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Abstract. This paper discusses the inclusion of metrological aspects in the structural process simulation, having as a 
case study the analysis in viscoelastic materials. The research focus is the identification, quantification and 
propagation of the measurement of  uncertainty (involved in the problem modeling), through the computational model 
of structural simulation. The proposal methodology presents alternatives for feasibility in the use of the method of the 
Monte Carlo simulation in viscoelastic problems through the correspondence principle and Response Surface Method. 
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1. INTRODUCTION 

 
This work proposes to discuss the inclusion of metrological aspects in the structural simulation process, having 

as a case study the analysis of components in viscoelastic materials. The work focus is the uncertainty analysis, 
whose main objective is to present the methodology used to identify and quantify the propagation of the influence 
of measurement uncertainty (presented in the process of input parameters determination) in the results supplied by 
computational simulation models of structural problems in viscoelastic materials (figure 1). This methodology 
will help answer important questions to guarantee the reliability and efficiency of structural projects, such as: 

1. What is the influence of certain levels of uncertainty of an input parameter in the output of the 
simulation model? 

2. What level of uncertainty can be allowed in the measurements processes, used in the 
characterization of the input parameters of a simulation model, in order to obtain a determined 
uncertainty level in the model answer? 

3. Which main source of uncertainty should be minimized in order to obtain an acceptable level of 
uncertainty in the model answer inside of the structural component requirements? 

Uncertainty in 
the output of

simulation model

Environmental
conditions

Geometrical
parameters

Material
parameters

Loads

Simulation
model

 
Figure 1. Propagation of measurement uncertainties through the structural simulation model. 

The methodology proposed in the solution problem is based on four modules: 
I. Material modeling - the study and implementation of mathematical model algorithms for 

viscoelastic materials in the time domain, using classic and fractionary rheological models. 
II. Material characterization - the study and accomplishment of experimental creep tests for 

viscoelastic material characterization and the determination of material parameter uncertainty. 
III. Structural simulation - the study of finite element method for viscoelastic problems and 

correspondence principle method. 
IV. Analysis and propagation of uncertainties - the study of uncertainty propagation techniques and 



application of metrological concepts for identification, quantification and propagation of 
measurement uncertainties involved in the structural modeling in viscoelastic material. 

 
2. MATHEMATICAL MATERIAL MODELS FOR LINEARLY VISCOELASTIC RESPONSE 

The constitutive law for a linearly viscoelastic material can be represented through hereditary integrals, where 
the uni-axial relationship between stress and strain can be written as:  
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where ε - strain, σ - stress and J(t) is defined as creep compliance (Christensen, 1982). 
 For classic rheological models, the creep compliance J(t), is given by a sum of exponential functions well-
known as Prony series (Flugge,1978)  
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where τi times of relaxation, Ji material parameters and Jinf  creep compliance for t=∞. 
With the development of fractional calculus, Koeller (1984) developed a new rheological element, the "spring-

pot". The constitutive equation of this element possesses derivatives of fractional order, which mixed the behavior 
between an elastic and viscous material. This element essentially substitutes the dashpot in the rheological classic 
models. 

In agreement with Bagley (1986), the viscoelastic behavior of a great amount of polymeric materials can be 
represented with the use of a fractional model with only four parameters. The fractional model used in this work is 
the Fractional Zener model (Welch et al, 1999), where the creep compliance is given by the equation 
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where E0, E1 and τ material parameters, as well as the fractional order derivative α. The nucleus of this function is 
given by the Mittag-Leffler function, Eα(∗), which is defined by an infinite series (Enelund and Olson, 1999)  
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where Γ(∗) represents the Gamma function. The references (Gorenflo, 1997, Diethelm et al, 2000, Diethelm et al, 
2002) present algorithms for the implementation of this function. 

The finite element method (Zienkiewicks and Taylor, 1991) will be used in the simulation of structural 
problems through commercial software ANSYS (ANSYS, 2003). 

2.1. The classic and numerical correspondence principle 

The classic correspondence principle, CP, states that if a solution to a linear elasticity problem is known, the 
solution to the corresponding problem for a linearly viscoelastic material can be obtained by replacing each quantity 
which can depend on time by its Laplace transform multiplied by the transform variable (p or s), and the by 
transforming back to the time domain. There is the restriction that the interface between boundaries under prescribed 
load and boundaries under prescribed displacement may not change with time, although the loads and displacement 
can be time dependent (Findley, 1960). The case study, to be presented, it will illustrate the application of the 
correspondence principle to the problem of a viscoelastic cantilever  beam with constant load in its end. 

