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Abstract. Closed kinematic chain mechanisms are extensively use@rad applications, from machine tools to biome-
chanical models. A few works however address the mechahibese systems with redundant actuation, i.e., with more
actuators than degrees of freedom. The inverse dynamidgsasaf this kind of system does not possess an unique solu-
tion, and therefore optimization procedures should be iggjtb estimate net joint torques when a kinematics is ptesho
imposed. Literature presents some methods to solve thistermiined problem, based on multi-body system dynamics
approach. In this paper the inverse dynamics problem is fteted as an Optimal Control Problem (OCP): to find a set
of controls that minimizes an integral state and controliahles cost function, subjected to endpoint, trajectong aon-

trol constraints, both equality and inequality. Some plolessets of constraints are explored to force a 3-link opeairch
system dynamics behave like a four bar mechanism with a codating at a constant velocity. The controls calculated
by OCP are assumed to be the input joint torques. The regase avith one torque actuator is solved and compared to
the two and three actuators case.

Keywords: Optimal Control, Inverse Dynamics, Closed-Chain MechaisisRedundant Mechanisms
1. INTRODUCTION

There are a plenty of mechanisms with closed kinematic ¢Hida 4-bar, quick return, Peaucellier’s, Altmann’s,
Bennett's mechanisms, etc (Doughty, 1988; Gao et al., 28&skal and Valasek,1996). They have been studied for more
than a century and a half and played an important role in im@lisevolution. Some closed kinematic chain mechanisms
have been revisited in the last decades, in the context afdxibanics, because they are suitable to describe human body
motions like in cycling, rowing, and stance phase of gaitl(Hod Jorge, 1985; Lee et al., 2005; Pandy and Berme, 1998).
These biomechanical models are characterized by redupd@cause the number of control inputs (muscle forces) are
fairly bigger than the number of degrees of freedom (DOFErElf simplified models are considered, where the effect
of muscles are all “packed” into net joint moments, this medncy is usually still present. This redundancy introduce
a multiplicity of solutions when a regular inverse dynantedculation is attempted, because the number of unknowns
exceeds the number of equations.

On the other hand, some authors realized that closed kimeofetin structures could be advantageous in industrial
robots and machine tools because they have several adeartegr their serial counterparts, like: high mechanicgi st
ness (Miller, 2001), high trajectory accuracy (Nakamurd &modoussi, 1989), positioning accuracy, high load caypaci
(Dasgupta and Mruthyunjaya, 1998) and small mobile mashgiM2001). However, the existence of kinematical singu-
larities is a key problem in the analysis of closed chain rae@m. Liu et al. (2001), Cheng et al. (2003) and Valasek
et al. (2004), suggest the use of redundant actuation taraivent this problem. Some methods where proposed by
Nakamura and Ghodoussi(1989), Cheng et al. (2003) and Lale €002) to solve the inverse dynamics of redundant
actuation closed kinematics mechanisms, but they are séidban the minimization of a Euclidean 2-norm (Nakamura
and Ghodoussi 1989) or the use of Moore-Penrose pseudeénetrix (Cheng et al., 2003 and Lee et al., 2002).

Optimal control theory offers a new perspective over thisbpgm. Mainly because the quantity that is desired to be
minimized (or maximized) can be freely chosen. It is also@mpsing field in the investigation of optimal open-loop
control (Terceiro and Fleury, 2004) and optimal trajectdegign (Betts, 2000). Specifically in the field of biomeclani
it is been used to estimate muscle forces (Menegaldo etQflg; Kaplan and Heegaard, 2001) and to compute net joint
torques trajectories (Ashby and Delp, 2006; Koh and Jesnia@03). Although optimal control theory has been well
established since the 60’s, it's increasing popularityaiplly due to the availability of computer packages - IRETS
(Schwartz, 1996) and MISER (Goh and Teo, 1988) - that aretalileal with large scale problems, avoiding complicated
non-linear equations that are untreatable algebraically.

In this paper an optimal control formulation is presenteddtve a redundantly actuated 4-bar mechanism. The ob-
tained torque actuator trajectories aoptimal control function’s(u*(¢)), rather than ¢ptimal control laws (u*(x(t), t)).

