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Abstract. The aim of this work is to characterize and identify the mechanical behavior of a composite material used in 
industrial gaskets and constituted by  PTFE (polytetrafluoroethylene) reinforced with silica particles. The viscoelastic 
parameters identification fits in the so called model up-date which seeks matching experimental results to analytical 
modeling. The Maxwell model is adopted for the theoretical description of the   problem since it better represents the 
observed mechanical behavior in the performed controlled deformation tests. By considering the experimental data, 
numerical results and the Levenberg-Marquard technique, the material properties are identified with a good accuracy.  
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1. INTRODUCTION 

 
The PTFE (polytetrafluoroethylene), commercialized by the name of Teflon® , is a polymer formed by long chains 

of carbon atoms with pendent fluorine atoms. In spite of the processing difficulties due to its high molecular weight and, 
consequently, its high fusion viscosity, this material is extensively used because of its excellent chemical inertness, its 
electrical and thermal isolation capacity and its low friction coefficient. Frequently, the PTFE is combined with other 
materials with the purpose to maximize desired characteristics and minimize undesirable effects. In this work, 
specifically, a composite material used in industrial gaskets, composed by a PTFE matrix reinforced silica particles is 
considered. It is important to mention that the viscoelastic behavior of the material is particularly important for the 
gasket's efficiency. 

The objective of this work is to develop a  theoretical-experimental  model suitable  to predict the material's 
viscoelastic behavior. The experimental results are compared to their counterparts obtained from analytical models and  
an optimization algorithm is used to fit those analytical models in order to yield the sought viscoelastic constants. The  
objective function is defined by the difference between the analytical stress and the stress obtained from a  controlled 
deformation hysteresis essay.  The Maxwell model is adopted for the theoretical description of the   problem since it 
better represents the mechanical behavior observed in the performed controlled deformation tests. By considering the 
experimental data, numerical results and the Levenberg-Marquard technique, the material properties are identified with 
a good accuracy. 

Although composite of PTFE are the raw material for gaskets, the aim of this work is not to identify indices of leak 
or physical characteristic to improve the system's seal but, in fact, to identify properties of viscoelastic material that are 
fundamental for the material's stress recovery, strength and cold flow. 
 

2. MAXWELL  MODEL 

 

Figure 1-  Rheological Maxwell model 
 

 



The modulus of elasticity and the viscosity are the main parameters   that characterize the viscoelastic behavior of  
materials obeying the  Maxwell model. The difficulties to identify polymers properties are justified  by their large  
dependence  on the essay’s conditions, as for example, the rate of load, temperature and  quantity of deformation 
(Ward ,1985).  That is, on the contrary of  the elastic material's behavior, the viscoelastic behavior is strongly time 
dependent. In this section it is described the realized experimental tests and suitable  to identify these parameters.   

The behavior of Maxwell materials combines the characteristics of a elastic material that obeys the Hooke law with 
a Newtonian viscous fluid. The  rheological sketch suitable in  describing  Maxwell's models is depicted in the Figure 1. 
This means that the constitutive relationship, associating the total deformation ε with  the stress σ is defined by the 
following differential equation:  
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where η is the viscoelastic coefficient and E is the modulus of elasticity.  

This differential equation can reproduce a lot of particular results depending on the boundary conditions and 
the kind of the load/deformation program. In the following some interesting conditions are analyzed. 

 
2.2. Cold Flow  or Creep test 

 
Here it is considered the solution of equation (1) when the material is submitted to the constant stress σ0. This is the 

condition imposed to a creep test. Then, in this case  
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Consequently, the solution of the equation is given by:  
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In this model, the combination of a linear spring in series  with a linear damp, produces  at the initial time an 

instantaneous elastic deformation. This initial condition allows determining C0, the constant of integration that appears 
in equation (3). That is  
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and the  function that defines deformation along the  time is described by the equation: 
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where tη  represents the relaxation time, being defined by : 
 

E
t η
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The Figure 2 shows the creep response of  Maxwell material by considering different relaxation times. It is 

important to observe that, with the increase of the relaxation time, this viscous material has a tendency to behave as an 
elastic linear material, or equivalently,  the deformation  remains constant along the time and equal to the initial  
instantaneous deformation.  
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Figure 2. Maxwell model - creep response for different relaxation times  
 
2.3. Prescribed deformation  test 

 
This sub-section describes the Maxwell material behavior   when  it is submitted to a controlled  deformation 

process, as  the defined by the equations (7) and (8) and shown in Fig 3: 
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Figure 3. Controlled  Deformation Program 

 
In this case, the solution of the differential equation (1) with initial condition  σ(0) = 0,  gives :  
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The resulting stress versus strain function  is depicted in Figure 4 by considering  different values of  tη and  E. 
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Figure 4. Maxwell Model – Stress x Strain 
   
 

3. INVERSE METHOD  -  LEVENBERG-MARQUARDT  
 

This section describes the optimization technique adopted in order to estimate the viscoelastics parameters of the 
composite material. The technique is based on the adjustment of coefficients in an optimization process in which the 
objective function is minimized  with respect to the viscoelastic constants. Through the Levenberg-Marquardt method 
(Özisik  and Orlande , 2000), the  values are sought for the viscoelastic parameters that provide the best agreement 
between the stress obtained from  experimental procedures and those ones assessed from the analytical model, here 
defined by the Maxwell model.  

