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Abstract. Concerning with the new paradigms referred to manufacturing systems, new challenges for the control and 
monitoring processes include the early detection, diagnosis and treatment of incipient faults. Such systems have been 
beneficed by the last decade computational revolution; however, this also has brought the necessity of consider 
problems of uncertainty in the information sharing, the distributed control, coordination and cooperation of 
autonomous entities, remote operation and so on. For those reasons, all these tasks have to be performed concerning 
not only the normal behavior of the system, but also the behavior in abnormal (faulty) conditions. In this context, 
diagnostic processes obtain the causes of failures given a set of observations and treatment processes include the 
decision of the best procedure for the total or partial system recovery. Petri net has been proved suitable for the 
modeling of control systems, and Bayesian networks uses probabilistic relationships among its variables making them 
suitable for inference purposes. Therefore, this works aims for the integration between Bayesian networks for the 
diagnostic and decision making processes and Petri nets for the control process. A hierarchical approach is developed 
for the modeling stage. A case of study which consists of a single line manufacturing system has been considered in 
order to evaluate the procedure. Special emphasis is focused on methodological issues and industrial systems. 
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1. INTRODUCTION  
 

In the past few years, manufacturing systems have experimented many changes in terms of complexity based on the 
customers’ constantly changing demand and volatility. New challenges, especially for emergent countries since 
competitiveness demand products with more quality at lower costs, have concerned many researches (Beach et al., 
2000), (Abell, 1979), (Spina et al., 1996) and the key points are the improvement of effectiveness of strategies in 
planning, scheduling, coordination, and control of such systems (Santos Filho, 2000). Besides, we detach a critical 
aspect in manufacturing process that is: faulty behavior of components, machine breakdowns and device failures. 
Concerning with such aspects can make the difference between a successful system and an ailing one. For that reason, 
the control and monitoring processes in a production system must include the early detection, diagnosis and treatment 
of incipient faults.  

In this context, Petri net has been proved useful in the modeling, analysis and implementation of manufacturing 
control systems (Crockett, et al., 1987), (Desrochers and Al-Jaar, 1995), (Zhou and Venkatesh, 1999). In detection 
techniques, Riascos et al. (2004) propose the use of such net for the detection and treatment of faults in manufacturing 
systems, and Lira (2005) introduces the detection of faults in assembly systems by the use of Petri net. 

On the other hand, Bayesian networks use probabilistic relationships among their variables to represent influences 
between each other (Pearl, 1988), (Neapolitan, 2003).  From such relations, the model permits making inferences, 
which means that from a set of observed variables, the most probably explanation for such evidence can be obtained. 
Przytula and Thompson (2000) introduce the construction of Bayesian networks for diagnostic processes and Riascos et 
al. (2003) presents the detection and treatment of faults based on Petri nets and Bayesian networks. 

The present work introduce the use of Petri nets in the modeling stage of the control system and the use of Bayesian 
networks for the diagnostic and decision making processes. Since the use of Petri net for modeling of control systems 
usually requires a large amount of nodes, a hierarchical approach is proposed in order to avoid complexity in the 
representation. 

This paper is organized as follows. Section 2 introduces the general concepts of Petri net and Bayesian networks. 
Section 3 presents the proposed methodology. In section 4 a single line manufacturing system is considered as a case of 
study in order to validate the proposal. Finally in section 5 the conclusions of the work and the open topics for research 
are presented. 
 
2. BACKGROUND ON PETRI NETS AND BAYESIAN NETWORKS 
 

This section introduces the general concepts of Petri net and Bayesian networks, further readings include (Murata, 
1989), (Peterson, 1981), and (Reisig, 1985) for Petri net theory, and (Pearl, 1988), (Pearl, 2000), (Neapolitan, 2003) and 



(Jensen, 2001) for Bayesian belief networks theory. A text book in applications of Petri net in hierarchical modeling and 
control of discrete-event systems can be found in (Miyagi, 1996). 

