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Abstract. Closed kinematic chain mechanisms are extensively used in several applications, from machine tools to biome-
chanical models. A few works however address the mechanics of these systems with redundant actuation, i.e., with more
actuators than degrees of freedom. The inverse dynamics analysis of this kind of system does not possess an unique solu-
tion, and therefore optimization procedures should be applied to estimate net joint torques when a kinematics is previously
imposed. Literature presents some methods to solve this undetermined problem, based on multi-body system dynamics
approach. In this paper the inverse dynamics problem is formulated as an Optimal Control Problem (OCP): to find a set
of controls that minimizes an integral state and control variables cost function, subjected to endpoint, trajectory, and con-
trol constraints, both equality and inequality. Some possible sets of constraints are explored to force a 3-link open chain
system dynamics behave like a four bar mechanism with a crankrotating at a constant velocity. The controls calculated
by OCP are assumed to be the input joint torques. The regular case with one torque actuator is solved and compared to
the two and three actuators case.

Keywords: Optimal Control, Inverse Dynamics, Closed-Chain Mechanisms, Redundant Mechanisms

1. INTRODUCTION

There are a plenty of mechanisms with closed kinematic chain, like 4-bar, quick return, Peaucellier’s, Altmann’s,
Bennett’s mechanisms, etc (Doughty, 1988; Gao et al., 2001;Stejskal and Valasek,1996). They have been studied for more
than a century and a half and played an important role in industrial revolution. Some closed kinematic chain mechanisms
have been revisited in the last decades, in the context of biomechanics, because they are suitable to describe human body
motions like in cycling, rowing, and stance phase of gait (Hull and Jorge, 1985; Lee et al., 2005; Pandy and Berme, 1998).
These biomechanical models are characterized by redundancy because the number of control inputs (muscle forces) are
fairly bigger than the number of degrees of freedom (DOF). Even if simplified models are considered, where the effect
of muscles are all “packed” into net joint moments, this redundancy is usually still present. This redundancy introduces
a multiplicity of solutions when a regular inverse dynamicscalculation is attempted, because the number of unknowns
exceeds the number of equations.

On the other hand, some authors realized that closed kinematic chain structures could be advantageous in industrial
robots and machine tools because they have several advantages over their serial counterparts, like: high mechanical stiff-
ness (Miller, 2001), high trajectory accuracy (Nakamura and Ghodoussi, 1989), positioning accuracy, high load capacity
(Dasgupta and Mruthyunjaya, 1998) and small mobile mass (Miller, 2001). However, the existence of kinematical singu-
larities is a key problem in the analysis of closed chain mechanism. Liu et al. (2001), Cheng et al. (2003) and Valasek
et al. (2004), suggest the use of redundant actuation to circumvent this problem. Some methods where proposed by
Nakamura and Ghodoussi(1989), Cheng et al. (2003) and Lee etal. (2002) to solve the inverse dynamics of redundant
actuation closed kinematics mechanisms, but they are all based on the minimization of a Euclidean 2-norm (Nakamura
and Ghodoussi 1989) or the use of Moore-Penrose pseudo inverse matrix (Cheng et al., 2003 and Lee et al., 2002).

Optimal control theory offers a new perspective over this problem. Mainly because the quantity that is desired to be
minimized (or maximized) can be freely chosen. It is also a promising field in the investigation of optimal open-loop
control (Terceiro and Fleury, 2004) and optimal trajectorydesign (Betts, 2000). Specifically in the field of biomechanics
it is been used to estimate muscle forces (Menegaldo et al., 2006; Kaplan and Heegaard, 2001) and to compute net joint
torques trajectories (Ashby and Delp, 2006; Koh and Jennings, 2003). Although optimal control theory has been well
established since the 60’s, it’s increasing popularity is partially due to the availability of computer packages - likeRIOTS
(Schwartz, 1996) and MISER (Goh and Teo, 1988) - that are ableto deal with large scale problems, avoiding complicated
non-linear equations that are untreatable algebraically.