The use of the correspondence principle on the generalized Hooke’s law will be defined as numerical 
correspondence principle, NCP. In this method the stress and/or strain will be obtained through a numeric method 
(i.e. the finite element method), considering the material with purely elastic behavior. The main advantages of 
numeric correspondence principle is the possibility of solution problems by the CP where analytic elastic solution 
is not available. 

 
3. PVC VISCOELASTIC CHARACTERIZATION 

 
In this work the tensile creep test was used to characterize the behavior of polyvinyl chloride (PVC), 

being the objective of characterization test to supply data to determine the material parameters. 
 

3.1. The creep test 
 

The creep test consists of measuring the time dependent strain resulting from the application of a steady 
uniaxial stress. The norm ASTM D 2990-01 (ASTM, 2001) establishes the requirements and the necessary 
procedure for the accomplishment of the creep test in plastics. 
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In this work, the experimental apparatus used for accomplishment of the creep test is presented in the 
figure 2 . The experimental apparatus consists basically of a system to apply the load to the test body, a stove for 
temperature control and a measurement system for accompaniment of test body deformation. The test body 
deformation is measured through the use of EXCEL strain gage and HBM measuring amplifier system. 
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Figure 2. Experimental apparatus used in the creep test. 

3.2. The adjust of material parameters 

 With base in the deformation of specimen, measured through the creep test, determination of the creep 
compliance parameters is obtained through an adjustment of experimental points to the mathematical model of 
material behavior. A process of nonlinear optimization is used. The optimization process consists in the 
minimization of least-square function 
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where J(t) given values by mathematical model of creep compliance and Jm(t) the value of creep compliance 
obtained experimentally, i.e., Jm(t)=ε(t)/σ0 , where ε(t) is the measured deformation in the specimen and σ0 is the 
magnitude tension applied in the specimen. The illustration (3) presents the results of creep test bodies and fittings 
to the classic and fractional rheological models given by the equations (2) and (3). 
 
4. UNCERTAINTY ANALYSIS 

 
In the structural analysis, it becomes necessary to determine the related parameters with respect to the 

geometry component, the applied load, the material properties, and the contour conditions of the problem through 
of measurement processes. The main uncertainty sources associated with the measurement processes are: 
instrument resolution; inherited uncertainty; environmental factors like variations and thermal gradients; 
vibrations; influence operator and measurement procedure, etc.. 



 
Figure 3 Results of curve-fitting of experimental data to classic and fractionary material models. 

 
4.1. The method of Monte Carlo simulation  
 

A measurement/simulation model [17] is expressed by a functional relationship f:  

1 2( , ,..., ),ny f x x x=                                                                                                                                       (6) 
where y is a single (scalar) output quantity and x represents the N input quantities (x1,x2,…,xn). The method of 
uncertainty propagation used in this work the is the method of Monte Carlo simulation (MCS). The Monte Carlo 
simulation is a methodology which allows to make use of deterministic analysis in context with stochastic 
analysis. If all input model parameters (x1, x2,..., xn) are described by a probability density functions (PDF), an 
algorithm can be used to generate a input vector xj=[x1, x2,..., xn]T. Each element xi of this vector should be 
generated in agreement with its PDFs. Applying the generated vector  xj to the equation (6), the corresponding 
output yj is obtained. If this simulation process is repeated M times (M >> 1), the output is a vector [y1, y2, ..., yM]T 
that can be considered as a sample answer population. Through this sample answer population system, a PDF can 
be determined and describes the behavior of the answer system (ISO, 2004). 

 
4.2. Uncertainty analysis in the material characterization process 

 
The main uncertainty sources of creep test are related with the determination of specimen geometry, applied 

load, control of the environmental conditions (temperature, humidity and vibrations), material characteristics 
(material cracks, orthotropic material characteristic, aging effects, residual stress, etc.), test procedure, test 
apparatus limitations and curve-fitting process (figure 6). 

 
4.3. Uncertainty associated with fitted parameters 
 

The material parameters are obtained from a nonlinear curve-fitting process. The influence of measurement 
uncertainty deformation (using strain gages) is incorporated into the material parameters uncertainty. 

In agreement with references (Baker and Cox, 2004, Bevington, 1969), the uncertainty (covariance) matrix 
associated with fitted parameters is approximated by 

( ) 12 TC J Jσ
−

=                                                                                                                                             (7) 

where σ² the measured points variance and J Jacobian matrix evaluated in the solution x∗. The standard 
uncertainties associated with fitted parameters u(aj)=(C(j,j))1/2, i.e., the square roots of the diagonal elements of 
the uncertainty matrix C. If an estimate a priori of σ is not available, then the variance can be esteemed for  

f
n m

σ =
−

                                                                                                                                                  (8) 

where m is the number of adjusted parameters, f  represents the norm of the residue and n is the number of 
measured points. 
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Figure 4. The main uncertainty sources of characterization process. 