 
2.1. Petri net 

 
Petri net is a technique for the synthesis, modeling, analysis and implementation of systems. It works with process 

modeling, which is a representation of what we believe are the most important features of it. Such a model consists in a 
graphical structure and a mathematical support that permits the analysis of the system in order to obtain information 
relevant for the correct behavior of the components. 

Formally, a Petri net is a bipartite directed graph which consists in a set of places P = {p1, …, pm} represented by 
circles; a set of transitions T = {t1,…, tn} represented by rectangles; a function of income arcs I P T= × →  
represented by arcs from places to transitions; a function of outcome arcs O T P= × → represented by arcs from 
transitions to places; and an initial marking 0 :M P → that assigns to each place a number of tokens, and that 
represents the state of each place at any given time. 

Places in manufacturing environment, can represent operations or processes, availability of resources, or availability 
of raw materials, fixtures, pallets, etc. Transitions represent activities that imply a change of state such as 
starting/stopping of an activity and that distribute the resources to the given processes.  

The dynamic behavior of a system is modeled in Petri net by the enabling and firing of transitions. The transition 
firing rules are: 

 
i) a transition t is said to be enabled iff ( ) ( , )m p I p t≥ , where: ( )m p is number of tokens in each input 

place of t and ( , )I p t is the number of input arcs from p to t (also called weight of the arc); 
ii) an enabled transition may or may not fire, depending on the evolution of the system; and 
iii) when a transition fires, a new marking is defined as: 1( ) ( ) ( , ) ( , )i iM p M p I p t O t p−= − + , 

where ( )iM p is new marking of p, 1( )iM p− is the marking before t was fired, and ( , )O t p is the number 
of arcs to p. 

 
In control of manufacturing systems based on Petri net, three important properties are required to be maintained 

(Zhou et al., 1992): boundedness, liveness and reversibility. 
Boundedness is the property that guarantees that any given place will no have more than a k number of tokens, 

i.e., ( )m p k≤ , p P∀ ∈ , where k is an integer such that 1k ≥ ; liveness is the property that guarantees that for any given 
transition t, there is a sequence of firings that will enable it; finally, reversibility is the property that guarantees that for 
any marking Mi(P), there is a sequence of firings such that it will lead the system to the initial state M0(P). A special 
case of boundedness is safeness where k = 1. 

Since the modeling of manufacturing systems generally results in a large amount of nodes, comprising the 
representational power of Petri net, the modeling of the control system is divided in two levels: a coordination level and 
a plant control level. The coordination level is a safe, live and reversible Petri net that represents the evolution of the 
process under study. The control level contains the operations, availability, and behavior of the components of the 
process. Therefore, a top-down approach can be implemented starting with the construction of the coordination level, 
and making a refinement in order to obtain the plant control level. 

Murata (1989) offers various analysis techniques for the verification of the properties mentioned above, that include 
the reachability graph, incidence matrix, siphons and traps, etc. Also, simulation can be used in order to verify the 
properties of the model. 

 
2.2 Bayesian Networks 

 
Bayesian belief networks (Pearl, 1988) are structures that represent probabilistic influences among their variables. 

Informally, the construction of a Bayesian network can be performed by taking one node and linking to it all other 
variables that have an influence on it or that it has influence to.  

Bayesian methods provide a formalism for reasoning about partial beliefs under conditions of uncertainty. In this 
formalism, propositions are given as numerical parameters signifying the degree of belief according to some evidence 
or knowledge. So, formally, Bayesian networks ( , )G Prob are constituted by a topological structure G and a set of 
parameters Prob which represents the probabilistic relations among their variables.  