In this paper an optimal control formulation is presented tosolve a redundantly actuated 4-bar mechanism. The ob-
tained torque actuator trajectories are “optimal control functions” (u∗(t)), rather than “optimal control laws” (u∗(x(t), t)).
The 4-bar mechanism was chosen because it is one of the simplest closed chain mechanisms known. Therefore it could
be used as a test bed to experiment different formulations ofthe OCP and to choose the appropriate values of model and
simulation parameters. The main objectives of this paper are: (i) to calculate optimal control torque functions for the
redundantly actuated 4-bar mechanism (with 2 and 3 actuators); (ii) to calculate optimal control torque functions for a
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single actuated 4-bar mechanism and compare it with a regular inverse dynamics analysis; (iii) to gain insight and expe-
rience in the formulation and computational implementation of the OCP to further use it in the implementation of more
complicated biomechanical problems.

2. METHODS

2.1 Generic Optimal Control Formulation

An optimal control problem (OCP) can be formulated, (Citron, 1969; Menegaldo, 2001; Bottasso and Croce, 2004), as
to determine the optimal statesx∗, the optimal controlsu∗ and possibly the final timeT that minimize a cost functionGo

(Eq.1a). The minimization problem is subjected to the stateequations, Eq. (1b) that describe the dynamics of the system,
and various possible additional constraints as required bythe problem at hand, such as for example, trajectory constraints
Eq. (1f), boundary conditions Eqs. (1c) and Eq. (1d), and control upper/lower bounds Eq. (1e).

min: Go(x,u, t) = go(x,u, t) +

∫ T

0

fo(x(t),u(t), t)dt Objective Funtion (1a)

ẋ(t) = f(x,u, t) Equation of Motion (1b)

x(0) = x0 Inicial Condition (1c)

x(T ) = xT Final Condition (1d)

umin ≤ u(t) ≤ umax Control Bounds (1e)

xmin ≤ x(t) ≤ xmax Trajectory Constraint (1f)

2.2 Dynamical Model

Equation (1b) represents the equations of motion of the dynamical system. The system considered is a planar, fric-
tionless pin-joined, triple pendulum, with joint torque actuators (controls) that may, or may not be under external spring
and damper forces at its most distal extremity, as depicted in Figure (1). Designing the system this way, it can represent
a triple pendulum if stiffness (K) and damping (C) constants are set to zero. On the other hand, ifK and/orC are large
enough, then an external horizontal and vertical force willbe applied such as to maintain Point D fixed. By doing this
way, 2 DOFs of the system are restricted, forcing it to behaveapproximately like a 4-bar mechanism.

This “fictional” 4-bar mechanism was modeled this way because closed-chain mechanisms usually require the incor-
poration of “positions loop” constraints into the equations of motion, which leads to a system of Differential Algebraic
Equations (DAE) (Brenan et al.,1989). Although DAEs can be converted into a state space form, suitable to be used by
well established first order integrators, it suffers from constraint stabilization problems (Yu and Chen, 2000; Pennestrì and
Vita, 2004). This condition is not desired because DAE requires more sophisticated integrators which are not present at
current version of RIOTS’95.

(a) Nomenclature and coordinates (b) Control forces and restriction forces

Figure 1. Dynamical Model Diagram
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The left hand side of triple pendulum’s equations of motion can be easily derived, by means of Lagrange’s Equa-
tions Eq.(2), since the positions of the centers of mass of each bar can be described as function of independent angular
coordinatesφ1, φ2, φ3, as well as the potential and kinetic energy of the hole system.

d

dt

∂L

∂{φ̇}
−

∂L

∂{φ}
= {Q} (2)

The resulting system of equations takes the form of Eq. 3, where [A] is the mass matrix,[B] is the centripetal terms
matrix, [C] is the vector gravitational terms,[D] is a matrix of ones and zeros that relates the torque actuators to the
coordinates where they act upon and[E] is a vector the encompasses the spring and damper forces. Theright hand side
of Eq. 3 is equal to{Q} in Eq.(2) and is usually termed as “Generalized Force Vector”. Due to space limitations, only the
elements of matrix[E] are shown at Eqs.(4a) to (4c)
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 D
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



U1

U2

U3



 +



 E



 (3)

E1 = − L1(C(L1φ̇1 + L2φ̇2 cos(φ1 − φ2) + L3φ̇3 cos(φ1 − φ3))

+ K(L4 sin(φ1) − L2 sin(φ1 − φ2) + L3 sin(φ1 − φ3)))
(4a)