The objective function is defined by the  sum of squared relative differences between each experimental stress and 
its corresponding theoretical prediction, or  

  

,)),,()((),( 2
exp

1
ησση EttE iai

n

i
−= ∑

=

S  (11) 

 
where σexp(ti) represents the experimental stress values at each instant of the controlled  deformation test. The variable 
σa(ti,E,η) is the  value of stress obtained  from the analytical model and, here, defined by the equations (9) and (10) .    

The minimum values in (11) are those ones that satisfy the following optimality condition:  
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where P is a vector in which  the components are  E and η. The vector Δσ, has n components representing  the 
difference σexp(ti) -σa(ti,E,η),  calculated at the time ti.  It means  
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Therefore, the  Jacobian matrix’s  components are obtained by  
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By considering the Taylor’s expansion for  the analytical stress function written as   
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by substituting (14) at (12) and solving the resulting linear system,  the expression that defines the interactive process is 
obtained  
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The viability of the method depends on the non-singularity of the matrix JTJ. This condition is verified if the 
objective  function is convex. As the convexity of objective function can not be guaranteed in the practical applications, 
Levenberg-Marquardt proposed the disturbance of the matrix JTJ to assure its positiveness and, consequently, the 
existence of  the inverse matrix. So the new formula for  defining the iterative process is 
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where  μk is a small positive parameter, established in the beginning of the iterative process. The Ωk matrix  is diagonal 
and, in this work, defined by 
 

])[( kTkk diag JJΩ =  (17) 
 
4. PARAMETERS IDENTIFICATION  

 
As mentioned before, to completely characterize the Maxwell material, it is necessary to identify the modulus of 

elasticity E and the viscosity η.  In order to validate the proposed inverse method two classical experiments, the tension 
and the creep testing, were performed before the controlled strain essay. The values obtained in these preliminary tests 
were adopted as initial values for E an η in the iterative identification process. 

The experiments samples's were made with a PTFE sheet reinforced with silica particles with 2.09 mm of mean 
thickness and density equal to 2.21 g/cm3. Ten specimens with   12.7 mm of length were tested in a controlled 
environment room at 25oC and 53% of relative humidity.  The tests were carried out in an INSTRON® universal 
materials testing machine, presenting 116 mm spacing between jaws and drive at 300 mm/min. 
 
4.1. Tension testing 

 
In order to determine the modulus of elasticity from the tension testing, only strains values lower than the maxim 

deformation strain predicted at controlled strain test was considered,  this means approximately  1.7% ( Fig 5). 
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Figure 5. Stress x Strain (ε < 1.7%) 
 

The tensile stress shows the initial estimation (between 223 MPa and 259 MPa) is reasonable modulus of 
elasticity to initiate the interactive process. 



4.2. Creep test 
 
The initial value for viscosity was estimated by considering the Maxwell model  defined   by equation 5, an 

experimental cold flow stress 7.2 MPa and the modulus of elasticity 240 MPa (average of the data tensile stress test, 
calculated at 4.1) and  ε0 = 3%. It is important to mention that the results from creep tests did not allow to accurately 
assessing the relaxation time due to the high   degree of uncertainties observed in the strain’s measures during the creep 
tests.   

In that case, trying to estimate the initial value to the iterative algorithm adopted in  identification process, the model 
was analyzed by imposing  different values to the relaxation time and observing the resulting stress-strain curve (Fig 6). 
The identification test was carried out with the three initial values presented in the graph, or better, 30 h, 0.03 h and 
0.0003 h. 
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Figure 6. Initial viscosity estimated by Maxwell model from the creep test. 

 
3.5. Final parameters identification - E and η 
 

The Levenberg-Marquardt interactive procedure, described at section 3, was performed by considering  the initial  
values obtained as described in the previous section. The best results  was  achieved  with E=240 MPa e 
tη=108s (0.03h). The algorithm converged in 6 iteractions and  the following values were obtained: 

 
sGPaMPaE .13218 == η  

 
For these values, the time for relaxation time can be estimated as   

 

 
st 59=η
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Figure 7. Stress x Strain - Analytical solution after identification process 
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In order to confirm the quality and validate the results it is important to verify the graphics in figures 7 and 8, where 
the experimental results were compared to the analytical results.  
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Figure 8. Stress x time - Analytical solution after identification process  
 

6. CONCLUSION  
 
The results of elasticity modulus and the viscosity estimated by the proposed methodology are within the limits 

presented in  literature and are comparable with that one obtained with other  experimental results.  It was observed that 
Maxwell model represents appropriated behavior for this material. 

The proposed methodology was successful in identifying the consistent values for properties of the viscoelastic 
material studied. It also proved to be a helpful, simple and reliable  tool to analyze the mechanical behavior of 
viscoelastic materials. Nevertheless, the efficient convergence of Levenberg-Marquardt technique relies  on the  choice 
of initial parameters. They must be coherent with the order waited for the  searched parameters, mainly the initial value 
of the viscosity parameters . 

It is important to carry out stress relaxation test to confirm the accuracy of the results, mainly in the relaxation time. 
Additionally, it necessary to  perform new experiments   considering  other strain rate and environment  conditions  so 
as to characterize  the material  definitely.  
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