 The tables 1 and 2 present the values and uncertainty levels of adjusted parameters for Maxwell model with 
11 parameters and fractional Zener model, respectively. 
 

Table 1. Classic material parameters obtained by 
nonlinear curve-fitting. 

Table 2. Fractionary material parameters obtained by 
nonlinear curve-fitting.  

Parameters Mean 
Standard 
deviation 

(U68%) 

U68%/mean 
(%) Units 

J0 3,23E-10 3,61E-12 1,12E+00 1/GPa
J1 1,09E-11 2,10E-13 1,93E+00 1/GPa
J2 3,13E-11 4,83E-13 1,54E+00 1/GPa
J3 5,53E-11 5,83E-13 1,06E+00 1/GPa
J4 5,67E-11 4,37E-13 7,72E-01 1/GPa
J5 1,41E-10 4,83E-13 3,43E-01 1/GPa
τ1 4,27E+02 1,29E+01 3,02E+00 1/s 
τ2 4,96E+03 1,52E+02 3,07E+00 1/s 
τ3 5,04E+04 8,43E+02 1,67E+00 1/s 
τ4 5,00E+05 3,80E+03 7,61E-01 1/s 
τ5 2,00E+06 4,95E+03 2,48E-01 1/s 

 

Parameters Mean 
Standard 
deviation 

(U68%) 

U68%/mean 
(%) Units 

E0 3,33E+09 5,26E+06 1,58E-01 Pa 
E1 2,73E+08 2,07E+06 7,58E-01 Pa 
α 2,53E-01 9,45E-04 3,73E-01 Pa.sα 
τ 6,99E+10 1,14E+07 1,63E-02  

4.4. Uncertainty analysis in the interconversion process 

 The software ANSYS becomes necessary the interconversion of creep compliance and Poisson’s ratio (both 
obtained experimentally by creep test), in Bulk modulus 
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being Ginf, Kinf, Ki, Gi, and τi material parameters. 
 The parameters uncertainties of creep compliance and Poisson’s ratio, will be propagated through 

interconversion process to the parameters of bulk and shear modulus.  
 The uncertainty propagation through the interconversion process is accomplished using the method of 
Monte Carlo simulation. The interconversion process is repeated many times in order to compose the uncertainty 
of bulk and shear modulus. The table 3 show the values of bulk and shear modulus of PVC to 30 ºC obtained by 
interconvertion process. 
 
 
 
 
 
 
 



Table 3. Bulk and Shear parameter’s model obtained by interconversion process. 

Parameters mean 
Standard 
deviation 

(U68%) 

U68%/mean 
(%) Parameters mean 

Standar 
deviation 

(U68%) 

U68%/mean 
(%) 

G0 (GPa) 1,16.109 1,34.107 1,16 K3(GPa) 3,82.108 1,16.107 3,03 
G1 (GPa) 3,85.107 1,15.106 2,98 K4 (GPa) 3,35.108 9,63.106 2,88 
G2 (GPa) 9,85.107 2,53.106 2,57 K5 (GPa) 4,41.108 1,13.107 2,55 
G3 (GPa) 1,37.108 2,90.106 2,12 τ1 (1/s) 4,12.102 1,24.101 3,00 
G4 (GPa) 1,20.108 2,28.106 1,90 τ2 (1/s) 4,54.103 1,40.102 3,08 
G5 (GPa) 1,58.108 2,13.106 1,35 τ3 (1/s) 4,37.104 7,28.102 1,66 
K0 (GPa) 3,23.109 7,91.106 2,45 τ4 (1/s) 4,36.105 3,30.103 7,57 
K1 (GPa) 1,08.108 3,96.106 3,69 τ5 (1/s) 1,56.106 4,67.103 2,98 
K2 (GPa) 2,75.108 9,17.106 3,33     

4.5. Uncertainty propagation through simulation process 

 The method of Monte Carlo simulation was used to propagate the input parameters uncertainties through 
the simulation model. The finite element commercial software ANSYS possesses the "Probabilistic Design 
System" tool, which uses the MCS to propagate the input parameters uncertainty through the finite element model 
of component. There is a possibility of creating a metamodel (i.e., a "model of the model") to the problem by the 
response surface method (RSM), which allows an analysis by Monte Carlo simulation computationally more 
efficient. 
 The simulation through the finite element method is a nonlinear problem. Therefore, the analysis with high 
number of degree-of-freedom through MCS requests a high computational time because MCS needs to repeat the 
problem simulation several times. One of the contributions in this work is the alternatives development to make 
possible the uncertainty propagation of viscoelastic structural problems through MCS. The main proposed 
solutions for the problem are the use the response surface method (RSM), the analysis using the models 
supplied for the classic, and the numeric correspondence principle associated to MCS. The case study 
presented will demonstrate the proposal methodology. 

