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Abstract. This paper proposes analytical and numerical solutions respectively for the initial and complete post-
buckling behavior of slender elastic rods, with non-movable hinged ends, resting on elastic foundation and subjected to 
thermal loads. The governing equations are derived from geometrical compatibility, equilibrium of forces and 
moments, constitutive and strain-displacement relations. A set of seven first order non-linear ordinary differential 
equations is obtained and boundary conditions are specified at the rod ends. The governing equations are then made 
non-dimensional thus reducing the problem to two parameters: the foundation stiffness and the rod slenderness ratio. 
A classical Perturbation Method is applied for solving the differential equations assuming that the structure is 
subjected to small strains and deflections. This gives a set o linear equations that can be solved sequentially. The 
results are presented and discussed for one slenderness ratio and a range of foundation stiffness corresponding to the 
third buckling mode. It is verified that for a specific range of foundation stiffness, the compressive load increases with 
the increase of the temperature gradient, when an opposite behavior was expected. The exact post-buckling result 
shows excellent agreement with the results presented here, given that in practical situations the deflections are usually 
moderate. 
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1. INTRODUCTION   
 

Beam stability is an important subject because in many engineering applications it is a typical failure mode 
mechanism. Thermal and mechanical rod buckling in elastic foundations has been studied by many authors such as Den 
Hartog (1952), Timoshenko and Gere (1961), Hetenyi (1966), Sundararajan (1974), Kalaba (1978), Gauss and Antman 
(1984), Eisenberger et al (1986), Hui (1988), Panayotounakos (1989), Xie and Vaziri (1992), Lee et al (1992, 1996), 
Hunt et al (1993), Raju and Rao (1993), Rao and Raju (1994, 2002), Lee and Waas (1996), Jekot (1996), Lin and 
Librescu (1998), Coffin and Bloom (1999), Li and Cheng (2000), Li et al (2002), Li and Zhou (2003), Vaz and Solano 
(2003, 2004), Li and Batra (2005), Li and Song (2006), Vaz et al (2007). 

When a beam is heated up and its ends are constrained from moving axially an axial compressive stress develops 
and if this stress reaches a critical value, a serious stability problem may take place. The initial post-buckling and the 
complete post-buckling of slender elastic rods supported by a linear elastic foundation, subjected to a uniform 
temperature gradient are investigated here. The rod has double-hinged immovable ends and the classical perturbation 
method is employed for solving analytically and sequentially the governing equations for small strains. Furthermore the 
results are compared to the complete post-buckling, which is obtained numerically by the shooting method. 
 
2. THE GOVERNING EQUATIONS 
 

In figure 1 it is shown the initial and the buckled forms of the rod. YX , are the Cartesian coordinates, T∆ is the 
uniform temperature gradient,Κ is the elastic foundation modulus and P is the compressive force that arises from the 
constrained ends. It is also shown the rod initial length L  and buckled length *L and their respective infinitesimal 
lengths dS  and *dS .  

 
Figure 1. Rod initial and buckled forms on an elastic foundation. 



Figure 2 shows the infinitesimal element *dS  of the buckled rod, where θ  is the angle that the rod makes with the 
horizontal axis X  , M is the bending moment and V  is the force parallel to the vertical axisY . 

 

 
Figure 2. Infinitesimal element of the buckled rod. 

 
Assuming that the rod is linear elastic, it is possible to obtain from figures 1 and 2 the seven governing equations. 

