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Abstract. This paper presents an analysis and simulation of macroscopic heat and mass transport for laminar flow in a 

porous cavity. Two driving mechanisms are considered to contribute to the overall momentum transport, namely 

temperature driven and concentration driven mass fluxes. Aiding and opposing double-diffusive natural convection 

mechanisms are investigated. By “aiding” and “opposing” flows one means the cases where both temperature and 

concentration gradients are either in the same direction or of different sign, respectively. Variation on the overall 

Sherwood number due to changes on Raleigh number, Lewis number and N, where N is the ratio of solute and thermal 

Grashof numbers, are presented. Results indicate that for adding cases mass transfer in enhanced whereas for 

opposing temperature and concentration gradients the transfer of mass across the cavity is damped. 
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1. INTRODUCTION  

 
The study of double-diffusive natural convection in porous media has many environmental and industrial 

applications, including grain storage and drying, petrochemical processes, oil and gas extraction, contaminant 
dispersion in underground water reservoirs, electrochemical processes, etc (Bennacer et al, 2001), (Goyeau et al, 1996), 
(Mamou et al, 1995), (Mamou et al, 1998) and (Mohamad and Bennacer, 2002). In some specific applications, the fluid 
mixture may become turbulent and difficulties arise in the proper mathematical modeling of the transport processes 
under both temperature and concentration gradients. 

Modeling of macroscopic transport for incompressible flows in rigid porous media has been based on the volume-
average methodology for either heat (Hsu and Cheng, 1990) or mass transfer (Bear, 1972), (Bear and Bachmat, 1967), 
(Whitaker, 1966), (Whitaker, 1967). If time fluctuations of the flow properties are considered, in addition to spatial 
deviations, there are two possible methodologies to follow in order to obtain macroscopic equations: a) application of 
time-average operator followed by volume-averaging (Masuoka and Takatsu, 1996), (Kuwahara and Nakayama, 1998), 
(Kuwahara et al, 1996), or b) use of volume-averaging before time-averaging is applied (Lee and Howell, 1987). This 
work intends to present a set of macroscopic mass transport equations derived under the recently established double 
decomposition concept (Pedras and de Lemos, 2000), (Pedras and de Lemos, 2001), (Pedras and de Lemos, 2001b), 
(Pedras and de Lemos, 2001c), through which the connection between the two paths a) and b) above is unveiled. That 
methodology, initially developed for the flow variables, has been extended to heat transfer in porous media where both 
time fluctuations and spatial deviations were considered for velocity and temperature (Rocamora and de Lemos, 2000). 
Buoyant flows (de Lemos and Braga, 2003) and mass transfer (de Lemos and Mesquita, 2003) have also been 
investigated. Recently, a general classification of all proposed models for turbulent flow and heat transfer in porous 
media has been published (de Lemos and Pedras, 2001). Here, double-diffusive laminar natural convection flow in 
porous media is considered. 

2. LOCAL INSTANTANEOUS TRANSPORT EQUATION 

 
The steady-state microscopic instantaneous transport equations for an incompressible binary fluid mixture with 

constant properties are given by: 
 

0=⋅∇ u  (1) 
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where u  is the mass-averaged velocity of the mixture, ∑=
l lluu m ,  lu  is the velocity of species l , lm  is the mass 

fraction of component l , defined as ρρ ll =m , lρ  is the mass density of species l  (mass of l  over total mixture 
volume), ρ  is the bulk density of the mixture ( ∑=

l lρρ ), p  is the pressure, µ  is the fluid mixture viscosity, g  is the 

gravity acceleration vector, pc  is the specific heat, T  is the temperature and λ  is the fluid thermal conductivity. The 
generation rate of species l  per unit of mixture mass is given in Eq. (4) by lR . 

