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Abstract.Thermal hydraulic analysis codes are of great importance for the nuclear industry, since they are essential for
the safety analysis of the plants and simulation of physical phenomena with an acceptable realism. There is a variety
of methods for the modelling of the two-phase flow, ranging from the homogeneous equilibrium model, where the liquid
and the vapour form a homogeneous mixture, to the three-fluid model (liquid, vapour and liquid droplets). In this work,
we adopt the thermal equilibrium drift flux model, which allows the velocities of the liquid and the vapour phases to
be different, providing an algebraic relation between them. This model consists of a system of three partial differential
equations, representing mass, momentum, and energy balances of the mixture. We propose here a numerical scheme
that consists first of using the finite volume method in the integration in space, with a staggered mesh for the momentum
balance in relation to the volume element used for the mass and energy balances. Next we used the finite element method to
solve the resulting system of ordinary differential equations from the finite volume method alongside constitutive relations.
The results obtained from this methodology are compared with the usual finite difference schemes so that the performance
of the proposed method can be evaluated.
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1. INTRODUCTION

Numerical simulation became, through time and the evolution of computers, an important tool for the design and
maintenance of industrial plants. With the nuclear power plants it could not be different: the safety analysis of these
plants requires more and more precise codes, to simulate the neutron flux inside the reactor core, to simulate flows in its
different circuits, and so on. In the case of flow simulation, the evaluated parameters are given by a set of equations that
represent mass, momentum, and energy balances in a control volume. However, the solution of these equations require
a great computational effort. So, many simplified models have been created that, if they are not mathematically precise,
help to simulate a physical event with a response time the closest to reality as possible.

Among the safety problems for light water reactors (LWR’s), the most important are those referring to the loss of
coolant accident (LOCA). The LOCA problem is important because it is considered a limitant factor in the reactor safety
and therefore is classified as project basis accident. Hence, the main efforts in the research of LWR safety are directed in
providing codes with the capactity to predict the consequences of LOCA’s with the best estimate possible.

In this work we simulate two-phase flows as a base to create in the future a complete thermal hydraulic plant simulator
with a graphic interface for the user. To realize this task we created two programs in Fortran 90: the first to generate the
plant and the second to simulate the flow through it.

The mathematical model for the resolution of the equations that rule the flow uses the finite volume method in the
spatial integration (Lapa, 1998), and the finite element method in the temporal integration adopting the discontinuous
Galerkin variational formulation (DGM). The backward Euler scheme of finite differences can be reached from this
formulation when the interpolation spaces are generated by the constant function1 (Johnson, 1990).

The plant generator is an important tool for those who intend to simulate flows in open and closed circuits. It gives
the user a great variety of plant configurations and even using the DOS as an interface it presents various resources of
correction and reutilization. Its use will provide other researchers that they use their time only to research other numerical
methods of resolution of the balance equations, without concerning in creating a code for the plant generation, what needs
a considerable time.

In its turn, the simulator has the advantage of being implemented with the DGM, that degenerates into the backward
Euler scheme when the number of points inside the time finite element is equal to 1. It is a known fact that the polynomial
basis functions of lower order are more stable than the higher order ones (for instance, the Crank-Nicolson method).
However, the DGM allows us to use other kinds of basis functions to recover and maintain the stability of the lower
orders for polynomials, and to obtain a greater precision with longer time intervals. Therefore, only this perspective of
investigation, justifies the construction of a simulator based in the DGM. Besides, in the investigations of these special
functions we have the possibility to use the problem physics to construct them to carry on the precision and the stability.
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2. THE DIFFERENT KINDS OF TWO-PHASE FLOWS AND THEIR MODELLING

In the one-fluid model the idea is to replace the two-phase fluid by an equivalent compressible one-phase fluid. The
physical properties of the one-phase fluid (like specific mass and viscosity), as well as flow parameters (for instance,
velocity and temperature) should then be defined by functions of the properties of each phase. If one of the phases is
finelly dispersed, the momentum and energy transfers will be sufficiently fast for the average velocities and temperatures
of both phases to be equal. If the temperature is the saturation one, the flow is described by the homogeneous equilibrium
model (HEM).