E2 = − L2(C(L2φ̇2 + L1φ̇1 cos(φ1 − φ2) + L3φ̇3 cos(φ2 − φ3))

+ K(L1 sin(φ1 − φ2) + L4 sin(φ2) − L3 sin(φ2 − φ3)))
(4b)

E3 = − L3(C(L3φ̇3 + L1φ̇1 cos(φ1 − φ3) + L2φ̇2 cos(φ2 − φ3))

+ K(L1 sin(φ1 − φ3) + L2 sin(φ2 − φ3) + L4 sin(φ3)))
(4c)

Equation (3) was transformed to state space form with a Matlab routine developed by the authors named EOM2SS,
which stands forEquation of Motion to State Space, (Silva and Menegaldo, 2007). It was designed to make the coordinates
transformation shown below in order to transform 2nd order ODE’s into an equivalent set of 1st order ODE’s.

x1 = φ1

d/dt
−→ ẋ1 = φ̇1 = x4

x2 = φ2

d/dt
−→ ẋ2 = φ̇1 = x5

x3 = φ3

d/dt
−→ ẋ3 = φ̇1 = x6

x4 = φ̇1

d/dt
−→ ẋ4 = φ̈1

x5 = φ̇2

d/dt
−→ ẋ5 = φ̈2

x6 = φ̇3

d/dt
−→ ẋ6 = φ̈3

where:




φ̈1

φ̈2

φ̈3



 = [A]−1 ([D]u + [E] − ([B] φ̇2 + [C]))

2.3 Characterization of Studied Cases

Once the equations of motion were obtained in state space form, 7 different cases were identified, which can be
classified into 2 main groups: Unrestricted and Restricted.In the Unrestricted group we consider that the triple pendulum
has no force acting on Point D. That is, no force restricts themovement of the triple pendulum except the control forces. In
the Restricted group a spring force or a spring and damper force acts in order to maintain Point D fixed, and they increase
as Point D deviates from its original position.

In Case 1, triple pendulum has 3 torque actuators, one at eachjoint, and no restriction force, like a robotic arm. In
Case 2, a spring force is introduced in horizontal and vertical directions. In Case 3 we consider the unrestricted triple
pendulum with a sole actuator at joint A. The Case 4, is just like Case 3 with a spring force restriction. Case 5 differs
from Case 4, in that a damper force is introduced. The 2 actuators case is considered in Case 6 with spring and damper
restriction. Finally, in Case 7, we return to the 3 actuatorscase, now considering a restriction of spring and damper force.
This is all shown at Tab. 1.
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Table 1. Overview of Studied Cases

# Unrestricted Restricted
Actuators Spring Spring + Damper

1 CASE 3 CASE 4 CASE 5
2 X X CASE 6
3 CASE 1 CASE 2 CASE 7

The different cases were enumerated this way because it was the order the simulations were performed. We decided
to maintain this numbering scheme because, as we’ll see, at each case there was a step we have learned that certain
parameters and/or strategies were better or not for the numerical convergence of the problem, and this knowledge was
subsequently applied to the following step.

2.4 Specific Optimal Control Formulation

As it was shown at Section 2.1 an optimal control problem is defined by a minimization of an objective function subject
to the equations of motion and may contain additional trajectory, control bounds, initial and final condition constraints.
The right choice of objective function and constraints in the formulation of OCP is relevant for the convergence of the
simulation. In this work we focused in the minimization of the squared actuator torques, as shown in Eq. 5. The parameters
w1 . . . w3 are ones/zeros factors that adequate the objective function to the case studied. Their values are shown at Tab. 2.

Another important issue was the formulation of the OCP’s constraints. The most noticeable one is that the triple pen-
dulum must obey the position loop equations of the 4-bar mechanism. But this sole condition did not prove to be sufficient
to impose a 4-bar mechanism behavior to the triple pendulum.Several attempts with different constraints were made. The
one which best presented convergence properties is described in Eqs. 8a to 8e. It represents the mechanism position loop
equations, its derivative and an additional equation to impose thatφ̇1 should be constant. They were transformed into a
Trajectory Inequality Constraint squaring and summing it all into a single equation (Eq. 7) that should be smaller than as
small parameter namedEPSNEQ, whose value varied typically from10−1 to 10−3.