5. CASE STUDY: STRAIN ANALYSIS OF A VISCOELASTIC CANTILEVER BEAM 

 This case study is about of uncertainty analysis involved in the strain simulation for a certain point in the 
surface of viscoelastic cantilever beam subjects a constant load in its end (figure 5). The three-dimensional finite 
element model, used in the solution by PDS tool, is presented in the figure 6. 
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Figure 5. Viscoelastic cantilever beam. Figure 6. Finite element model of the cantilever beam. 

 
An experimental test was realized to comparing the experimental results with the value simulated using the 

correspondence principle and finite element method. The beam is subject to a constant load due to the mass 
applied in its end. Due the viscoelastic material behavior, the beam will be deformed continually. Four strain 
gages were used in the beam (two strain gauges in the tensile surface and two strain gauges in the compression 
surface). The figure 7 shows the experimental apparatus. The figure 8 presents the experimental and simulated 
results. 
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Figure 7. Apparatus used in the experimental test. Figure 8. Deformation in the viscoelastic cantilever beam 
obtained experimentally and numerically via correspondence 
principle and finite element method. 

5.1. Modeling aspects 

 The Monte Carlo simulation method, associated with the model supplied by the classic correspondence 
principle, requests the determination of the elastic analytic solution. The strain in a cantilever beam subjects the a 
load at the end is given by the equation 

( ) ( )2

6x L x
bh E

ε = −                                                                                                                                   (11) 

where L length of beam, x point of measured the deformation, E elastic modulus, b and h width and thickness of 
beam, respectively. For a step function load history, the solution of a viscoelastic problem by the classic 
correspondence principle is given for 
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5.2. Input parameters characterization 
 
5.2.1. Uncertainty associated with a determination of geometrical parameters 
 

This study needs to determine the length, width and thickness of the traverse section beam. The main 
uncertainty sources acting in the determination of the geometry of beam are: 

• Resolution of  measurement systems (measurement scale and micrometer); 
• Inherited uncertainty of calibrated measurement systems; 
• Repeatability of measurement results; 
• Uncertainty in determination of the PVC thermal coefficient, used for the uncertainty quantification 

due the material thermal dilation effects; 
• The own beam geometry; 

The combined uncertainty of measured geometry parameters on test body is computed as:  
2 2 2 2

Rec R cal Tu u u u u∆= + + +                                                                                                                         (13) 
where uc combined standard uncertainty, uR uncertainty due the instrument resolution, uRe uncertainty due the 
repeatability of measurement results, ucal inherited uncertainty of instrument calibration and u∆T the uncertainty 
due the temperature variation of stove. 
 The tables 4 and 5 present the main uncertainty sources and uncertainty budget for width and thickness 
obtained through the use of a DIGIMESS micrometer with resolution of 10 µm. It's presented in the table 6 the 
uncertainty budget of measurement beam length through the use of a measuring scale with resolution of 10 µm. 
 
 
 
 
 



Table 4. Uncertainty budget associated with the determination of the width. 
 

Symbol Uncertainty source Distribution Value Divider u68% veff
1 

R Resolution (m) Rectangular 1,00E-05 1/(2√3) 2,89E-06 ∞ 
Re Repeatibility (m) Normal 1,32E-04 1/√n 4,65E-05 16 
Cal Calibration erros (m) Rectangular 2,00E-06 1/√3 1,15E-06 ∞ 
dT Thermal dilatation (m) Rectangular 3,38E-05 1/√3 1,95E-05 ∞ 
uc Combined uncertainty (m) Normal   5,05E-05 134 

 

Table 5. Uncertainty budget associated with the determination of the thickness. 

Symbol Uncertainty source Distribution Value Divider u68% veff 
R Resolution (m) Rectangular 1,00E-05 1/(2√3) 2,89E-06 ∞ 
Re Repeatibility (m) Normal 2,39E-05 1/√n 5,80E-06 16 
Cal Calibration erros (m) Rectangular 2,00E-06 1/√3 1,15E-06 ∞ 
dT Thermal dilatation (m) Rectangular 1,27E-05 1/√3 7,34E-06 ∞ 
uc Combined uncertainty (m) Normal   9,86E-06 134 

 

Table 6. Uncertainty budget associated with the determination of the length. 