The 4-bar mechanism was chosen because it is one of the singfdeed chain mechanisms known. Therefore it could
be used as a test bed to experiment different formulatiotiseo© CP and to choose the appropriate values of model and
simulation parameters. The main objectives of this paper @) to calculate optimal control torque functions for the
redundantly actuated 4-bar mechanism (with 2 and 3 ac&)at(i) to calculate optimal control torque functions for a
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single actuated 4-bar mechanism and compare it with a negwerse dynamics analysis; (iii) to gain insight and expe-
rience in the formulation and computational implementatidthe OCP to further use it in the implementation of more
complicated biomechanical problems.

2. METHODS
2.1 Generic Optimal Control Formulation

An optimal control problem (OCP) can be formulated, (Ciird®69; Menegaldo, 2001; Bottasso and Croce, 2004), as
to determine the optimal states, the optimal controls* and possibly the final tim&' that minimize a cost functio&,
(Eg.1a). The minimization problem is subjected to the stgietions, Eqg. (1b) that describe the dynamics of the system
and various possible additional constraints as requiretiéyroblem at hand, such as for example, trajectory canttra
Eq. (1f), boundary conditions Eqgs. (1c¢) and Eq. (1d), andrebnpper/lower bounds Eq. (1e).

min: Go(x, 1, ) = go(x, 1, ) + / " () u(t). e Obijective Funtion (1a)
x(t) = f(x,u,t) i Equation of Motion (1b)
x(0) = x° Inicial Condition (1c)
x(T) =x" Final Condition (1d)
u™m < u(t) < umer Control Bounds (le)
XM < x(t) < xMer Trajectory Constraint (1f)

2.2 Dynamical Model

Equation (1b) represents the equations of motion of the mjea system. The system considered is a planar, fric-
tionless pin-joined, triple pendulum, with joint torquet@ators (controls) that may, or may not be under externahgpr
and damper forces at its most distal extremity, as depictédgure (1). Designing the system this way, it can represent
a triple pendulum if stiffnessi() and damping ') constants are set to zero. On the other hand; &nd/orC are large
enough, then an external horizontal and vertical force béllapplied such as to maintain Point D fixed. By doing this
way, 2 DOFs of the system are restricted, forcing it to belzgmroximately like a 4-bar mechanism.

This “fictional” 4-bar mechanism was modeled this way beeatissed-chain mechanisms usually require the incor-
poration of “positions loop” constraints into the equatasf motion, which leads to a system of Differential Algebrai
Equations (DAE) (Brenan et al.,1989). Although DAEs can tieverted into a state space form, suitable to be used by
well established first order integrators, it suffers fromstoaint stabilization problems (Yu and Chen, 2000; Petninasd
Vita, 2004). This condition is not desired because DAE rezgumore sophisticated integrators which are not present at
current version of RIOTS’95.

L4

1
(a) Nomenclature and coordinates (b) Control forces and restriction forces
Figure 1. Dynamical Model Diagram
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The left hand side of triple pendulum’s equations of motian de easily derived, by means of Lagrange’s Equa-
tions EqQ.(2), since the positions of the centers of mass di bar can be described as function of independent angular
coordinates), ¢2, ¢3, as well as the potential and kinetic energy of the hole gyste

d oL oL
Torgy oy~ @ @
The resulting system of equations takes the form of Eq. 3rev#e| is the mass matriXB] is the centripetal terms
matrix, [C] is the vector gravitational term&D] is a matrix of ones and zeros that relates the torque actuaidhe
coordinates where they act upon gl is a vector the encompasses the spring and damper forcesighhéand side
of Eq. 3is equal td @} in Eq.(2) and is usually termed as “Generalized Force VecRue to space limitations, only the
elements of matriXE| are shown at Egs.(4a) to (4c)

a ] o ] Uy
A ¢ | +| B |+ C|=| D Uy |+ | E (3)
b3 P2 Us
By = — Li(C(L1¢1 + Lag cos(¢1 — ¢2) + Lads cos(¢1 — ¢3)) (4a)
+ K(Lysin(¢1) — Lo sin(¢r — ¢2) + L sin(¢py — ¢3)))
Ey = — Ly(C(Laghy + L1 cos(pr — ¢pa) + Ladz cos(pa — ¢3)) (4b)
+ K(Lysin(¢1 — ¢2) + Lasin(¢z) — Lz sin(dz — ¢3)))
B3 = — L3(C(Ls¢s + L1y cos(¢1 — ¢3) + Laga cos(¢2 — ¢3)) (4c)

+ K(Lysin(¢1 — ¢3) + Lo sin(¢a — ¢3) 4+ Ly sin(¢s)))

Equation (3) was transformed to state space form with a Matatine developed by the authors named EOM2SS,
which stands foEquation of Motion to State Spad&ilva and Menegaldo, 2007). It was designed to make thelowates
transformation shown below in order to transforif 2rder ODE'’s into an equivalent set of Jorder ODE'’s.