The HEM is the simplest of the mixture models. It assumes that there is no relative velocity between the phases (that
is, the flow is homogeneous) and that the vapour and the liquid are in thermodynamic equlibrium. For LWR applications,
the HEM can be adequate to predict the pressure drop in a channel under stationary conditions of high pressure.

Other mixture models add complexities to the flow description. The example of model studied here is one of them, the
thermal equilibrium drift flux model, which allows the vapour and liquid velocities to be different providing an algebraic
relation for this difference.

In the two-fluid model, the liquid and vapour phases have three balance equations each. So this model is also called
six-equation model. Some extensions to this model, leading to multifluid models, are possible but have not been applied
so extensively like the two-fluid model.

Because of its nature the two-fluid model is the only model consistent with the balance laws for each phase and the
interfaces. This model can be described using averages in time as well as in space. If the two-fluid model is written using
time averages, it is possible to solve three-dimensional problems of transient two-phase flows, otherwise, if it is described
using space averages, the two-fluid model can deal only with problems of transient flows with only one space variable.

There is a plenty of flow simulation programs, academic and industrial. From the nuclear industry we can cite:

• three-equation HEM: PAXITR e CONSEN (Sardainet al., 2001);

• three-equation drift flux model: ALMOD e THYDE (Lapa, 1998);

• five-equation HEM: ECART (Sardainet al., 2001);

• two-fluid model (six equations): CATHARE, MELCOR, RELAP e TRAC, the last two ones add two equations to
the set, one for modelling non-condensable gases and other for the boron concentration (Sardainet al., 2001);

• phase separation in a volume: INTRA e CONTAIN, only used to calculate the pressurization in a vacuum vessel
(Sardainet al., 2001).

The RELAP code is well known in the nuclear industry and is currently used by the Brazilian National Comission of
Nuclear Energy (CNEN) to simulate the functioning of the plants of Angra dos Reis, Rio de Janeiro.

From the oil industry there are four major programs (Masellaet al., 1998):

• three-equation drift flux model: TACITE and TRAFLOW;

• two-fluid model: OLGA and PLAC.

The differences between these codes are found in the needs each industry has. Nuclear industry has preference for fast
transients, like in a LOCA, while oil and gas industry prefers slow transients, like the transport and delivery of slugs in
recepting equipment, a phenomenum known as severe slugging.

3. THE THREE-EQUATION DRIFT FLUX MODEL

In the drift flux model we consider the gas and the liquid as being a mixture whose phases are in thermodynamic
equilibrium but allows the gas and the liquid velocities to be different by providing an algebraic relation for the velocity
difference (Delhayeet al., 1981). Therefore, the mass, momentum, and energy conservation equations are sufficient to
describe the flow.

We have chosen this model because it is mathematically simple without losing so much precision in the informations
obtained from it. And we can raise its complexity and precision by adding transport equations to the system.

Here we present the equations adopted in this model (Lapa, 1998), whose simplifications and correlations can be found
in Todreas and Kazimi (1990). We should observe that by thermodynamic equilibrium we can neglect the volumetric
contraction and expansion, what is valid for subsonic compressible processes.

Mass balance equation

∂ρ

∂t
+∇ · (ρũ) = 0 (1)



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

Energy balance equation

∂

∂t
(ρH − P ) +∇ ·

[
ρHũ+ α(1− α)

(
ρvρl

ρ

)
(Hv −Hl)ũR

]
= −∇ · q̃′′′ (2)

Momentum balance equation

∂

∂t
(ρũ) +∇

[
ρũ⊗ ũ+ α(1− α)

(
ρvρl

ρ

)
ũR ⊗ ũR

]
= −∇P +∇ · τ̃ + ρg̃ (3)

where∇· denotes divergent and∇ gradient.