The structure of Bayesian networks are represented by directed acyclic graphs (DAG) where each node Xi has a set 
of parents pa(Xi), a set of children ch(Xi), and a set of children’s parents (also called spouses) spo(Xi). The parameters of 
the nodes are given by the conditional probability of each variable assume a value xi, given the observation of the set of 
its parents, i.e.,  

( ( ))i iProb X pa X                                                                                                                                                (1) 
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Normally, such parameters are given in a table format for which they are also called conditional probabilistic tables 

(CPT) (Murhpy, 1998). 
At this point it is necessary to define the concept of probabilistic models. A probabilistic model is an encoding of 

probabilistic information used to compute the probability of every well-formed sentence S (a set of variables) in 
accordance with the basic principles of probability (Pearl, 1988). So, any joint probability function represents a 
complete probabilistic model. In this sense, in Bayesian networks the computing of joint probability distributions can be 
suitable obtained by the calculation of: 

 

1 2
1

( , , ..., ) ( ( ))
n

n i i
i

Prob x x x P x pa x
=

=∏                                                                                                                        (2) 

 
One advantage of using Bayesian networks is that they permit in a suitable way, represent human knowledge 

explicitly, directly and qualitatively in a graph. However, in modeling conceptual relations, such as causation, 
association, and relevance, it is often hard to distinguish direct neighbors from indirect neighbors; then, constructing a 
graph for these relations becomes a delicate task.  

The construction of a Bayesian network can be performed in the following ways 
 

• based on knowledge elicitation about the system, where relationships among the variables are established; 
• based on system manuals, handbooks and human knowledge about the process; or 
• based on learning methods using databases of records of past operations. 
 

Since the construction of Bayesian networks based on learning methods requires a large amount of records of past 
system failures, in this paper a combination of the two former methods is implemented. 

One motivation for the use of Bayesian networks in this work is that they can be useful for inference purposes. In 
general, probabilistic inference on a belief Bayesian network is the process of computing ( )Prob X x E e= = , which 
obtains the probability that a variable X will assume a value of x given that a set of observations E have assumed a set of 
values e. 

There are many different algorithms for calculating the inference in Bayesian networks, which apply different 
tradeoffs among speed, complexity, generality, and accuracy. In this work it is implemented the probability propagation 
in trees of clusters (PPTC) algorithm, developed by Lauritzen and Spiegehalter (1988), which is an exact method of 
inference and generally, can be applied to any type of Bayesian network structure (Cozman, 2001). 

 
3. PROCEDURE FOR DIAGNOSIS AND TREATMENT PROCESS 

 
The general procedure for the diagnosis and treatment of faults in manufacturing systems proposed here, has the 

following steps: 
 
1. Construction of the process model based on Petri net.  
2. Classification of places in the Petri net model based on the definition mentioned in section 2.1. 
3. Construction of the Bayesian network(s).  
4. Definition of the best treatment process considering each type of fault. 
 

3.1. Construction of the process model based on Petri nets 
 

As mentioned before, the construction of the Petri net starts with the coordination level, which is a safe, live and 
reversible Petri net. In this context, each place may represent a certain state of the system, a process or a condition; 
transitions may represent the beginning or the end of the initial operations of each process, or simply a change on the 
state of the process. In this model, the properties of liveness, safeness and reversibility must be verified using one of the 
techniques mentioned in previous section. Also, this net is responsible for the resolution of conflicts and contacts in the 
plant control net (Murata, 1989) (Combacau and Courvoisier, 1990). 

Based on this model, a refinement can be made in order to obtain a more detailed net that represents the correct 
functioning of the system. This net represents the plant control level and, depending on the system, can contain contacts 
and conflicts. This two system’s characteristics must be solved in the coordination level, so a refinement in the original 
net is also required. The plant control net that represents the control of a manufacturing system generally will tend to 
present mutual exclusion operations, so shared resources can result in a state of deadlock. A good reference to avoid 
deadlock states can be found in Nakamoto (2003). Basically, an adequate administration of the shared resources will 
avoid a deadlock possibility. 