An alternative way of writing the mass transport equation is using the volumetric molar concentration lC  (mol of l  
over total mixture volume), the molar weight lM  (g/mol of l ) and the molar generation/destruction rate ∗

lR  (mol of l  
/total mixture volume), giving: 

 
∗+⋅∇ lllll RM = )C (M Ju  (5) 

 
Further, the mass diffusion flux lJ  (mass of l  per unit area per unit time) in Eq. (4) or Eq. (5) is due to the velocity 

slip of species l , 
 

llllllll CDMmD)( ∇−=∇−=−= ρρ uuJ  
 (6) 

where lD  is the diffusion coefficient of species l  into the mixture. The second equality in Eq. (6) is known as Fick’s 
Law, which is a constitutive equation strictly valid for binary mixtures under the absence of any additional driving 
mechanisms for mass transfer (Hsu and Cheng, 1990). Therefore, no Soret or Dufour effects are here considered. 

Rearranging Eq. (5) for an inert species, dividing it by lM  and dropping the index l  for a simple binary mixture, 
one has, 

 
)CD( = )C ( ∇⋅∇⋅∇ u  (7) 

 
If one considers that the density in the last term of Eq. (2) varies with temperature and concentration, for natural 

convection flow, the Boussinesq hypothesis reads, after renaming this density Tρ , 
 

)]CC()TT(1[ refCrefT −−−−≅ ββρρ  
 (8) 

where the subscript ref indicates a reference value and β  and Cβ  are the thermal and salute expansion coefficients, 
respectively, defined by, 
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Equation (8) is an approximation of Eq. (9) and shows how density varies with temperature and concentration in the 

body force term of the momentum equation. 
Further, substituting Eq. (8) into Eq. (9), one has, 
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Thus, the momentum equation becomes, 
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where gρ−∇=∇ p)p( *  is a modified pressure gradient. 
As mentioned, there are, in principle, two ways that one can follow in order to treat turbulent flow in porous media. 

The first method applies a time average operator to the governing Eq. (4) before the volume average procedure is 
conducted. In the second approach, the order of application of the two average operators is reversed. Both techniques 
aim at derivation of a suitable macroscopic turbulent mass transport equation. 

Volume averaging in a porous medium, described in detail in references (Slattery, 1967), (Whitaker, 1969), (Gray 
and Lee, 1997), makes use of the concept of a Representative Elementary Volume (REV), over which local equations 
are integrated. After integration, detailed information within the volume is lost and, instead, overall properties referring 
to a REV are considered. In a similar manner, statistical analysis of turbulent flow leads to time mean properties. 
Transport equations for statistical values are considered in lieu of instantaneous information on the flow. 

Before undertaking the task of developing macroscopic equations, it is convenient to recall the definition of time 
average and volume average. 

VOLUME AVERAGE OPERATOR 
The volume average of ϕ  taken over a Representative Elementary Volume in a porous medium can be written as: 
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The value vϕ  is defined for any point x surrounded by a Representative Elementary Volume, of size V∆ . This 
average is related to the intrinsic average for the fluid phase as: 

 
i
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where VV f ∆∆φ =  is the medium porosity and fV∆  is the volume occupied by the fluid in a REV. Furthermore, one 
can write: 
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with 0ii =〉〈 ϕ . In Eq. (14), ϕi  is the spatial deviation of ϕ  with respect to the intrinsic average iϕ . 
Further, the local volume average theorem can be expressed as (Slattery, 1967), (Whitaker, 1969), (Gray and Lee, 

1997): 
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where n  is the unit vector normal to the fluid-solid interface and iA  is the fluid-solid interface area within the REV. It 
is important to emphasize that Ai should not be confused with the surface area surrounding volume V∆ . 
 
 
 



MACROSCOPIC EQUATIONS FOR BUOYANCY FREE FLOWS 

 

For non-buoyant flows, macroscopic equations considering turbulence have been already derived in detail for 
momentum (Pedras and de Lemos, 2001), heat (de Lemos and Braga, 2003) and mass (de Lemos and Mesquita, 2003) 
transfer and for this reason their derivation need not to be repeated here. They read: 
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Heat transport 
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The subscripts f and s refer to fluid and solid phases, respectively, and coefficients K’s come from the modeling of 
the following mechanisms: 

• Tortuosity: ( ) i
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• Thermal dispersion: i
disp

i
f

ii
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Mass transport 
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The coefficients dispD  in Eq.  (21) appear due to the nonlinearity of the convection term. They come from the 
modeling of the following mechanisms: 

• Mass dispersion: i
disp

iii CC 〉∇〈⋅=〉−〈 Du  (24) 

MACROSCOPIC DOUBLE-DIFFUSION EFFECTS 

 
Focusing now attention to buoyancy effects only, application of the volume average procedure to the last term of Eq. 