The following relations are used in the equations above:

Hl = Hl(P, T ) (4)

Hv = Hv(P, T ) (5)

ũ =
αρvũv + (1− α)ρlũl

ρ
(6)

ũR = ũv − ũl (7)

ρ = αρv + (1− α)ρl (8)

ρH = αρvHv + (1− α)ρlHl (9)

Here, the tilde indicates a vector.

4. THE MATHEMATICAL MODELLING

4.1 The spatial integration of the balance equations

We have integrated the equations using the divergence theorem (Reddy, 1993). We divided our plant in singular
components because the spatial integration considers the geometry of those components (Maliska, 1995). The one-
dimensional equations obtained after this integration are valid only locally, in the neighbourhood of the singularity points,
that indicate the presence of pumps or valves. Hence, the remaining equations correspond to the equations of the model
spatially integrated with the terms that count the effects of the singularity points.

The equations presented below are integrated in a control volume element for the components only with one inlet and
one outlet and discretized in space. The mass and energy equations use the concept of centred mesh (figure 1) and the
momentum balance equation uses the concept of staggered mesh (figure 2) to eliminate the instability existant on the cell
interfaces.

Figure 1. Component with one inlet and one outlet (centred mesh)

Mass balance equation

Vj
∂ρ

∂t
= Ws,i −Ws,j −Gs,j (10)

whereGs,j = Gs,j(Hj , Pj) is the term that counts leaks in the componentj.
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Energy balance equation

Qj = Vj

[
∂

∂t
(ρjHj)−

∂Pj

∂t

]
− Se,j + Ss,j −HjGs,j (11)

where:

Se,j =
{
We,jHi +HWe,i + THBe,i , paraWe,j ≥ 0
We,jHj +HWe,j , paraWe,j < 0 (12)

and

Ss,j =
{
Ws,jHj +HWs,j , paraWs,j ≥ 0
Ws,jHk +HWs,k + THBs,k , paraWs,j < 0 (13)

being:

HW = AuRα(1− α)
(
ρvρl

ρ

)
(Hv −Hl) (14)

the enthalpy due to the difference between the phases.
This division of the equation in two parts is due to the fact that we adopted one preferential flow direction. Therefore,

if there is a flow reversal, a second consideration about the energy equation has to be done.

Figure 2. Component with one inlet and one outlet (staggered mesh)

Momentum balance equation on the outlet

(Ls,j + Le,k)ρj
∂us,j

∂t
− 1

2

[
ρj(uv

j )2 + αj(1− αj)
(
ρv,jρl,j

ρj

)
(uR,j)

2

]
+

1
2

[
ρi(uv

k)2 + αk(1− αk)
(
ρv,kρl,k

ρk

)
(uR,k)2

]
+

1
2

[(us,j) |us,j | (ρk − ρj)]

−1
2
(uR,j) |uR,j |

[
αj(1− αj)

(
ρv,jρl,j

ρj

)
+ αk(1− αk)

(
ρv,kρl,k

ρk

)]
= Pj − Pk + ρjg(Yj − Yk) + FRWs,j + FLOCs,j + FVs,j + FBs,j (15)

where:

FRWs,j + FLOCs,j + FVs,j = −Cs,j

(
Ws,j |Ws,j |

ρs,j

)
(16)

and

FBs,j = ρjgHEADs,j (17)

sendo:

Cs,j =
[
CFWs,j

8(As,j)2
+
CPLs,j

8(As,j)2
+

CV ALs,j

2(AV ALVs,j)2

]
(18)

For the inlet the equation is quite similar. The reason for having an equation for the inlet and another for the outlet
is that the mass flow rate is calculated on a section (inlet or outlet) rather than in the volume, like the enthalpy and the
pressure.

For elements with more than one inlet and/or more than one outlet the procedure is similar, but since we only present
tests for one-inlet, one-outlet elements, they are not shown here.
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4.2 The finite element formulation in time

BeingA(ψ1, ..., ψnd) andB(ψ1, ..., ψnd) matrices of ordernd × nd andf(ψ1, ..., ψnd) a vector of<nd for each
t ∈ [tj , tj+1] fixed.