Note that knowledge of the dynamics of the system is required in order to construct a reliable model. Thus, a model 
validation can be based on scenarios simulation observing if the net evolution represents the actual behavior of the 
system. This is done also in order to analyze and improve the model reliability. Software packages like HPSim (2001) 
and Visual Object Net ++ (VON) (2003) are examples of tools for such simulation purposes. 

 
3.2. Classification of Places  

 
In order to get the set of variables that will feed the Bayesian network as evidence, a classification of places on the 

Petri net have to be made based on the characteristics of each place. For this task, places in the plant control net are 
classified in places of type A and places of type B. Places of type A represent operations, process or resources (e.g., 
starting/ending of a machine process, starting/ending of a robot operation, state of buffers, etc.) and because of its 
nature, they normally have a null initial marking, i.e., 0 ( ) 0AM P = , AP P∀ ∈ . On the opposite, places of type B represent 
states of the sensors and actuators that are implemented in the real system. This type of places have the characteristic 
that are safe due to its digital functioning (i.e., “on” or “off” states). Note that, on the opposite of places of type A, some 
B places can actually have one initial token, i.e., Ap P∃ ∈ such that 0 ( ) 1m p = . 

 
3.3. Construction of the Bayesian network 

 
Bayesian networks constitute a very attractive tool for diagnostic purposes since they can represent the diagnostic 

domain in conjunction with system’s components and results of diagnostic tests. Nevertheless, the construction of 
Bayesian networks is a complex task, involving the participation of knowledge engineers and domain experts, with 
additional knowledge coming from such sources as technical manuals, test procedures, and repair data bases (Przytula 
and Thompson, 2000). Two steps involve the construction of Bayesian networks: the creation of the structure and the 
elicitation of the conditional probability parameters over the variables. 

The first task for the creation of the Bayesian network structure is the definition of the number of faults that the 
system will be designed for. Based on this number, a classification in large and simple systems can be done. Each of 
these faults are represented by a variable with two possible states, i.e., the occurrence or not occurrence of the fault. 
Once defined the set of faults, is necessary to obtain the possible influences that each fault has into some components of 
the system. Thus, a set of variables representing system’s components will be obtained based on the observation of such 
influences.  

Normally, the complexity of this task depends on the size of the system. For large systems, decomposition on simple 
subsystems will facilitate the structure formulation improving the reliability of the model. Decomposition in simpler 
structures can be done based on divisions of the process or based on the way which the diagnosis is actually executed in 
practice. Normally, is used a combination of both of these approaches depending on each subsystem complexity. 

Once a subsystem is defined, it is necessary to obtain the information about the subsystem functions and how this 
subsystem fails. In general, such information is available from different sources like manuals, testing procedures, and 
most important expert’s knowledge. Przytula and Thompson (2000) proposes a ranking of the faults defined for each 
subsystem based on the frequency of occurrence, in order to group the faults that happen occasionally in only one 
variable such as “other faults”.  

Once the network topology is obtained, it is necessary to obtain the parameters of each node. The parameters can be 
assessed in the causal direction, i.e., the probability that a given evidence will be observed once is known that a given 
component is in a faulty condition. Prior probabilities of roof nodes, i.e., nodes without parents, can be assessed based 
in statistical information of the components they represent. 

Sometimes, causal elicitation of probabilities is a difficult task, and rather is possible to obtain the parameters of the 
nodes in the diagnostic way, i.e., the probability that a given component is in a faulty state, given that a set of evidence 
has been observed (i.e., ( )Prob C fail E observed= = ). Maintenance engineers normally found this way more 
feasible. It has been proven that, the joint probability distribution of any model with diagnostic parameters is completely 
defined if the information of the probability of a fault occurrence given that a set of evidence is inactive, is also 
available (i.e., ( )Prob C fail E inactive= = ) (Przytula and Thompson, 2000). 

Figure 1 presents an example of a simple Bayesian network representing two types of faults (F1and F2) and a set of 
four observations (E1, E2, E3, E4). The figure also includes an auxiliary node (Aux) that represents some variable that 
cannot be observed directly from the system, but has a causal influence on an evidence or a symptom. 