min: f(u) =

∫ tf

0

w1U1
2 + w2U2

2 + w3U3
2dt (5)

subject to:

Equation of Motion:

{ẋ} = g(x,u) (6)

Trajectory Inequality Constraint:

(f1(x,u))2 + (f2(x,u))2 + (f3(x,u))2 + (f4(x,u))2 + (f5(x,u))2 ≤ EPSNEQ (7)

where:

f1(x,u) = L1 cos(φ1) + L2 cos(φ2) + L3 cos(φ3) − L4 (8a)

f2(x,u) = L1 sin(φ1) + L2 sin(φ2) + L3 sin(φ3) (8b)

f3(x,u) = −L1φ̇1 cos(φ1) − L2φ̇2 cos(φ2) − L3φ̇3 cos(φ3) (8c)

f4(x,u) = −L1φ̇1 sin(φ1) − L2φ̇2 sin(φ2) − L3φ̇3 sin(φ3) (8d)

f5(x,u) = φ̇1 − 2π (8e)

The OCP was implemented and solved with RIOTS’95 (RecursiveIntegration Optimal Trajectory Solver) which is a
group of programs and utilities, written mostly in C and designed as a toolbox for Matlab, that provides an interactive
environment for solving a very broad class of optimal control problems. The numerical methods used by RIOTS’95 are
based at Consistent Approximations Theory. According to Schwartz et al, (1997) “a solution is obtained as an accumula-
tion point of the solutions to a sequence of discrete-time optimal control problems that are, in a specific sense, consistent
approximations to the original continuous-time, optimal control problem. The discrete-time optimal control problems are
constructed by discretizing the system dynamics with one offour fixed step-size Runge-Kutta integration methods and by
representing the controls as finitedimensional B-splines.The integration proceeds on a (possibly non-uniform) mesh that
specifies the spline breakpoints.” More information regarding to RIOTS’95 can be found at Schwartz (1996).

In all cases, the simulations tried to reproduce 1 cycle of a 4-bar mechanism working steady-state regimen, with a
constant crank angular velocity of2π rad/s. Thus, to complete 1 cycle it is necessarytf = 1 s of simulation, with initial
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Table 2. Model parameters / outputs

[D] Eq. (3)
Stiffness
Factor - K
[N/m]

Damping
Factor - C
[N.s/m]

Final Obj.
Func. Value

CPU time
(min)

Obj. Func. Weighting
ParametersEq.(5)

CASE 1





1 −1 0
0 1 −1
0 0 1



 0 0 75079 46 w1 = 1, w2 = 1, w3 = 1

CASE 2 Idem CASE 1 1, 0 · 103 0 43644 43 w1 = 1, w2 = 1, w3 = 1

CASE 3





1 0 0
0 0 0
0 0 0



 0 0 - - w1 = 1, w2 = 0, w3 = 0

CASE 4 Idem CASE 3 1, 0 · 107 0 10721 301 w1 = 1, w2 = 0, w3 = 0

CASE 5 Idem CASE 3 5, 0 · 106 1, 0 · 106 9694 14 w1 = 1, w2 = 0, w3 = 0

CASE 6





1 −1 0
0 1 0
0 0 0



 5, 0 · 107 1, 0 · 107 4172 8 w1 = 1, w2 = 1, w3 = 0

CASE 7 Idem CASE 1 1, 0 · 105 1, 0 · 104 22058 455 w1 = 1, w2 = 1, w3 = 1

conditions of:φ1 = 1.0472 rad (60.0o), φ2 = 0.2907 rad (16.5o), φ3 = 4.5513 rad (260.7o), φ̇1 = 6.2832 rad/s (360o/s),
φ̇2 = −1.3760 rad/s (78.8o/s) andφ̇3 = 3.4240 rad/s (196.1o/s). It was adopted a time discretization mesh of 200 points.
It means that, as the solution of the optimal control problemrepresented by a finite dimensional B-spline, that spline
would have200 + ρ − 1 breakpoints. In all cases, a cubic (ρ = 4) spline was used. Finally geometric/mass parameters
used were:L1 = 0.5 m, L2 = 0.9 m, L3 = 0.7 m, L4 = 1.0 m, m1 = 6.59 kg, m2 = 11.55 kg, m3 = 9.07 kg. Centers
of mass are located in the middle of each bar and its respective moment of inertia was computed withI = 1

12
mL2.

