two ways that one can follow in order to treat turbulent flow in porous media. 
The first method applies a time average operator to the governing equation (4) before the volume average procedure is 
conducted. In the second approach, the order of application of the two average operators is reversed. Both techniques 
aim at derivation of a suitable macroscopic turbulent mass transport equation. 

Volume averaging in a porous medium, described in detail in references Slattery (1967), Whitaker (1969), Gray & 
Lee, (1977), makes use of the concept of a Representative Elementary Volume (REV), over which local equations are 
integrated. After integration, detailed information within the volume is lost and, instead, overall properties referring to a 
REV (see Fig.  are considered. In a similar manner, statistical analysis of turbulent flow leads to time mean properties. 
Transport equations for statistical values are considered in lieu of instantaneous information on the flow. 

Before undertaking the task of developing macroscopic equations, it is convenient to recall the definition of time 
average and volume average. 

 

 
Figure 1 - Representative Elementary Volume, V∆ . 

 
 
3. TIME AVERAGED TRANSPORT EQUATIONS 
 
 
In order to apply the time average operator to Eqs. (1), (3), (7) and (11), one considers 

 
'uuu += , 'TTT += , 'CCC lll += , 'ppp +=             (12) 

  
Substituting (12) into the governing equations and considering constant property flow, 
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For clear fluid, the use of the eddy-diffusivity concept for expressing the stress-strain rate relationship for the 

Reynolds stress appearing in (14) gives 
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where ( ) 2
T

⎥⎦
⎤

⎢⎣
⎡ ∇+∇= uuD  is the mean deformation tensor, 2/k '' uu=  is the turbulent kinetic energy per unit mass, 

tµ  is the turbulent viscosity and I  is the unity tensor. Similarly, for the turbulent heat flux on the R.H.S. of (15) and 
(16) the eddy diffusivity concept reads 
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where  

lrP  and 
lCS   are known as the turbulent Prandtl and Schmidt numbers, respectively. 

Further, a transport equation for the turbulent kinetic energy is obtained by multiplying first, by 'u , the difference 
between the instantaneous and the time-averaged momentum equations. Thus, applying further the time average 
operator to resulting product, one has 
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where uuu ∇−= :P ''ρ  is the generation rate of k  due to gradients of the mean velocity and 
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are the thermal and concentration generation rates of k  due temperature and concentration fluctuations, respectively. 
Also, 2.q '' uu=  

 
 

  
Figure 2 – Square and trapezoidal grid  for laminar and turbulent flow simulation. 

 
 
 
4. MACROSCOPIC EQUATIONS FOR BUOYANCY FREE FLOWS 
 
For non-buoyant flows, macroscopic equations considering turbulence have been already derived in detail for 

momentum Pedras & de Lemos, (2001a), heat de Lemos & Braga, (2003) and mass de Lemos & Mesquita, (2003) 
transfer and for this reason their derivation need not to be repeated here. They read: 

 
Momentum transport 
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Heat transport 
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The subscripts f and s refer to fluid and solid phases, respectively, and coefficients K’s come from the modeling of 

the following mechanisms: 
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Thermal dispersion: i
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Turbulent heat flux: ( ) i
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Turbulent thermal dispersion: i
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Mechanisms (30) and (31) were modeled together in de Lemos & Braga, (2003) by assuming, 
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Mass transport 
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Coefficients dispD , tD  and t,dispD  in (34) appear due to the nonlinearity of the convection term. They come from 

the modeling of the following mechanisms: 
 

Mass dispersion: i
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Turbulent mass flux: 
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Turbulent mass dispersion: 
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Here also mechanisms (39) and (40) are added up as de Lemos & Mesquita, (2003) 
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Focusing now attention  to buoyancy effects only, aplication of the volume average procedure to the last term of 

equation  (14) leads to  
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Expanding the left hand side of (42) in light of the double decomposition concept  and considering that 0
ii =ϕ  

and defining φβ  and 
φ

βC  are the macroscopic thermal and salute of chemical species l   expansion  coefficients , 

respectivelly [for more details see de Lemos & Tofaneli (2004)] . Assuming that gravity is constant over the REV, 
expressions for them are given as  
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Including (43) and (44) into (22), the macroscopic time-mean Navier-Stokes  (NS) equation for an incompressible 

fluid with constant properties is given as 
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Figure 3 – Geometry and boundary conditions: a) Square cavity  and b) Trapezoidal enclosure.  
 