=61 LY i = ¢y =4

T = ¢ 4/ By = ¢ = x5

T3 = ¢3 YL Gy = b1 = g

zi=d1 Y8 b= ¢y

5 = o V8 g5 = 2

z6=ds L% i = &

where:

1

[ Zz = [A]"" ([D]u + [E] - ([B]$* + [C]))
3

2.3 Characterization of Studied Cases

Once the equations of motion were obtained in state space, fordifferent cases were identified, which can be
classified into 2 main groups: Unrestricted and Restridiethe Unrestricted group we consider that the triple pemaul
has no force acting on Point D. That is, no force restrictsribeement of the triple pendulum except the control forces. |
the Restricted group a spring force or a spring and dampee facts in order to maintain Point D fixed, and they increase
as Point D deviates from its original position.

In Case 1, triple pendulum has 3 torque actuators, one atjeathand no restriction force, like a robotic arm. In
Case 2, a spring force is introduced in horizontal and \&rtirections. In Case 3 we consider the unrestricted triple
pendulum with a sole actuator at joint A. The Case 4, is jkst €ase 3 with a spring force restriction. Case 5 differs
from Case 4, in that a damper force is introduced. The 2 amtsiabse is considered in Case 6 with spring and damper
restriction. Finally, in Case 7, we return to the 3 actuataise, now considering a restriction of spring and dampeefor
This is all shown at Tab. 1.
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Table 1. Overview of Studied Cases

# Unrestricted Restricted
Actuators Spring | Spring + Damper
1 CASE 3 CASE 4 CASE 5
2 X X CASE 6
3 CASE 1 CASE 2 CASE 7

The different cases were enumerated this way because itheawder the simulations were performed. We decided
to maintain this numbering scheme because, as we’'ll seqcht ease there was a step we have learned that certain
parameters and/or strategies were better or not for the mcatheonvergence of the problem, and this knowledge was
subsequently applied to the following step.

2.4 Specific Optimal Control Formulation

As it was shown at Section 2.1 an optimal control problem fsx@e by a minimization of an objective function subject
to the equations of motion and may contain additional ttajgc control bounds, initial and final condition constitain
The right choice of objective function and constraints ia farmulation of OCP is relevant for the convergence of the
simulation. In this work we focused in the minimization oétsquared actuator torques, as shown in Eq. 5. The parameters
ws . .. w3 are ones/zeros factors that adequate the objective furtctithe case studied. Their values are shown at Tab. 2.

Another important issue was the formulation of the OCP’sst@ints. The most noticeable one is that the triple pen-
dulum must obey the position loop equations of the 4-bar raueism. But this sole condition did not prove to be sufficient
to impose a 4-bar mechanism behavior to the triple penduBeveral attempts with different constraints were made. The
one which best presented convergence properties is dedadniiEqgs. 8a to 8e. It represents the mechanism position loop
equations, its derivative and an additional equation tooisepthat); should be constant. They were transformed into a
Trajectory Inequality Constraint squaring and summindi in¢o a single equation (Eq. 7) that should be smaller th&n a
small parameter namedP.S N EQ, whose value varied typically frorr0~! to 1073,

min: f(u) = /tf w1 U1 2 + woly? 4+ waUs2dt (5)

subject to: i

Equation of Motion:

{x} =g(x,u) (6)

Trajectory Inequality Constraint:

(f(x,)® + (fa(x,u)* + (fa(x,0)* + (fa(x,w))* + (f5(x,w))* < EPSNEQ 7
where:

Ji(x,u) = Ly cos(¢1) + Lo cos(¢pz2) + L3 cos(¢3) — Ly (8a)

fa(x,u) = Ly sin(¢1) + Lo sin(¢2) + L sin(¢s) (8b)

f3(x,u) = —L11 cos(¢1) — Lo cos(¢2) — Ly cos(¢s) (8c)

fi(x,u) = =Ly sin(¢1) — Laga sin(dz) — Lads sin(ds) (8d)

f5(x,u) = b1 — 27 (8e)

The OCP was implemented and solved with RIOTS’95 (Reculsitagration Optimal Trajectory Solver) which is a
group of programs and utilities, written mostly in C and degd as a toolbox for Matlab, that provides an interactive
environment for solving a very broad class of optimal canproblems. The numerical methods used by RIOTS'95 are
based at Consistent Approximations Theory. According ton&etz et al, (1997) “a solution is obtained as an accumula-
tion point of the solutions to a sequence of discrete-tintentgd control problems that are, in a specific sense, carist
approximations to the original continuous-time, optimahicol problem. The discrete-time optimal control probseane
constructed by discretizing the system dynamics with orfewffixed step-size Runge-Kutta integration methods and by
representing the controls as finitedimensional B-splifiég integration proceeds on a (possibly non-uniform) mbah t
specifies the spline breakpoints.” More information regagdo RIOTS’95 can be found at Schwartz (1996).

In all cases, the simulations tried to reproduce 1 cycle oftmdmechanism working steady-state regimen, with a
constant crank angular velocity ?fr rad/s. Thus, to complete 1 cycle it is necessgry= 1 s of simulation, with initial
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Table 2. Model parameters / outputs

stiffness Damping Final Obj. | CPU time | Obj. Func. Weighting
[DIEa. (3) Factor - K | Factor - C | o vajge (min) ParametersEq.(5)
[N/m] [N.s/m] : q:
1 -1 0
CASE 1 0 1 -1 0 0 75079 46 w1 = 1, W9 = 1, w3 = 1
0 0 1
CASE 2 | Idem CASE 1 1,0-10° 0 43644 43 wy =1, wy =1, ws =1
1 0 0
CASE 3 0 0 O 0 0 - - w1:1,w2:0,w3:0
0 0 O
CASE 4 | Idem CASE 3 1,0 - 107 0 10721 301 wy =1, wy =0,w3 =0
CASE 5 | Idem CASE 3 5,0 - 106 1,0 - 10° 9694 14 wy =1, wy =0,w3 =0
1 -1 0
CASE6| |0 1 0 50-107 | 1,0-107 | 4172 8 wy =1, wy =1, w3 =0
0 0 0
CASE 7 | Idem CASE 1 1,0-10° 1,0 - 10% 22058 455 wy =1, wy =1, ws =1

conditions of:¢; = 1.0472 rad (60.0°), ¢2 = 0.2907 rad (16.5°), ¢3 = 4.5513 rad 260.7°), $1 = 6.2832 rad/s B60°/s),

do = —1.3760 rad/s (8.8°/s) andg; = 3.4240 rad/s (96.1°/s). It was adopted a time discretization mesh of 200 points.

It means that, as the solution of the optimal control problepresented by a finite dimensional B-spline, that spline

would have200 + p — 1 breakpoints. In all cases, a cubje £ 4) spline was used. Finally geometric/mass parameters
used werel; =0.5m, Ly =0.9m, Ly =0.7m, Ly = 1.0 m,m; = 6.59 kg, ms = 11. 5kg,m3f907kg Centers

of mass are located in the middle of each bar and its respetidment of inertia was computed with= - mL2

3. RESULTS

Before proceeding the optimal control simulations, a ragkinematic and inverse dynamics analysis was performed
for the 4-bar mechanism, according to the theory presentddidoig (1989). The trajectories of angular coordinates as
well as its velocities are shown at Figures 2a and 2b. All itinns were carried out in an Intel Core 2 Duo E6600, 2.40
GHz desktop computer.