These equations were derived from the geometrical compatibility, equilibrium of forces and moments, constitutive and 
strain-displacement relations.  With the purpose of making the comparison of results easier and facilitating their 
comprehension the governing equations were made non-dimensional by employing the following relations: LsS ** = , 

LxX = , LyY = , LsS = , L/κ=Ω , 4/ LEIkK = , 2/ LEIpP =  and 2/ LEIvV = . Where Ω  is the rod curvature, 
E  is the Young’s modulus, I  is the cross-sectional second moment of inertia and ε  is the specific linear strain, 
defined as the ratio between the elongations in strained and initial configurations. Therefore the governing equations 
will be: 
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The temperature gradient induces an elongation of the rod which is prevented by its hinged ends and a compressive 

force arises. Employing these relations: IAL /=λ , LlL ** =  and ( )αλ2/tT ∆=∆ , where λ  is the slenderness ratio. 
The strain that results from this thermo-mechanical equation is: 
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Where A is the cross-sectional area and α  is the linear thermal expansion coefficient. The boundary conditions are: 

 
( ) 01)()()(1)()0()0()0(0 **** =−===−==== lsllylxsyx κκ  (9)

 
When small displacements are admitted it is possible to solve this complex boundary value problem analytically, for 

the initial post-buckling, utilizing a classical perturbation method. The full methodology is presented in Vaz et al (2007) 
and it will be summarized here. 
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2.1. Initial Post-Buckling Solution Using the Perturbation Method 
 

The variables of the problem are expanded in terms of a perturbation parameterξ  and due to the symmetry of the 
problem the odd and even functions can be separated. The expanded variables are: 
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The solution is obtained by substituting equations (10-17) in (1-7). Collecting terms of same order and after 

analytical manipulation of equations yield: 
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Where n , a positive integer number, is the rod buckling mode associated with a prescribed value of k . Equation 

(18) shows that the rod buckles at same load for mechanical or thermo-mechanical processes. The transition elastic 

foundation stiffness and its corresponding load are calculated from )1()( 00 += nana  and 1* =l : 

 
( )224 1+= nnπkt                                          ( )122 22 ++= nnπpt                    K,2,1=n  (23)

 
Equation (21) indicates that the compressive load always decreases when the temperature gradient is increased 

except for 44 43 ππ <≤ k , corresponding to mode n = 1. Equation (22) shows initially stable regions for 
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+≤ , see figure 3. Note that for lower values of foundation stiffness a thick beam theory is required to 

properly describe the buckling behavior near the critical values of slenderness ratios. 
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Figure 3. Slenderness Ratio as a function of the Foundation Stiffness. 

 
2.2. Complete Post-Buckling Solution  
 

A geometrically non-linear post-buckling solution was also developed employing the shooting method. A guess for 
the unspecified boundary conditions employed the previously calculated values for the initial post-buckling solution. 
For these values the shooting method converged in the first iteration for values of t∆  < 800 in most cases. This fact 
indicated that the initial post-buckling solution via perturbation method was giving approximate values for a large range 
of temperature gradients. The results of these two methods are presented below. 
 
2.3. Analysis of Results 
  

Two parameters control the buckling and the initial post-buckling problems: the elastic foundation stiffness k  and 
the rod slenderness ratio λ . For a given combination of ( )λ,k  the solution is obtained for values of strained lengths *l . 

A parametric study is carried out for 100=λ , 4360 π≤≤ k . The results for the complete post-buckling solution are 
also plotted and show excellent agreement with the analytical solution developed here. 

Figures 4 to 8 respectively present the strained length, normalized compressive load, maximum deflection, 
maximum angle and maximum curvature as a function of the normalized temperature gradient for modes 1 and 2. The 
concept of normalized loads and temperatures introduced in this work is explained next. The critical buckling load crp  

and temperature crt∆  are obtained from Eq. (15) by setting 1=*l . They increase linearly with the foundation stiffness 
and reach quite large values when a broad range of foundation stiffness is considered. It is then convenient to normalize 
the load and temperature variables, by simply dividing them by their respective critical values. Consequently the 
normalized temperatures and loads start from 1.0 (the bifurcation condition) for any foundation stiffness. Obviously the 
absolute temperatures and loads involved for higher values of foundation stiffness are increasingly higher. 