It is important to note that the construction of Bayesian networks is an iterative task, refining the model in each 
interaction based on new evidence observed. 
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Figure 1. A simple Bayesian network representing two faults, a set of observations and an auxiliary node. 
 

3.4. Definition of Treatment process 
 
Zhou and DiCesare (1993) present a classification and modeling of treatment of faults processes based on Petri nets. 

In this context, four types of treatments are defined: Conditional entrance method, alternative route method, inverse 
recovery and direct recovery methods. 

In the conditional entrance method, a corrective function is triggered once a fault is detected. Figure 2(a) represent 
the model of this method where Z is the original net and S is a subnet representing the fault recovery procedure. In the 
alternative route method the fault operation Q will be avoid deviating the sequence of the process by a sub-process S, 
represented in fig. 2(b). In the inverse recovery method, after a faulty execution of a Q process is observed, a sequence 
S will lead the system to a re-execution of Q (Fig. 2(c)). Finally, in the direct recovery method, detecting a fault in the 
process Q will lead the system to execute a sequence S. This method is represented in Fig. 2(d). 

 

 
 

Figure 2. Representation of treatment processes: (a) conditional entrance method, (b) alternative route method,      
(c) inverse recovery and (d) direct recovery method.  

 
4. CASE OF STUDY 
 

This chapter introduces a case of study used to illustrate the application of the proposed methodology. It consists in 
a manufacturing station constituted by a flexible assembly system commercialized by FESTO. This system is illustrated 
in Fig. 3. The goal of the process is to produce an assembled component that consists in a base, a pine, a spring and a 
cover as presented in Fig. 4. Bases can be of three colors: black, pink or metal color and, depending on such color, pines 
assembled on it can be black or metal. If the base is color pink or metallic, then the pine must be black color; on the 
opposite, if the base is black, the pine must be metallic.  

The system consists in five stations: a material distribution station, a testing station, an intelligent transportation 
system, an assembly station and a control system. The material distribution station contains the bases stored in random 
colors, a cylinder that accommodates the base for the transportation and a 180° arm that deposits the base at the testing 



station. The testing station consists of three sensors: an inductive, a capacitive and a photoelectric, in order to detect the 
color of the base. Also it consists of a vertical transportation system, a measurement sensor in order to verify the size of 
the base and a cylinder that pushes the base to the transportation system. The transportation system consists in moving 
pallets with four stops, one in the beginning of the circuit, another in the output of the testing station; the third in the 
assembly station and the fourth at the output of the circuit. Each of these stages are monitored by presence sensors that 
detect the presence of pallets, responsible for the housing of the bases and the finished products. Finally, the assembly 
system is constituted by a pine storage, spring storage, a cover storage and a robot responsible for the assembly 
functions. 

All these systems have their own set of sensors and actuators which description, for reasons of space, is omitted in 
this text. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Scheme of the manufacturing system station. 
 

 
 

Figure 4. Sequence of the assembly for the final product of the assembly station. 
 

4.1. Petri net representation of the system 
 
The coordination level Petri net is presented in Fig. 5. The resulting net, in this particular case, is an acyclic choice 

Petri net or AC net (Murata, 1989). Using the siphons and traps technique, it can be proved that this net is life, safe and 
reversible. Note that the mark of the place “distribution” depends on the user’s requirement of a production, so 
corresponded transitions are guaranteed with liveness. 
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Figure 5. Coordination level Petri net. 
 

Based in this net, a refinement is developed to detail the plant control level. The resulting net describes in a more 
detailed manner the functionality of the system, showing the behavior of components in each correspond station. It also 
represents the sensors and actuators that operate in each station, showing their functional behavior based on the 
evolution of the process (Fig. 6). 
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Figure 6. Plant control level Petri net. 