State variables (positions) State variables (velocities)
— ¢, OCP
@ 400 —— d(g,)/dt OCP
ocp
2 300 —— d(g,)/dt OCP
9, 0CP
d(g,)/dt OCP
200 (@)

* @ Kinematic Analysis ) . .
1 * d((pl)/dt Kinematic Analysis

* Kinematic Analysis L
2 4 100 +  d(@,)/dt Kinematic Analysis

* Kinematic Analysis X . .
@3 Y *  d(gy)/dt Kinematic Analysis

xdot (deg/s)
o

|
i
o
=)

-200

-300

-a00f

aH*
Tk oK
0 +w L L L -500 L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

t(s) t(s)

Figure 2. Comparison of state variables trajectories foBEA with kinematic analysis of 4-bar mechanism.

CASE 1. In case 1, a triple pendulum with 3 torque actuators was dggdeiw perform the kinematics of a 4-bar
mechanism without any restriction at Point D. This situatiould be also interpreted as a movement of a 3-link planar
robotic arm that the first link should perform a complete fation but its end-effector should remain fixed.

It was not possible to obtain an acceptable solution (theréilgn didn’t converge) with all conditions imposed. The
strategy used was to decrease gravitational acceleratipr=t 4 m/s> (Menegaldo et al., 2004), and decrease final time
(for to complete about 80% of the cycle) trying to achieve amal termination, with a zero vector as initial guess, fa th
optimal control. Then, the solution obtained with = 0.8s was used as an initial control guess for the next simulation
with tf = 0.9s. This process was repeated once morgfte- 1.0s with ¢ = 4 m/s’ fixed. Then, the same strategy was
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used to vary the gravitational acceleration, increagiby 1m/s® at time, up tog = 9.81 m/s%.

The value of EPSN EQ, which somehow controls the violation of the constraintg. (&) that force the triple pen-
dulum to behave like a 4-bar mechanism, was initially s€tto®. A final simulation, usingeSPNEQ = 10~° and as
initial control guess the optimal control for the trial WithRSPNEQ = 10~ andg = 9.81 m/s*; was performed which
resulted in a very good reproduction of the states trajeegoil his result can be verified at Figure 2 where state Viasab
obtained in the best trial of CASE 1 was plotted over the aargeordinates position and velocity curves obtained with
the regular kinematic analysis.

CASE 2: In this case, a horizontal and vertical springs were intceduas shown in Figure 1 to force Point D remain
fixed. Although the displacement of Point D in CASE 1 was venak, specially when usinggSPNEQ = 1075, it
means that if a real 4-bar mechanism were impelled to move thiise three torque curves, it would have almost no
reaction forces on joint D. At first sight it may sounds pesitibut it could be argued that torque actuators are acting
against gravity. Therefore, reaction force at Point D wapilaly a role to support part of the weight of the bars, thus
relieving torque actuators to do all this job. This hypothegas confirmed comparing Figures 3a and 3b. Peak forces in
all torque curves in CASE 2 were smaller than in CASE 1, and/#éihge of the objective function in CASE 2 was almost
42% smaller than in CASE 1. In fact, the objective funtion IASE 1 was the highest in all cases studied.

CASE 3: Six attempts were made, with different conditions (for eptang = 0 m/s*, ortf = 0.05s), to simulate the
system with only one actuator at joint A and no other extefmiales; but all have failed. In fact, it was already expected
because this system is uncontrollable, i.e, the numbertotars is smaller than the number of DOF. Thus, when RIOTS
tries to estimate a control, this control cannot take atestariables to the desired state (i.e. respecting all cainss).

CASE 4: In CASE 4, a horizontal and vertical springs were introduaeBoint D, with the triple pendulum impelled
by only one torque actuator at joint A. With a stiff springiagtin order to maintain Point D fixed, a physical constraint
is introduced in the 3-DOF such that it becomes, as a matfactfa 1-DOF system. In doing so, we are actually doing a
regular inverse dynamics analysis by means of an optimata@dormulation. That is, the expected torque curve should
be similar to the one found with a regular inverse dynamicdyasis.

In this case, a normal termination of RIOTS was very hard . fin fact, only 1 (which is plotted in Figure 3c) in 25
trials. The strategy adopted in CASE 1 (to begin the simohetiwith low gravitational acceleration and low final time)
didn’t worked this time. Nevertheless, even in the failadls; the kinematics were reasonably reproduced, but aontr
forces were excessively high. This was possibly due to thifl@®ry nature of the spring force whose frequency inse=a
as the spring stiffness gets bigger. Up to this moment, a #térpfixed step-size Runge-Kutta integrator had been used.
So an attempt was made changing Runge-Kutta integrator aoi@ble step-size LSODA integrator (Radhakrishnan and
Hindmarsh, 1993; Petzold, 1983), which is also adequatetégiate “stiff” EDO’'s. The only one successful trial was
obtained with this integrator, using= 0 m/s’* andtf = 0.05s, therefore, the curve at Figure 3c could not be compared
to the others because they do not represent the system undenal acceleration of gravity.