The strained length as a function of the normalized temperature gradient is plotted in Fig. 4 for the foundation 
stiffness 4444 36;20;4;2;0 ππππ=tk . Large foundation stiffness requires relatively less temperature input for same 
deformation. The behavior of the normalized load as a function of the normalized temperature gradient for several 
values of foundation stiffness is presented in Fig. 5, respectively for n = 1 and 2. The normalized load always decreases 
with the normalized temperature except for n = 1 and 44 43 ππ <≤ k . Figure 6 shows the maximum lateral deflection 
as a function of the normalized temperature gradient. As expected, the lateral displacement is smaller for higher 
buckling modes. The rod maximum angle increases with the normalized temperature gradient, as depicted in Fig. 5. 
Figure 6 shows that the maximum curvature also increases with the normalized temperature gradient.  
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Figure 9 presents the deflected configurations for modes 1 and  2 comparing the results for initial and complete post-

buckling subjected to the following thermal loads: 1376.2 and 820.23 282.48; 1328.9; 767.65; 225.00;∆t = . Observe 
that the loads and temperatures are not normalized. The graphs were plotted for intermediate values of foundation 
stiffness ( 44 20;2 ππ=k ). The rod lateral deflections are larger the lower is the mode. For a given strained length, say 

020.1* =l , progressively higher temperatures are required for higher foundation stiffness (or mode), however note that 
a relatively smaller temperature increment is required. It can be seen that as the temperature increases, the complete 
post-buckling gives smaller lengths than the initial post-buckling solution. 
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Figure 4. Strained Length as a Function of the Normalized Temperature Gradient. 
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Figure 5. Normalized Load as a Function of the Normalized Temperature Gradient. 

 



20 40 60 80 100 120 1400.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ax

im
um

 D
ef

le
ct

io
n

∆t (normalized)

n=1

K = 0 Complete Post-Buckling

λ = 100
Post-Buckling Solution

K = 0 Initial Post-Buckling

K = 2 Complete Post-Buckling
K = 2 Initial Post-Buckling

K = 4 Complete Post-Buckling
K = 4 Initial Post-Buckling

 
(a) 

5 10 15 20 25 300.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ax

im
um

 D
ef

le
ct

io
n

∆t (normalized)

n=2

K = 4 Complete Post-Buckling

λ = 100
Post-Buckling Solution

K = 4 Initial Post-Buckling

K = 20 Complete Post-Buckling
K = 20 Initial Post-Buckling

K = 36 Complete Post-Buckling
K = 36 Initial Post-Buckling

 
(b) 

 
Figure 6. Maximum Deflection as a Function of the Normalized Temperature Gradient. 
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Figure 7. Maximum Angle as a Function of the Normalized Temperature Gradient. 
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Figure 8. Maximum Curvature as a Function of the Normalized Temperature Gradient. 
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Figure 9. Deformed Configurations for 100=λ  and 42π=k and 100=λ  and 420π=k . 
 
 

3. CONCLUSIONS 
  

This paper presents formulation and solution for the initial post-buckling and complete post-buckling analyses of 
slender elastic rods supported on linear elastic foundations and subjected to uniform temperature gradients. The material 
thermal strain-temperature relationship is considered linear and the rod ends are assumed hinged and immovable. The 
governing equations are made non-dimensional and the problem is shown to be controlled by two parameters: the 
elastic foundation stiffness and the slenderness ratio. A perturbation method is employed to expand the non-linear 
equations into a set of sequentially solvable analytical equations which describe the initial post-buckling regime. The 
critical buckling load and temperature gradient as well as its respective buckling modes are calculated. It is shown that 
there are limiting values of slenderness ratios where the rod is intrinsically initially stable. The critical slenderness ratio 
increases with the foundation stiffness. The results for the initial post-buckling analysis are obtained for a range of 
foundation stiffness corresponding to the fourth mode for a typical value of slenderness ratio. The results for the 
complete post-buckling solution are in excellent agreement with the solution developed here. The results are presented 
for the deformed length, compressive load, maximum deflection, angle and curvature as a function of the normalized 
temperature gradient, defined as the temperature gradient divided by its respective buckling temperature. The results 
indicate that the thermo-induced compressive load always decreases with the temperature gradient, except for a specific 
range of non-dimensional foundation stiffness in the first mode.  
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