4.2. Classification of places 
 
As mentioned in section 3.2, a classification of places based on the functionality of the nodes is then conducted. 

Figure 6 shows places of type A and places of type B, other places represents availability of raw material. Table 1, 
shows the list of the places of type B.  

 
Table 1. Places of type B. 

 
NAME FUNCTION 
Require Production User sends a message that requires an assembly 
Sensor Detects the presence of a base 
Sensors 1…4 Detect the presence of a pallet in the station 1…4 
Cylinder Pushes a base for start the loading 
Test Altitude Measures the altitude of the base 
Loading Base Place the base in the test station 
Inductive Detects if the base is metallic 
Optic Detects if the base is not black 
Capacitive Detects if the base is not metallic 

 
4.3. Construction of the Bayesian Network 

 
The construction of the Bayesian network it derived from an exhaustive observation and analysis of the system’s 

behavior, based on the functioning of the components. Some fails have been forced in order to observe their effects on 
the evolution of the sequence of the process. Such forced faults consist in disconnecting some sensors, or deactivating 
some actuators. The resulting list of faults is showed in Tab. 2. 

 
Table 2. Faults considered for the construction of the Bayesian network. 

 
FAULT PATTERN SYMPTOM 
Fault in the 
conveyor system 

The pallet stays in one station, causing  
The overall stop of the process 

Fault in the  
distribution system 

A base is not loading, causing 
The overall stop of the process 

Fault in the  
color recognition 

A color is wrongly recognized, causing 
wrong assembly or overall stop 

Fault in the  
altitude test 

Too much bases are rejected, or 
no detection is made at all 

 
Based on these faults and the set of observations, the Bayesian network obtained is illustrated in Fig. 7. 

 

 
 

Figure 7. Bayesian network for the diagnostic of faults. 
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4.4. Definition of the treatment processes 
 
In order to illustrate a treatment process, an alternative route method is implemented in the size test system. Once 

we know that a fault has occurred with the size sensor, the sequence of the system can be modified avoiding the 
activation of such component. This is done in order to avoid interruption of the process, until maintenance is 
implemented in the device. In this context, Fig. 8 introduces the alternative route for such types of faults. S represents 
the alternative route that avoids the faulty component. 

Unfortunately, not all the components of the system under study permit the implementation of an automatic 
treatment and recovery of the process under faulty conditions. However, an inverse recovery method can be 
implemented, in manual way, reestablishing the components under faults and making a corrective maintenance of the 
components listed as faultily. 
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Figure 8. Alternative route for altitude test faults 
 

5. CONCLUSIONS 
 
The present work introduces a methodology for the diagnosis and treatment of faults in manufacturing systems 

based on Petri net and Bayesian networks. The Petri net representation begins with the coordination level, representing 
in each node, macro-activities or operations. The basic idea is that this net only represents the correct sequence of 
system operation. Also, conflicts and contacts must be solved in the net based on specifications of the system. From the 
coordination level, a refinement is developed to detail the plant control. This net usually contains a large amount of 
nodes, so a classification of places is made in order to obtain the set of evidence for which the Bayesian network will 
interpret observations. 

The Bayesian network is obtained, first constructing the structure of the net and second, obtaining the probabilistic 
parameters in a causal way or in a diagnostic way of each node. Inference based on this model has shown that the 
diagnostic is faithful with reality, pointing out always the component responsible for the faulty behavior of the system. 

Treatment process includes conditional entrance method, alternative route method, inverse recovery and direct 
recovery methods. Depending on the type of fault one of these methods can be implemented in order to execute 
automatic (total or partial) recovery of the system. However, some cases will enforce the system to run a corrective 
maintenance procedure. 

Open research issues include the integration of the diagnostic and treatment process with higher levels of 
manufacturing control, i.e., scheduling and planning level. This integration is fundamental to improve the flexibility and 
agibility of planning and scheduling under faults that disturbs the correct functioning of the process. 
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