 

5. RESULTS AND DISCUSSION 
 
All results obtained during the development of this work are presented and discussed upon.  Here, results are 

divided in two main sessions, involving each a certain domain configurations (square and trapezoidal enclosure). First, 
in clear medium session, the cavities are assumed to be unobstructed so that no extra drag, either of viscous or form 
nature, are included in the momentum equations. In this session, both laminar flow and turbulent flow regimes are 
analyzed. Further, in the porous medium session, the cavities are completely filled with porous material and runs are 
made also for laminar and turbulent flow. 

The first problem considered is showed schematically in Fig. 3a and refers to the two-dimensional flow in a clear 
(or a cavity filled with porous material) rectangular cavity of height   and width L   , The Schmidt number is assumed to 
be a unity. The cavity is assumed to be of infinite depth the z-axis and a uniform mass concentration gradient is putting 
on the left side to opposing side. The second geometry was considered has the form of a trapezoid (Fig.3b). Zero heat 
and mass values are assumed at the  top and bottom walls of the enclosure. In the side walls a uniform heat and mass 
gradient is putting on left to right side. Numerical computations were performed for square cavity and trapezoidal used 
a stretched grid with 80 x 80 (CV), see Fig 2 a and b. 

Aim order to validate the present work, Figure 4 shows the comparison between the present result and the work of 
the Goyeau et al.  It may be seen on the streamlines that increasing N significantly modifies the flow structure: at low 
N, the whole enclosure is affected by the flow, and a boundary layer regime progressively appears with larger N. The 
Figure shows the agreement of the present work and Goyeau et al.  it was relatively good.  

Figure 5 shows the flow, temperature and concentration fields for different values of N ( 0.1Sc,06E.1RaT =+= ). 
As just comments for the case where considered the square cavity, it may be seen on the streamlines that increasing N 
significantly modifies the flow structure: at low N, the whole enclosure is affected by the flow, and a boundary layer 
regime progressively appears with larger N. This modification of the flow structure has a direct visible consequence on 
the concentration field, which progressively builds up a vertical stratification. Although this transition towards a 
solutally dominated regime corresponds to a heat transfer minimum, the consequence on the temperature field is barely 
visible: the minimum is seen however to coincide with the end of temperature stratification (to more details see Goyeau 
et al.).  

Finally, Figure 6  presents the streamlines, isotherms and isoconcentrations lines mapping for the case where had a 
trapezoidal enclosure totally filled with porous material for 05E.1RaT + .  The streamlines in Fig. 6   indicates the 
existence of a single vortex with center in the middle of the cavity. Corresponding isotherms and isoconcentration lines  
are almost parallel to the heated and concentrated  walls, indicating that most of the heat and mass transfer is transferred 
by conduction. The vortex is generated due the horizontal temperature and mass gradient across the section. This 
gradient, is negative everywhere, inducing a clockwise oriented vorticity. 

 
 



 

 
 

 
 

 
 

Figure 4 – Streamlines visualization comparison between present work and Goyeau et al., from top to bottom, N = 2, 3 
and 5. 

 
 

 
 

 

   

 
 

 

Figure 5 Streamlines, isotherms  and isoconcentration lines ( 06E.1RaT += ) from top to bottom , N =2, 3 and 10 . 
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Figure 6 – Streamlines, isotherms and isoconcentration lines for trapezoidal enclosure totally filled with porous material ( 0.8 ,mm1dp == φ ) 
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