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Abstract. The purpose of this paper is to present an interface to generate “movement signals” to a manipulator. A 
new strategy has been created to control manipulators in a natural fashion, by fusion of data generated by two  
subsystems: an electromyographic subsystem and a visual subsystem. The main object of such a system is to mimic 
the behavior of a human being in object manipulation, who doesn’t need to look at the target object before her/his  
hand is  near it.  Until  then,  it’s  sufficient  to move her/his  arm in a “not-so-precise” trajectory.  With  a camera  
installed on the manipulator in a hand-eye configuration, it’s possible to implement such control, by adding vision to  
it, allowing a more precise movement as it approximates the target object. This paper presents some characteristics  
and the viability of this type of control, the researches on this field and its results.
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1. INTRODUCTION 

There is no doubt about robot application on industry. Many processes apply manipulators in substitution of human 
operators, in order to protect human life or just for productivity reasons. Executive summary published by International 
Federation of Robotics (IFR, 2007) reports a growth of 30% of world-wide robotic sales on 2005 (126.700 units). 

Although there are many programming languages for robot control (Fu  et al., 1987), there may be some kind of 
natural  (intuitive)  way to  determine  the manipulator’s  action.  From a point  of  view that  a  great  part  of  activities 
executed by manipulators are human action repetitions, it’s possible to think a way to mimic human behavior in object 
manipulation.

Researches  can  be  found  on  computer  vision  field,  where  a  human  operator’s  image  is  taken  from  a  virtual 
workspace and his/her movements are monitored and processed, defining the trajectory to be followed. This approach 
has the problem of demanding an overall  charged power of processing, besides the issue of eventual occlusion of 
important images of workspace.

Another source of command signals naturally generated is the monitoring of myoelectric signals from the operators 
body. Myoelectric  signal  (MES) is  an electric  signal  generated  by muscle  fibers  when they contract  to  perform a 
member movement (e.g., arms, legs). It’s possible, for example, to infer the arm movement of an operator by reading 
MES from her/his biceps. However an issue about MES must be observed: captured on the surface of skin, this signal is  
weak and noisy,  besides  the cross-talk  phenomena (reading of  signals  of  adjacent  fibers,  not  used  in  the specific 
movement being observed). 

Even so the two technologies mentioned above are experimenting a great development, in order to achieve higher 
levels of movement classification, it’s not possible yet for just one of them to ideally control a manipulator in real-time. 
This paper proposes an interface to generate “movement signal” to a manipulator. A new strategy has been created to 
control manipulator in a natural fashion, by fusion of data generated by two subsystems: electromyographic subsystem 
and visual  subsystem.  The main objective of such a system is  to mimic the behavior of a  human being in object 
manipulation, who doesn’t need to look at the target object before her/his hand is near it. Until then, it’s sufficient to 
move her/his arm in a “not-so-precise” trajectory. With a camera installed on manipulator in a hand-eye configuration, 
it’s possible to implement such control, by adding vision to it, allowing a more precise movement as it approximates the 
target object.

Based on this assumption, MES is defined as the  command signal, and vision subsystem is defined as a  control 
signal. These two information must be fused in one (the “movement signal”), to be sent to manipulator, on this basis: 
while vision subsystem doesn’t “see” the target object, the only way to reach it is through myoelectric signal (although 
it can be somewhat imprecise); from the point vision the subsystem can identify a target object, the two signals are 
considered by the fusion module in processing of the right movement to be executed by manipulator. From this point 
on, myoelectric signal defines the action to take place (i.e., the movement to be executed) as a course control, and vision 
subsystem produces information to be used as a fine control, as it can have more detailed information of target object’s 
pose. So, on a mimetic approach of human action, MES represents the intention of movement, while vision subsystem 
represents the vision feedback of a person. Fusion module represents the human’s decision making.