(11) leads to, 
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Expanding the left hand side of Eq. (25) in light of Eq. (14), the buoyancy term becomes, 
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where the third and forth terms on the r.h.s. are null since 0ii =〉〈 ϕ . Here, coefficients φβ  and 
φ

β C are the macroscopic 
thermal and salute expansion coefficients, respectively. Assuming that gravity is constant over the REV, expressions for 
them based on Eq. (26) are given as, 
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Including Eq.  (26) into Eq. (16), the macroscopic time-mean Navier-Stokes (NS) equation for an 

incompressible fluid with constant properties is given as, 
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Coefficients φβ  and 
φ

β C  are used to compose the Grashof numbers associated with the thermal and solute drives, in 
the form, 

 

2

3THg
Gr

ν
∆βφ

φ = , 
2

3
C

C

CHg
Gr

ν

∆β
φ

φ
=  (29) 

 

where T∆ = 21 TT −  and C∆ = 21 CC −  are the maximum temperature and concentration variation across the cavity, 
respectively. One should note that for opposing thermal and concentrations drives, such maximum differences are of 
opposing signs. 

The ratio of Grashof numbers define the buoyancy ratio N  in the form 
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giving for Eq.(28), 
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AVERAGE NUSSELT AND SHERWOOD NUMBER 

  
The local Nusselt number on the hot wall for the square cavity at x = 0 is defined as, 
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where HT and CT  refers to the temperature limits imposed at the cavity lateral walls, also named here as 1T  and 2T , 
respectively. The average Nusselt number is then given by, 
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Likewise, the local Sherwood number on the wall where the highest concentration prevails, or say, at x = 0 for 

adding drives and x=L for opposing cases, can be defined as, 
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where the subscripts refer to the maximum and minimum concentration values, respectively, and hc is a film coefficient 
for mass transfer. The average Sherwood number is then given by, 
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2.1. Results and Discussion 

 
The presents work refers to the study of natural convective flows in a porous cavity of height H , width L  and 

aspect ratio LHA = =1 (see Fig.1), saturated by a binary fluid (such as aqueous solutions, as in numerous 
experimental studies related to solidification processes). The binary fluid is assumed to be Newtonian and to satisfy the 
Boussinesq approximation; the flow is incompressible, laminar, 2D and in the steady state. Horizontal temperature and 
concentration differences are specified between the vertical walls. 

For aiding cases, one has 1T  and 1C  on the left wall and 2T , 2C  at the right surface. For opposing runs, the values 
of 1T  and 2C  are assume to prevail on the left wall and 2T  and 1C > 2C  on the right. For all cases, null mass and heat 
fluxes are imposed at the horizontal walls. 

As seen above, in this work equations were derived for laminar double-diffusive natural convection in porous media. 
Derivations were carried out under the light of the double decomposition concept (Pedras and de Lemos, 2000), (Pedras 
and de Lemos, 2001). Extra terms appearing in the equations needed to be modeled in terms of Du , 〉〈T  and 〉〈C . 

Table 1 shows average Nusselt e Sherwood numbers compared with those by (Trevisan and Bejan, 1985) and 
(Goyeau et al, 1996) . The table indicates a good agreement with similar results presented in the open literature. 

Comparison between aiding and opposing drive cases is shown next, where figures show comparisons in the flow 
structure for the conditions 1C,1T −=−= ∆∆ , 0N,1T =−=∆  and 1C,1T +=−= ∆∆ . Thermal and concentration 

patterns are presented for 1.0N = , 1N =  and 10N = . Strictly speaking, values of N, as defined by Eq. (30), can be of 
positive or negative sign depending on the signs of 

φ
βC  and C∆ , in addition to the sign of the product T∆βφ . Here, 

only chemical species with 0C >
φ

β  are considered, but the overall concentration difference across the cavity can be 

either negative (adding case 1CT −== ∆∆ , ) or positive (opposing case, 1CT −=−= ∆∆ ). Therefore, opposing cases 
as here defined would lead to 0N <  and, for consistency, all figures below are show in terms of the absolute value .N  