3. RESULTS

Before proceeding the optimal control simulations, a regular kinematic and inverse dynamics analysis was performed
for the 4-bar mechanism, according to the theory presented by Haug (1989). The trajectories of angular coordinates as
well as its velocities are shown at Figures 2a and 2b. All simulations were carried out in an Intel Core 2 Duo E6600, 2.40
GHz desktop computer.
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Figure 2. Comparison of state variables trajectories for CASE 1 with kinematic analysis of 4-bar mechanism.

CASE 1: In case 1, a triple pendulum with 3 torque actuators was expected to perform the kinematics of a 4-bar
mechanism without any restriction at Point D. This situation could be also interpreted as a movement of a 3-link planar
robotic arm that the first link should perform a complete revolution but its end-effector should remain fixed.

It was not possible to obtain an acceptable solution (the algorithm didn’t converge) with all conditions imposed. The
strategy used was to decrease gravitational acceleration to g = 4 m/s2 (Menegaldo et al., 2004), and decrease final time
(for to complete about 80% of the cycle) trying to achieve a normal termination, with a zero vector as initial guess, for the
optimal control. Then, the solution obtained withtf = 0.8s was used as an initial control guess for the next simulation
with tf = 0.9s. This process was repeated once more totf = 1.0s with g = 4 m/s2 fixed. Then, the same strategy was
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used to vary the gravitational acceleration, increasingg by 1m/s2 at time, up tog = 9.81 m/s2.
The value ofEPSNEQ, which somehow controls the violation of the constraints (Eq. 7) that force the triple pen-

dulum to behave like a 4-bar mechanism, was initially set to10−3. A final simulation, usingESPNEQ = 10−5 and as
initial control guess the optimal control for the trial withESPNEQ = 10−3 andg = 9.81 m/s2; was performed which
resulted in a very good reproduction of the states trajectories. This result can be verified at Figure 2 where state variables
obtained in the best trial of CASE 1 was plotted over the angular coordinates position and velocity curves obtained with
the regular kinematic analysis.

CASE 2: In this case, a horizontal and vertical springs were introduced as shown in Figure 1 to force Point D remain
fixed. Although the displacement of Point D in CASE 1 was very small, specially when usingESPNEQ = 10−5, it
means that if a real 4-bar mechanism were impelled to move with those three torque curves, it would have almost no
reaction forces on joint D. At first sight it may sounds positive, but it could be argued that torque actuators are acting
against gravity. Therefore, reaction force at Point D wouldplay a role to support part of the weight of the bars, thus
relieving torque actuators to do all this job. This hypothesis was confirmed comparing Figures 3a and 3b. Peak forces in
all torque curves in CASE 2 were smaller than in CASE 1, and thevalue of the objective function in CASE 2 was almost
42% smaller than in CASE 1. In fact, the objective funtion in CASE 1 was the highest in all cases studied.

CASE 3: Six attempts were made, with different conditions (for example,g = 0 m/s2, or tf = 0.05s), to simulate the
system with only one actuator at joint A and no other externalforces; but all have failed. In fact, it was already expected
because this system is uncontrollable, i.e, the number of actuators is smaller than the number of DOF. Thus, when RIOTS
tries to estimate a control, this control cannot take all state variables to the desired state (i.e. respecting all constraints).

CASE 4: In CASE 4, a horizontal and vertical springs were introducedat Point D, with the triple pendulum impelled
by only one torque actuator at joint A. With a stiff spring acting in order to maintain Point D fixed, a physical constraint
is introduced in the 3-DOF such that it becomes, as a matter offact, a 1-DOF system. In doing so, we are actually doing a
regular inverse dynamics analysis by means of an optimal control formulation. That is, the expected torque curve should
be similar to the one found with a regular inverse dynamics analysis.