This paper presents some characteristics and the viability of this type of control, the researches on this field and its  
results. 
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2. CONCEPTUAL INTRODUTION

2.1. The Myoelectric Signal
Muscle activity has been studied for a long time: in Renascence, Leonardo da Vinci dedicated part of his research to 

muscle  functions.  In  1666  Francesco  Redi  suspected  for  the  first  time  about  the  relation  of  muscle  activity  and 
electricity, observing electric fishes; Du Bois-Reymond demonstrated this relationship through voluntary generation of 
an electric signal with his muscles. In 1912 surface electrodes were developed by Piper (1912), as a small metallic plate. 
On last century many advances took place on electronics and biological interfaces to instrumentation, enabling the 
application of myoelectric signals (MES) mainly on prostheses to amputees. In order to use myoelectric signals for 
control, it is necessary understand how they are generated and know it’s characteristics. 

Contraction of a muscle initiates through synaptic transmission of action potential, conducted by nervous neurons 
associated with movement (motoneurons) until the muscle fibers. Action potential is an electrochemical reaction caused 
by fast changing of elements concentration (K+ and Na+) around motoneuron membrane, generating a difference of 
potential of units of milivolts around the membrane. Each motoneuron carries the action potential to fiber muscle, and it 
occurs in different times due to ramification differences in neurons and stochastic nature of ionic discharges. The set of 
elements described just above is named motor unit (DeLuca and Basmajian, 1986), depicted in Fig. 1.

 

Figure 1. Motor unit

Each fiber of muscle contributes to the generation of MES, which is the summation of fiber signals of  that muscle. 
Figure 2 shows a representation of this composition. One can note that, by the way signal is generated, the myoelectric 
signal can be considered stochastic.

Figure 2. Schematic representation of MES composition
  
The frequency range of MES goes from 10Hz to 500Hz, being the range 20-150Hz responsible for the most part of 

signal  power.  Signal  amplitude  can  vary  from tens  of  microvolts  (µV) to  units  of  milivolts  (mV),  depending  on 
monitored muscle.

For control applications MES is acquired through superficial electrodes, more comfortable than needles used on 
clinical applications. 
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Due to the weakness of myoelectric signal, some care is needed during acquisition, as described by De Luca (1986 
and 2002). At the very first stage it’s necessary a pre-amplification as near as possible to electrodes, by instrumentation 
amplifiers, that has high common mode rejection ratio (CMRR). This minimizes amplification of ambient and artifact 
noise. After pre-amplification, additional circuits must filter unusable frequencies, to provide a pre-processed signal to 
the system.

Many researches have dedicated their work to processing of myoelectric signals, mainly on clinical applications. 
Command applications are restricted to active prostheses controlled by MES. This signal was not yet explored as a 
natural human-robot interface, neither as a command signal nor as a programming tool.

Strategies for classifying myoelectric signal include neural networks (Kelly  et al., 1990), wavelets (Norris  et al., 
2001 and Englehart et al., 1999), statistical theories (Micera et al., 1999), and time-frequency analysis (Englehart et al., 
1999a). However, the real-time requirements of control systems restrict  application of complex techniques that are 
process intensive. It´s necessary to create new strategies, or to adapt techniques already created, to be used in real-time 
applications.  Englehart  and  Hudgins  (2003)  proposed  utilization  of  time  parameters  already  applied  on  statistical 
classification of myoelectric signal in a fast (real-time) classification approach. This work uses one of these parameters, 
called waveform length, detailed on section 3.1.

2.2. Computer Vision

Image  processing  can  be  used  to  extract  information  like  object  identification,  it´s  position,  orientation  or 
dimensional  data.  Computational  vision  systems  have  been  used  by  industry  in  inspection,  localization,  counting, 
measurement and robot control (Fu et al., 1987).

An image can be represented by vector  {pyx,  y = 1, ..., A; x = 1, ..., L}, where each element  pyx is called pixel 
(picture cell or picture element). The  y data correspond to lines of image and  x correspond to the columns, the two 
forming an inverted coordinate system, with origin located at upper left corner of image. Element  x increases to the 
right while y increases to down, as depicted on Fig. 3, where H is height, that is, the number of rows, and W is width 
(number of columns). The resolution of an image is expressed by these two dimensions. As resolution increases, more 
detail can be observed (processed) on image.