Further, in the figures here presented, positive stream function values are considered in the counter-clockwise direction. 
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Streamlines are presented in Fig. 4, where the promotion of convective currents are detected when increasing the 
value of N for adding cases. The opposing trend, namely the reduction of the recirculation intensity as N  increases for 

opposing cases ( 1.0N = ,Fig. 4b) is clearly seen in the figure. For 10N =  in Fig. 4c, the drive on the counter-
clockwise direction due to weight of the mixture overcomes the clockwise motion caused by higher temperatures closer 
to the left of the cavity. In this situation, the sign of fluid rotation inside the cavity is changed, causing substantial 
impact on the corresponding T and C fields. Figure 2 indicates such changes for the temperature field where, for 

10N =  in Fig. 2c, the bottom of the cavity is maintained at higher temperatures, in spite of having an overall 
temperature gradient promoting the stratification of the flow. Finally, Fig. 3 shows corresponding patterns for the 
concentration field. Stratification of the concentration field, driven by the strong drive of the mass buoyancy term in the 
momentum equation, prevails for either higher values of .N  
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Figure 2 -  Effect of  N on isotherms for 100Ra* = ; 100Le = ; 1A = , 310Da −= : a) Aiding drives, 

a) Aiding drives 

 

b) Thermal drive only 

 

c) Opposing drives 

 

Figure 1- Geometry and imposed conditions: a) Aiding drives: 1C,1T −=−= ∆∆ ; b) Thermal drive only: 

0N,1T =−=∆ ; c) Opposing drives: 1C,1T +=−= ∆∆ . 



0N,1C,1T >−=−= ∆∆ ; b) 0N,1T =−=∆ ; c) Opposing drives, .0N,1C,1T <+=−= ∆∆  
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Figure 3 - Effect of N on isoconcentration lines 100Ra* = ; 100Le = ; 1A = , 310Da −= : a) Aiding drives, 
0N,1C,1T >−=−= ∆∆ ; b) Opposing drives, .0N,1C,1T <+=−= ∆∆  
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Figure 4 –  Effect of N on streamlines for 100Ra* = ; 100Le = ; 1A = , 310Da −= : a) Aiding drives, 
0N,1C,1T >−=−= ∆∆ ; b) 0N,1T =−=∆ ; c) Opposing drives, .0N,1C,1T <+=−= ∆∆  
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Table 1: Average Nusselt and Sherwood numbers ( N=0 only thermal drive, Le=10, A=1). 

 

*Ra  
Imposed 

Directions 
 100 200 400 1.000 2.000 

Present Results 3.11 4.90 7.65 13.22 19.54 

(Goyeau et al, 1996) 3.11 4.96 7.77 13.47 19.90 Nu

 
(Trevisan and Bejan, 

1985) 
3.27 5.61 9.69 - - 

Present Results 14.76 22.02 32.55 53.37 76.58 

(Goyeau et al, 1996) 13.25 19.86 28.41 48.32 69.29 
Sh 

1C,1T −=−= ∆∆  

(Trevisan and Bejan, 

1985) 
15.61 23.23 30.76 - - 

Nu  0C,1T =−= ∆∆  Present Results 3.11 4.82 7.65 13.25 19.51 

Nu  3.05 4.84 7.59 13.20 19.48 

Sh 
1C,1T +=−= ∆∆  Present Results 

14.73 22.04 32.58 53.48 76.37 

 

2.2. Conclusions 

 
This paper presented numerical simulations for adding and opposing flows in a cavity filled with a fluid saturated 

porous material. A mathematical model based on volumetric average of transport equations is applied. Numerical 
simulations made use of the control volume method and algebraic equations were relaxed following the SIMPLE 
method. For adding flows, both temperature and concentration distributions tend towards stratification as both drives 
push the fluid along the same angular direction. For opposing flows, mass driven recirculation currents overcome 
thermal drive and the flow in the entire cavity is pushed into a recirculating motion contrary to that of the adding flow 
case. Results herein are interesting and might contribute to the improved design and more accurate analysis of important 
engineering flows. 
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