In this case, a normal termination of RIOTS was very hard to find. In fact, only 1 (which is plotted in Figure 3c) in 25
trials. The strategy adopted in CASE 1 (to begin the simulations with low gravitational acceleration and low final time)
didn’t worked this time. Nevertheless, even in the failed trials, the kinematics were reasonably reproduced, but control
forces were excessively high. This was possibly due to the oscillatory nature of the spring force whose frequency increases
as the spring stiffness gets bigger. Up to this moment, a 4th order, fixed step-size Runge-Kutta integrator had been used.
So an attempt was made changing Runge-Kutta integrator to a variable step-size LSODA integrator (Radhakrishnan and
Hindmarsh, 1993; Petzold, 1983), which is also adequate to integrate “stiff” EDO’s1. The only one successful trial was
obtained with this integrator, usingg = 0 m/s2 andtf = 0.05s, therefore, the curve at Figure 3c could not be compared
to the others because they do not represent the system under anormal acceleration of gravity.

CASE 5: What we have learned from CASE 4 was that the simulations were not converging because of integrators
limitations, but probably due to a high frequency excitation force, introduced by the spring that was not being damped.
So, the modification introduced in CASE 5 was the damping force acting in parallel with the springs, which in general
facilitated the convergence of the problem. We started the trials using fixed step-size Runge-Kutta integrator because
RK have shown to be much faster than LSODA. The strategy to begin the simulations with lowg and tf was once
more employed. Beginning withg = 0 m/s2 held fixed and increasing fromtf = 0.2s, using the control obtained in
the previous trial as initial guess of the next trial, successful terminations were obtained up totf = 0.6s. Changing to
LSODA integrator, it was realized that a successful result could be obtained with a zero initial control guess vector, and
tf = 1s. From now on, 10 successful trials followed each one adopting a bigger gravitational acceleration.

Looking at Figure 3d, it is possible to see that the optimal control solution was quite similar to the torque calculated
by a regular inverse dynamics analysis. With this in mind, itis possible to conclude that the model of a triple pendulum
with stiff springs and dampers acting at is most distal pointis the model that best represents the 4-bar mechanism in this
context.

CASE 6: As the introduction of the spring and damper proved to be the best model to represent a single actuated 4
bar mechanism, in CASE 6, this model was employed to calculate torque curves of a 4-bar mechanism with 2 actuators
at joints A and B (see Figure 1a). All that was learned from theprevious cases was used in the first trial of CASE 6.
The consequence was that the first trial had a normal termination usingg = 9.81 m/s2, tf = 1.0s, K = 5, 0 · 104,

1LSODA, as well some other Runge-Kutta integrators, are functions built in RIOTS.
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C = 1, 0 · 104, EPSNEQ = 10−1, and also LSODA integrator with a zero initial guess controlvector. A smoother
curve was obtained using higher stiffness and damping constants (shown at Table 2).

Looking at Figure 3e, it is possible to see that the peaks of the curves were significantly smaller than in CASE 5,
although it were less smooth. In fact, this was the case wherethe objective function had its smallest value (see Table 2).
This result suggests that a 4-bar mechanism with 2 actuatorscould use smaller motors to perform the same task as the
traditional one.

CASE 7: Finally in CASE 7 we returned to the 3 actuators case, but now considering both spring and damper forces
which presented good results in cases 5 and 6. Normal terminations were also easy to find in CASE 7 using either fixed
or variable step-size integrator, and no intermediate steps were necessary to get a normal termination withg = 9.81 m/s2

andtf = 1.0s. But, as it is possible to see at Figure 3f torque curves werenot as smooth as in CASES 1 and 2. On the
other hand, the peak of the curves were even smaller than in CASE 2 and so were the value of the objective function.
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Figure 3. Optimal controls from the best trials of each case

4. CONCLUSIONS

A method for solving the inverse dynamics of redundantly actuated 4-bar mechanism, formulated as an OCP has
been presented. The method is based on a modification of the dynamical model of the system that transforms the closed
kinematic chain into an equivalent open kinematic chain with spring and damper forces that preserves the kinematics
of the original closed kinematic chain system. As this principle is quite general, it could be applied to solve similar
problem of others closed kinematic chain mechanisms. The main finding of this work was that the 4-bar mechanism
with 2 actuators (CASE 6) requires less maximum torque effort to perform the same task when compared to a 1-actuated
(CASE 5) and 3-actuated (CASE 1 and CASE 2) counterparts. Other aspects related to the computational implementation
of this problem were also presented, and can be promptly usedfor further implementation of similar problems.
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