Figure 3. Conventions on coordinate system of images

The bright resolution of a pixel is the number of values it can assume. For example, if 0 ≤ pyx ≤ 63, one can say the 
image has 64 bright levels (26) or a resolution of 6 bits. If the image has a bright resolution of 1 bit, it is referred as a 
binary image. 

This work is interested in recognition and classification possibilities of this type of system. In this task the system 
must determine if a part of image correspond to one of various alternatives, or neither one. Normally the system is fed 
with geometric  characteristics  of target  object,  in order to classify an unknown object by comparison with known 
templates. These characteristics are numeric quantities, independents from object’s pose.

2.3. Data Fusion

Data fusion identifies the technique of combining data from multiple sources to produce an even more confident 
output that just one source alone can’t produce (Hall and McMulen, 2004). The term data includes information from 
sensors, signal processing, statistical estimation, pattern recognition, artificial intelligence, and others.

Applications of data fusion include military use, intercontinental missile trajectory control, vegetable composition 
determination, underground mineral localization, industrial machine control, and more (Hall and Llinas, 1997).

Hall  (2001)  makes  analogy  to  human  capacity  of  using  multiple  feelings  in  determination  of  more  precise 
information about environment where he/she lives in. For example, to know if a fruit is edible, one apply not only the 
vision, but touch and taste. The result of all this feelings is more accurate than of each one isolated.

Many approaches  to  data  fusion  have  being  implemented,  including  (Saziadeck,  2002)  probabilistic  modeling, 
mainly Bayesian models (Djafari, 1997), minimum-quadratic techniques, where Kalman Filter is the best example, and 
intelligent  fusion techniques, using fuzzy logic (Lee and Qian, 1998), (Chen and Huang, 2000), (Aplacharla  et al., 
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1999), (Gibson  et al., 1994), and neural networks (Fincher and Mix, 1990), (Cires  et al., 1995), (Savia and Koivo, 
2004). This paper presents the utilization of fuzzy logic in data fusion process.

3. SYSTEM IMPLEMENTATION

The system is composed of three complementary modules, as can be seen in Fig. 4. Myoelectric signals are acquired 
and analyzed by  Myoelectric Module, generating information about operator’s intention on moving. At same time, a 
video  camera  positioned  on  robotic  manipulator,  in  a  configuration  called  hand-eye,  monitors  environment.  The 
Computer Vision Module continuously analyses the environment image captured just to find objects that can be elected 
as a target-object, or simply target.

The data generated by the two modules just described above are fed into Data Fusion Module, that processes them 
and generates control signal to the machine being controlled (the manipulator). It is required that all this process be 
executed in real-time.

Figure 4. Schematic representation of proposed system

3.1. Myoelectric Module (Single Joint Command)

A mechanical  manipulator  can be  modeled  as  an  open-loop articulated  chain  with  several  rigid  bodies  (links) 
connected in series by either revolute or prismatic joints driven by actuators (this paper will consider revolute joints). In 
most robotic applications, one is interested in the spatial description of the end-effector of manipulator as a relative 
movement composition of its links (through joints), and with respect to a fixed reference coordinate system (Fu et al., 
1987). By other side it is desired to move manipulator’s joints in a controlled way, and commanded by an intelligent 
agent (computer or human).

It’s required, then, to identify the relationship between command signal and movement to be developed by joints in 
order to take manipulator to the desired position in space. If each joint on manipulator is associated to myoelectric 
signal captured from muscles associated to the convenient human joints (elbow, shoulder or wrist), it can be possible to 
command manipulator by natural gestures.

For a joint Um of manipulator, it can be associated to a myoelectric signal MESh generated by muscles associated to 
human joint Uh (Fig. 5), so it produces angle θm on joint Um. It’s desired to determinate the relation expressed by Eq. 1.

Figure 5. MES defines joint angle

)( hm MESf=θ    (1)

It was used waveform length (wfl) as parameter to indicate movement intention. This characteristic of myoelectric 
signal supply information of frequency, amplitude and complexity, in one numeric value, and is rapidly obtained, wich 
is fundamental in real-time command systems. For a frame with  N samples, wfl is obtained through Eq. 2, where  xk 

indicates kth sample and xk-1 is one sample before.
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So, Eq. 1 can be reformulated as θm being dependent of wfl (Eq. 3).