CASE 5: What we have learned from CASE 4 was that the simulations wetre&anverging because of integrators
limitations, but probably due to a high frequency excitatiorce, introduced by the spring that was not being damped.
So, the modification introduced in CASE 5 was the dampingdacting in parallel with the springs, which in general
facilitated the convergence of the problem. We started tlaéstusing fixed step-size Runge-Kutta integrator because
RK have shown to be much faster than LSODA. The strategy tinkibg simulations with lowg and¢f was once
more employed. Beginning with = 0 m/s® held fixed and increasing fromy = 0.2s, using the control obtained in
the previous trial as initial guess of the next trial, susfelsterminations were obtained up t¢ = 0.6s. Changing to
LSODA integrator, it was realized that a successful resaliict be obtained with a zero initial control guess vectod an
tf = 1s. From now on, 10 successful trials followed each one adgatibigger gravitational acceleration.

Looking at Figure 3d, it is possible to see that the optimaiticd solution was quite similar to the torque calculated
by a regular inverse dynamics analysis. With this in mings ftossible to conclude that the model of a triple pendulum
with stiff springs and dampers acting at is most distal pminhe model that best represents the 4-bar mechanism in this
context.

CASE 6: As the introduction of the spring and damper proved to be tst lmodel to represent a single actuated 4
bar mechanism, in CASE 6, this model was employed to cakutatjue curves of a 4-bar mechanism with 2 actuators
at joints A and B (see Figure 1a). All that was learned fromphevious cases was used in the first trial of CASE 6.
The consequence was that the first trial had a normal terininasingg = 9.81 m/&, tf = 1.0s, K = 5,0 - 10*,

1LSODA, as well some other Runge-Kutta integrators, are fanstbuilt in RIOTS.
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C =1,0-10* EPSNEQ = 107!, and also LSODA integrator with a zero initial guess conu@ttor. A smoother
curve was obtained using higher stiffness and damping antss{shown at Table 2).

Looking at Figure 3e, it is possible to see that the peaks efctirves were significantly smaller than in CASE 5,
although it were less smooth. In fact, this was the case wherebjective function had its smallest value (see Table 2).
This result suggests that a 4-bar mechanism with 2 actuatadsl use smaller motors to perform the same task as the
traditional one.

CASE 7: Finally in CASE 7 we returned to the 3 actuators case, but mmsidering both spring and damper forces
which presented good results in cases 5 and 6. Normal tetionisavere also easy to find in CASE 7 using either fixed
or variable step-size integrator, and no intermediatesstegre necessary to get a normal termination with 9.81 m/s?
andtf = 1.0s. But, as it is possible to see at Figure 3f torque curves wetras smooth as in CASES 1 and 2. On the
other hand, the peak of the curves were even smaller than BECAand so were the value of the objective function.

CASE 1 CASE 2 CASE 4
500 T T T T 500 T T T

-500

400

300
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.
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(d) Case 5 (e) Case 6 (f) Case 7

Figure 3. Optimal controls from the best trials of each case

4. CONCLUSIONS

A method for solving the inverse dynamics of redundantlyuatd 4-bar mechanism, formulated as an OCP has
been presented. The method is based on a modification of tledgal model of the system that transforms the closed
kinematic chain into an equivalent open kinematic chairhwjpring and damper forces that preserves the kinematics
of the original closed kinematic chain system. As this gplecis quite general, it could be applied to solve similar
problem of others closed kinematic chain mechanisms. Tha firaing of this work was that the 4-bar mechanism
with 2 actuators (CASE 6) requires less maximum torque effoperform the same task when compared to a 1-actuated
(CASE 5) and 3-actuated (CASE 1 and CASE 2) counterparter@spects related to the computational implementation
of this problem were also presented, and can be promptlyfaesdédrther implementation of similar problems.
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