The initial condition problem in the interval[tj , tj+1] can be proposed as follows:

nd∑
m=1

[
d

dt
Al,m(ψ1, ..., ψnd) +Bl,m(ψ1, ..., ψnd)

]
= fl(ψ1, ..., ψnd) (19)

Fl(ψ
j
1(tj), ..., ψ

j
nd(tj)) = Fl(ψ

j−1
1 (tj), ..., ψ

j−1
nd (tj)) (20)

l = 1, ..., nd (21)

whereψj−1
l is the solution in the interval[tj−1, tj ], Al,m(·) is the component of orderl × m of A(·), Bl,m(·) is the

component of orderl ×m of B(·), fl(·) is the component of orderl of f(·) eψj
m ∈ H1(tj , tj+1),∀m and∀j.

The problem defined by (19-21) will be equivalent to the thermal hydraulic problem if, and only if, for a1 ≤ l ≤ nd
fixed, there is a cell so that the equation of orderl is associated to one of the following equations: mass balance, energy
balance, or momentum balance of an outlet of this cell.

Besides, with the kind of equation determined, we can explicit the componentsAl,m(·) andBl,m(·) of the matrices
A(·) eB(·) as well as the independent termfl(·), by direct correspondence between this balance equation and the equation
of order l, noticing thatψj

m(t) can only be a mass flow rate for any section of the plant or an enthalpy for a cell, or a
pressure for a cell. We should also notice that theAl,m(·) andBl,m(·) that do not have correspondents in the equation of
orderl will be considered as zero.

4.2.1 The Galerkin formulation of discontinous finite elements

The formulation of the discontinuous Galerkin method (Johnson, 1990) for the problem defined by (19-21) consists of

finding (ψh,j
1 , ..., ψh,j

l , ..., ψh,j
nd ) ∈ Pnd,̃k

[tj ,tj+1]
, satisfacting the following system of variational equations:

Fl(ψ
h,j
1 (tj), ..., ψ

h,j
nd (tj))− Fl(ψ

h,j
1 (tj−1), ..., ψ

h,j
nd (tj−1))

+
∫ tj+1

tj

[
nd∑

m=1

d

dt
Al,m(ψ1, ..., ψnd) +Bl,m(ψ1, ..., ψnd)

]
ηldt

=
∫ tj+1

tj

fl(ψ1, ..., ψnd)ηldt (22)

∀ηl ∈ P k(l)
[tj ,tj+1]

(23)

l = 1, ..., nd (24)

4.2.2 The choice of the discontinuous Galerkin method

Noticing that ifNH = NP = NW = 1 andkH = kP = kW = 0, implies thatHh,j+1, Ph,j+1 andWh,j+1 are

constant in the interval[tj , tj+1] and, therefore, the bases are:ηH
1 = ηP

1 = ηW
1 = 1, hence,∂ηH

1
∂ξ = ∂ηP

1
∂ξ = ∂ηW

1
∂ξ = 0,

∂ηH
1

∂ξ = ∂ηP
1

∂ξ = ∂ηW
1

∂ξ = 0, we can deduct easily from the equations (19-21) that the discontinous Galerkin method
degenerates into the backward Euler scheme.

Besides, the discontinuous Galerkin formulation allows by clear form that interpolations of different orders can be
used for the thermal hydraulic variables. This suggests the possibility of using it in transients with different sensibility for
each variable, allowing researches to establish what should be the adequate order to interpolate each variable and using
longers time intervals.

Also should be noticed the natural stability of the discontinuous Galerkin method for each order of interpolation of the
variables (Johnson, 1990). This is also a good indication for its use; when it is not the best option we can always go to the
backward Euler scheme.