)(wflfm =θ                 (3)

In capturing of myoelectric signal it was used a computer with CPU Athlon 1.2GHz, a 16 bits of resolution A/D 
(analog to digital converter) and sample rate of 1000 samples/second. Signal was captured by Ag/AgCl superficial 
electrodes,  and  firstly  applied  to  instrumentation  amplifier,  near  electrodes  (to  minimize  noise  and  parasitic 
capacitances influence). The pre-amplified signal was filtered by notch filter to remove 60Hz component and amplified 
once more to produce a signal capable to be read by computer. It was defined frames of 256ms, with 256 samples per 
frame (Fig. 6), in capturing and analysis of MES, which provides a command update rate of approximately 3 commands 
per  second  (included  time  processing  of  the  other  two  modules),  considered  sufficient  in  real-time  command 
applications (Englehart and Hudgins, 2003).

Figure 6. Frames of MES acquisition 

3.2 Computer Vision

It was defined a rectangular object to be the target-object, that is, the object to be manipulated by robot. Computer 
Vision Module identifies in captured image the target’s position and it’s relative velocity (relative because actually 
who’s moving is manipulator). These information are sent to Data Fusion Module. The choice of a simple objetc’s 
geometric characteristic is due to the fact of this work be mainly occupied with mimetic method of human behavior in 
manipulation of objects. 

                             (a)                                        (b)                                    (c)                                            (d)

Figure 7. Steps to identifying rectangles

Figure 7 shows some steps to identify rectangles executed by Computer Vision Module: (a) presents original image, 
captured by camera and stored in computer memory; (b) shows image after binarization process. After that, border 
identification  is  processed (by  Canny  algorithm);  (c)  shows  result  of  contour  determination  (from  border 
information). After that, angle measuring identifies which of them are rectangles; (d) shows identified rectangle 
and target-point, overlapped to original image.

3.3 Data Fusion Module
This work explores fuzzy logic (Zadeh, 1965) in data fusion processing. One can observe that data to be fused here 

are not of the same nature (two positional information, for example), but of different types (as it is in human world). It’s 
supposed to be analyzed  command data, represented by myoelectric signal (through its  wfl characteristic), and state 
data, represented by target position relative to manipulator’s coordinate system (through Computer Vision Module), as 
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it is in human world, where he/she supply energy to muscles in order to move a member till target object, helped by 
vision, to get the best position of his/her “manipulator” (arm/hand subsystem).

It was developed a Fuzzy Logic System (FLS), that has flexibility to process a variable quantity of inputs, with a 
Rule Table easily configurable too. It was chosen four input variables, as described below:

• CMD : correspondent value to operator’s movement intention of a member, through wfl  parameter;
• dCMD : CMD variation in time;
• POS : correspondent value to target’s position, relative to the center of vision area (in captured image);
• dPOS : POS variation in time (target’s relative velocity).

It was defined tree linguistic values to each input variable, and than defined membership-functions to each one, with 
triangular shape and base’s configuration determined experimentally (Fig. 8). Input values were normalized in the range 
0-100 (as can be seen in Tab. 1), for time optimization of FLS processing.

Figure 8. Input member-functions, with its linguistic values

A fuzzy logic system receive numeric values as input, transform then in linguistic values according to associated 
membership-functions (fuzzyfication), process inference mechanism (through predefined Rule Table), generating a set 
of linguistic values, which must be composed in membership-function of output linguistic variable. 

Figure 9. Output member-functions, with its linguistic values

This composition generates the numeric output value (defuzzification) (Mendel, 1995), (Kasabov, 1998), through 
processing of contribution of each output membership-function (Fig. 9). The Rule Table has 81 rules, associating to 
each composition of the four linguistic input variables, a linguistic value of output variable.