Symbol Uncertainty source Distribution Value Divider u68% veff 
R Resolution (m) Rectangular 1,00E-05 1/(2√3) 2,89E-06 ∞ 
Re Repeatibility (m) Normal 1,91E-04 1/√n 6,03E-05 9 
Cal Calibration erros (m) Rectangular 2,00E-06 1/√3 1,15E-06 ∞ 
dT Thermal dilatation (m) Rectangular 3,56E-04 1/√3 2,05E-04 ∞ 
uc Combined uncertainty (m) Normal   2,14E-04 1430 

 
5.2.2. Uncertainty associated with the applied load 
 

The load is applied through a deadweight. The main uncertainty sources in the applied load quantification  
are: 

• The misalignment in the load application; 
• Uncertainty associated with gravitational acceleration; 
• Resolution balance; 
• Repeatability of measurement results of applied mass ; 
• Inherited uncertainty of calibrated balance.  

The table (7) presents the uncertainty budget of the applied mass determination. The table (8) shows the input 
parameters uncertainty of the beam simulation model. 

 
Table 7. Uncertainty budget associed with the determination of the mass aplied the beam. 

 
Symbol Uncertainty source Distribution Value Divider u68% veff 

R Resolution (m) Rectangular 1,00E-03 1/(2√3) 2,89E-04 ∞ 
Re Repeatability (m) Normal 6,74E-04 1/√n 4,94E-05 10 
Cal Calibration errors (m) Rectangular 8,75E-04 1/√3 5,05E-04 ∞ 
uc Combined uncertainty (m) Normal   6,16E-04 844 

 
 
 
 
 
 
 
 
 

                                                           
1 veff is the effective degrees of freedom [17] 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

Table 8. Random input parameters for simulation model. 
 

Symbol Uncertainty source Distribution Mean U68% U68%/mean 
(%) 

m Mass applied (kg) Normal 8,75E-01 6,16E-04 7,04E-02 
L Length (m) Normal 3,39E-01 2,11E-04 6,24E-02 
b Width (m) Normal 3,21E-02 2,94E-05 9,18E-02 
h Tickness (m) Normal 1,20E-02 8,23E-06 6,86E-02 
θ Strain gauge misalignment (º) Rectangular 0,00E+00 5,77E-01 Inf 
ν Poisson’s ratio Rectangular 3,80E-01 1,10E-02 2,89E+00 
g Gravitational acceleration (m/s2) Rectangular 9,81E+00 5,00E-06 5,10E-05 

5.3. Uncertainty propagation through simulation model 

 The table 9 shows the results by method of Monte Carlo simulation using tree simulation model: (a) model 
supplied by the classic correspondence principle (PC+SMC); (b) model supplied by numeric correspondence principle 
(SMC+PCN); (c) model supplied by the Response Surface Method (RSM). The table (10) shows the results through the 
method of simulation of Monte Carlo by the fractionary material model using the model supplied  by PC and PCN. 
 
Table 9. Obtained random output parameter for a classic 

material model. 
 

Table 10. Obtained random output parameter for a 
fractionary material model. 

 
Method Mean (m) U68% (m) 

PC+SMC 1,17E-3 ±1,28E-5 
PCN+SMC 1,16E-3 ±1,27E-5 
RSM+SMC 1,16E-3 ±1,30E-5 

 
Method Mean (m) U68% (m) 

PC+SMC 1,179E-3 ±3.07E-6 
PCN+SMC 1,169E-3 ±3.76E-6 

5.4. Sensibility analysis 

The sensibility analysis was accomplished using the Spearman rank order correlation coefficients [11]. It is 
presented in the figure (11) the result for a classic and fractional material model using the classic correspondence 
principle associated to the MCS. The objective of the sensibility analysis is present the parameters that have a 
larger contribution in the uncertainty of output model. 

(a) (b) 
Figure 11. Spearman rank order correlation coefficients by solution obtained MCS associated the classic 

correspondence principle: (a) classic material model; (b) fractionary material model. 

6. CONCLUSIONS 

 The analysis and propagation of uncertainties are essential for an evaluation of the reliability output of 
simulation model. The results of uncertainty propagation by the method of Monte Carlo simulation associated at classic 
and numeric correspondence principle have demonstrated a great agreement among the results, making possible the use 
of MCS in the viscoelastic materials analysis. 
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