5. TESTS AND RESULTS

Here we present the tests ran for two simple plants (horizontal and vertical). First we made a stabilty analysis of
the discontinuous Galerkin method for different time intervals. Next there are the results for the increasing in the heat
generation in the circuit.
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5.1 Horizontal circuit

In the first section of tests, we used a horizontal circuit of 3.66 m of length and 12 mm of diameter divided in fifteen
equal cells. The adopted boundary conditions were: enthalpy of 2000 kJ/kg at the inlet (cell no. 1), pressure of 15 MPa
at the inlet and of 14.998 MPa at the outlet (cell no. 15). The initial conditions are, pressure of 14.999 MPa at the interior
cells (cells 2 to 14) and mass flow rate of5.0 × 10−4 kg/s. The cell chosen for the tests was the cell no. 8, for being
located at the middle of the circuit. Such conditions were used due to the simulator’s limitations – it works only at the
water saturation region.

The first round of tests was carried out to evaluate the stability and the robustness of the discontinuous Galerkin method
with finite elements of orders 0 (backward Euler scheme) and 1. In this case there is no heat generation at the circuit, so
there are only results for the steady-state problem.

We have three different time intervals: 0.1 s, 0.01 s, and 0.001 s. With the initial instant being 0 s and the final being
10 s. So, for:

• time interval =0.1s→ 100 time steps;

• time interval =0.01s→ 1, 000 time steps;

• time interval =0.001s→ 10, 000 time steps.

Table 1. Finite element of order 0 – steady state (after 10 s).

Interval (s) Enthalpy (J/kg) Pressure (Pa) Mass flow rate (kg/s)
0.1 2000002.67227549 14990004.0479735 0.976734168614151
0.01 2000003.06005573 14990005.1367047 0.976762751448054
0.001 2000003.03227803 14990005.1364533 0.976763222694536

Table 2. Finite element of order 1 – steady state (after 10 s).

Interval (s) Enthalpy (J/kg) Pressure (Pa) Mass flow rate (kg/s)
0.1 2000003.36857604 14990005.1393078 0.976762970189406
0.01 2000003.06003282 14990005.1367614 0.976768474629325
0.001 2000003.03225950 14990005.1365102 0.976768971346970

We see here that even with an initial approach for the mass flow rate of5.0× 10−4 kg/s the flow becomes stable, and
that even the time interval nor the order of the polynomials change significantly the results. It shows that the method is
robust when there is no disturbings in the flow.

In the second round of tests a stability analysis with a heat generation of 1 kW during the steady state and later it was
added 10% of this power in the transient regime.

Table 3. Finite element of order 0 – transient state (after 10 s).

Interval (s) Enthalpy (J/kg) Pressure (Pa) Mass flow rate (kg/s)
0.1 1992505.27873945 14989917.2439270 1.14878002865093
0.01 1993087.20170807 14989925.4888350 1.13188301117167
0.001 1993140.64577445 14989926.3043637 1.13037030885089

Table 4. Finite element of order 1 – transient state (after 10 s).

Interval (s) Enthalpy (J/kg) Pressure (Pa) Mass flow rate (kg/s)
0.1 1992504.01940331 14989916.3138907 1.14881571015677
0.01 1993087.20199075 14989925.4888510 1.13188305141233
0.001 1993140.64577445 14989926.3043637 1.13037030885089

Here we see that there is no difference between the results when we look at both orders, but there is a difference a
little greater than 1% between the results obtained between the 0.1 s and 0.01 s intervals. Even so, the model still shows
the same robustness of the first test.



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

5.2 Vertical circuit

In the tests with the vertical circuit we adopted the same boundary and initial conditions. We analysed the method
stability and then the effect of the heat transient in the mass flow rate. Like in the other tests we present the results for the
cell no. 8. In this circuit the cell no. 1 (the inlet) is in the lower extreme and the cell no. 15 (the outlet) is in the upper
extreme.

In the first round of tests a stability analysis with a heat generation of 1 kW during the steady state and later it was
added 10% of this power in the transient regime.

Table 5. Finite element of order 0 – steady state (after 10 s).