Table 1. Normalization of input and output variables 

Variable I/O Value / Value Range Meaning

CMD I
0 Muscle in rest
50 Muscle at middle of contraction
100 Muscle at full contraction

dCMD I
0 < dCMD < 50 CMD decreasing (muscle relaxing)

50 Zero (CMD without changing)
50 < dCMD < 100 CMD increasing (muscle contracting)

POS I
0 Target out of vision (not identified on image)

0 < POS < 50 Target at left of center image
50 Target at center image

50 < POS < 100 Target at right of center image

dPOS I
0 < dPOS < 50 POS decreasing (target decelerating)

50 Zero (target stopped)
50 < dPOS < 100 POS increasing (target accelerating)

POT O
0 Maximun “negative” power (inverse rotation)
50 Zero (motor stopped)
100 Maximun “positive” power (direct rotation)
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After processed by FLS, numeric output signal is applied to a low-pass filter (as defined in Eq. 4), to eliminate 
abrupt transitions of power supplied to actuator. (Fig. 10).

Figure 10. Diagrammatic representation of smoothing process of output signal

2/)( kk xxy +=              and  2/)( 21 −− += kk xxx    (4)

where:yk is the output value in time k;
xk is FLS processing result for input values, in time k (last sample);
xk-i is FLS processing result for input values, in time i samples before the last one

4. RESULTS AND DISCUSSION

Input values were simulated, from identification of various critical situations where system could be involved in. For 
each variable (input and output), normalization followed criteria listed in Tab. 1.

Simulated data was inputted in FLS and output numeric value (power signal to manipulator’s joint motor) was 
plotted for each situation, as described below.

Figure 11 shows FLS’s behavior where manipulator gets near to target object (i.e., an object appears in system’s 
image area) and reaches target position. In this situation (indicated by ellipse in Fig. 11) the output signal remains stable 
in zero (according to criteria defined in normalization), that is, joint motor remains stopped, even there is some (normal) 
variation in CMD value, which is desired, because myoelectric signal is stochastic in nature and it’s not possible to get a 
stable command signal just from it.

It was observed that, even with removing of target object, command signal was not affected significantly, following 
CMD signal, which remained stable between steps 25 and 32.
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Figure 11. Manipulator stabilization on target’s position

Figure 12 shows FLS’s behavior where manipulator is at target position and must decide if operator intention is to 
leave object to go to another place (ellipse in figure), which is observed in step 11. From this point on, output signal 
follows CMD signal.

Figure 13 shows FLS’s behavior where “target object” (really, a potential target object) is identified in vision field 
and is approaching, but operator doesn’t want to stop over that object (ellipse in figure). In this case, system must not 
stop over object, but continue to follow “instructions” of myoelectric command (CMD signal).
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Figura 12. Stability on target position and pursue of command signal
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Figure 13. Decision of NOT to stop over “target-object”

4.1 FLS performance
During FLS data processing, it was registered inference process time of each step. The result was plotted and is 

presented in Fig. 14.
The average processing time of FLS was 20,34 microseconds (μs), for input and rules configuration adopted. For 

average calculation it was not computed zeroed values (which indicates object was out of system’s vision field) and 
initial value (step 9), which high value is attributed to time of charging routines in memory.
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Figure 14. Processing time of SLN

5. CONCLUSION
This paper presented a new approach to robotic control, based in mimic of human behavior in object manipulation. 

This  mimic  was  implemented  through data  fusion of  myoelectric  and position  information.  Intelligent  fusion was 
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applied in fusion process, through a Fuzzy Logic System (FLS), developed for this research. The obtained results show 
the viability of this approach.

FLS’s performance was measured, due to real-time necessities. The average time for each  inference was 20,34µs. 
For applications where myoelectric  and positional  (via computer  vision) information are processed, and input data 
update rate is around 300ms, the inference process time measured is acceptable for timing requirements of the system 
FLS is inserted in.

5.1 Future Works
Data presented in this work are result of simulated information for 1 DOF (degree of freedom) mechanism, that is, 

one  joint.  The ongoing work includes  extrapolation  and test  of  results  to  3  DOF mechanisms,  where  myoelectric 
information will be captured from shoulder, elbow and wrist.

Another research thread is utilization of neural network and probabilistic theory on data fusion implementation, in 
order to compare the various strategies of fusion, identifying the most adequate one for this type of application.
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