Interval (s) Enthalpy (J/kg) Pressure (Pa) Mass flow rate (kg/s)
0.1 1991739.33297925 14989904.4894712 0.942668565030488
0.01 1992262.31942053 14989964.9230342 0.920604664288268
0.001 1992321.14168076 14989965.3750365 0.919240630830601

Table 6. Finite element of order 0 – transient state (after 10 s).

Interval (s) Enthalpy (J/kg) Pressure (Pa) Mass flow rate (kg/s)
0.1 1990951.90364536 14989951.5405235 0.952680307657673
0.01 1991625.20218273 14989959.9821329 0.935533871007745
0.001 1991687.81815348 14989960.4864341 0.934036412662301

Table 7. Finite element of order 1 – steady state (after 10 s).

Interval (s) Enthalpy (J/kg) Pressure (Pa) Mass flow rate (kg/s)
0.1 1991621.01740294 14989959.2477736 0.935726939788375
0.01 1992262.68953142 14989964.9358524 0.920642748383566
0.001 1992321.67680745 14989965.3722150 0.919303392829483

Table 8. Finite element of order 1 – transient state (after 10 s).

Interval (s) Enthalpy (J/kg) Pressure (Pa) Mass flow rate (kg/s)
0.1 1990944.67584793 14989954.1891226 0.952332536761330
0.01 1991625.20604844 14989959.9822699 0.935534245089586
0.001 1991687.82257871 14989960.4864101 0.934036899956186

As well as in the horizontal circuit, we see here that there is no difference between the results when we look at both
orders, but there is a difference a little greater than 1% between the results obtained between the 0.1 s and 0.01 s intervals.
Even so, the model provides stable solutions, prooving its robustness.

6. CONCLUSIONS

In this work, we presented a program that creates and simulates thermal hydraulic plants based upon the finite volumes
in space and upon the Galekin method of discontinuous finite elements in time, adopting the three-equation drift flux flow
model.

Despite the simulator’s limitations, it was possible to run a good plenty of tests for two different circuits. The results
show that for the specified pressure drop between the inlet and the outlet, independently if the circuit is horizontal or
vertical, the mass flow rate reached stable values even with such a small initial value. This result shows the robustness of
the Galerkin formulation of discontinuous time finite elements.

The results obtained do not present differences between the tests ran with the Galerkin formulation of order 0 and
order 1. That means it does not matter the degree of the polynomial adopted to make the interpolation, that is, when using
the order 0 we get the same result of the order 1 with a time saving in the execution of the program without significant
precision losses.

We can conclude from this is that the Lagrange polynomials may not be the best shape function to be used to simulate
that heat transient. This is a great advantage of the discontinuous Galerkin method: one can research what is the best
shape function to simulate a determined kind of transient. And we can change the order of the shape function for each
thermal hydraulic variable and then this method can capture a transient that is more sensitive for a determined variable
and less sensitive to the other ones.
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All of this show the great future the discontinuos Galerkin method has. When the order of the shape functions is zero
it is what we call the backward Euler scheme of finite differences, the method used by the famous simulators RELAP and
TRAC, well experimented by the scientific community. Besides, the discontinuous Galerkin method can make a thinner
sinthony inside the time interval, through the increasing of the order of the shape functions, what makes it to be target of
many upcoming studies.
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8. APPENDIX - LISTS OF SYMBOLS

Table 9. Symbols.

g gravity acceleration H enthalpy
q′′′ heat generation per unit volume HEAD pump head
t time L length
u velocity P pressure
A area Q heat generation

AV ALV area of flow trhough valve THB enthalpy flux due to pump
CFW loss coefficient by viscous friction V volume
CPL loss coefficient by singularity W mass flow rate
CV AL loss coefficient by valve Y height of the centre of the cell
FB head gain through pump α void fraction

FLOC head loss due to local losses (singularities) ρ specific mass
FRW head loss due to viscous friction τ shear stress
FV head loss due to valve

Table 10. Indices and the exponentv.

e inlet section s outlet section
i cell i (cell beforej) v vapour
j cell j (cell being evaluated) R relative (vapour - liquid)
k cell k (cell afterj) exponentv volume
l liquid
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