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Abstract. The use of dynamic observers based on Green’s functions was developed to be applied in multidimensional 
heat transfer inverse problems. It can be observed that to apply this technique three parameters must be specified: 
filter order, ripple and cut off  frequency  The cut off frequency and the chebyshev filter order are the tuning 
parameters of the inverse algorithm and must be specified depending on the noise level of the experimental data and 
the desired resolution. This work presents a new procedure based on optimization techniques to identify these tuning 
parameters. Simulated and experimental cases are investigated and the optimum configuration for the chebyshev filter 
is obtained for each case. 
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1. INTRODUCTION  

 
 The inverse problem can be found in a large area of science and engineering and can be applied in different ways 
(Beck and Blackwell, 1985). The main characteristic of this kind of problems is that the physical problem solution is 
obtained indirectly. For example, the determination of a surface temperature without directs access or even the 
diagnostic of diseases using computerized tomography. In both cases, the boundaries are unknown and inaccessible. 
Thus, these problems can be solved using information obtained from sensors located in accessible positions.  
 Inverse heat conduction problems require the use of experimental data to obtain the solution of a thermal problem. 
The problem can be then the estimation of thermal properties, the estimation of an unknown heat flux surface, the 
estimation of an internal heat source, or even the estimation of a surface temperature of an inaccessible wall.  
 Recently techniques based on filters such as the use of dynamic observers (Blum and Marquardt, 1997), have also 
been employed for the solution of the IHCP. Works employing observers (Blum and Marquardt, 1997), (Sousa et al., 
2006) have demonstrated its flexibility and efficiency to solve one-dimensional problems. Sousa (2006) presents a 
technique of dynamic observers based on Green’s functions that can be applied directly to solve multidimensional 
problems. This work proposes to enhance this technique using an optimization heuristic method. The method, called 
simulated annealing technique (Metropolis et al., 1953), is used to obtain the optimum tuning parameters of the inverse 
algorithm that means to establish the Chebyshev filter configuration. 
 
2. FUNDAMENTALS 
  The inverse problem solution technique of dynamic observers based on Green’s functions, Sousa (2006) can be 
divided in two distinct steps: i) the obtaining of the transfer function model GH; ii) the obtaining of the heat transfer 
functions GQ and GN and the building algorithm identification. The transfer function model, GH, is obtained from the 
equivalent dynamic systems theory and using Green’s functions. The GQ and GN are obtained by following the 
procedure presented by Blum and Marquardt (1997). As ever mentioned, the novelty presented here is the obtaining of 
tuning parameter that defines the Chebyshev filter by using an optimization technique instead of the Blum and 
Marquardt procedure. 

 
2.1. Dynamic Observers Based on Green’s Function applied to Inverse Problems. 

 
2.1.1. Original 3D problem 
 
 The 3D-transient thermal problem shown in Fig. 1 can be described by diffusion equation as  
 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 
 

 

Isolated surface 

Isolated surface 

c
bS1 

y 

x z 

a

q(t) 

 
 

Figure 1. 3D transient thermal model 
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In the region R (0 < x < a, 0 < y < b, 0 < z < c) and t> 0, subjected to the boundary conditions 
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and initial condition  
 
( ) 00 T,z,y,xT =    (1d) 

 
where S  is defined by ( )cz,ax ≤≤≤≤ 00  and Hx  and Hz  are the boundary of S1 where the heat flux is applied. 
 The solution of Eqs. (1) can be given in terms of Green’s function as in Beck et al. (1992) 
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and )t,z,y,x(G τ−  represents the Green function of the thermal problem given by Eq.(1). 
 The Green’s function is available for the homogeneous version associated to the problem defined by Eqs. (1). 
Although the analytical Green’s function is available and exists, Beck et al. (1992), it will not be used in this work. By 
the contrary, the solution of the problem defined by Eqs. (1) will be performed numerically.  
 Equation (2) reveals that an equivalent thermal model can be associated with a dynamic model. It means, a response 
of the input/output system can be associated to Eq. (2) in the Laplace domain as the convolution product (Özisik, 1993) 
 
( ) )(q)t,z,y,x(Gt,z,y,T H ττ ∗−=x     (4) 

 
 This dynamic system can be represented as shown in Fig. (2). Equation (4) can also be evaluated in the Laplace 
domain as a single product  
 
( ) )s(q)s,z,y,x(Gs,z,y,T H=x    (5) 
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Figure 2. Dynamic thermal model system 
 
 The heat transfer function )s,z,y,x(GH  can, then, be obtained through the auxiliary problem which is a 
homogenous version of the problem defined by Eq.(1) for the same region with a zero initial temperature and unit 
impulsive source located at the region of the original heating. It means, the auxiliary thermal problem can be described 
as  
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in the region R and t+> 0, subjected to the boundary condition 
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and the initial condition  
 

( ) 00 =++++ ,z,y,xT    (6d) 
 
 Similarly, the auxiliary thermal problem solution can be derived using Green function and the convolution 
properties as  
 

( ) 1),,,(,,,x ∗−= ++++++++++ τtzyxGtzyT H    (7) 
 
 Once the Laplace transform of 1 is  
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 If the dynamic system is linear, invariant, and physically invariable, the response function )s,z,y,x(GH  is the 
same, independently of the pairs input/output and can be obtained by  
 

( )s,z,y,Ts)s,z,y,x(GH x+=     (10) 
 
In order to complete the )s,z,y,x(Gh  identification, the )s,z,y,x(T +  must be obtained at a specific position ri = (xi, yi, 
zi).  
 A simple and efficient procedure is proposed here to obtain )s,r(T i

+ : if Eq.(9) represents a cross correlation 

function of the two functions of stationary random process s and ( )s,z,y,T x+ , then )s,z,y,x(GH  will be independent 
of the absolute time t and will depend only on the time separation ta.  
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 In this case, provided that the function )s,r(T i

+  can be fitted by a polynomials function in the sampled interval [0, 
ta] as  
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where ai are the polynomial coefficients. Then, taking the Laplace transform of Eq. (11) gives  
 

( ) ++++=+
4

4
3

3
2
21

62 s
a

s
a

s
a

s
as,rT i     (12) 

 
Thus, from Eq. (21) GH can be written as  
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 It can be observed that from the theory of partial fractions, if )s,r(G iH  is expressible in partial fractions as in 
Eq.(14) its inversion is readily obtained by using the Laplace transform table. Since, Eq. (14) does not present any pole 
for s>0 then its inversion is stable. This fact guarantees robustness to the inverse algorithm given by Eqs. (10) and (11). 
Another advantage of this procedure is that the same procedure can be used indistinctly by one, two or three-
dimensional models, provided the only active boundary condition is the unknown heat source. At this point, the GQ and 
GN functions need to be obtained in order to complete the inverse algorithm. 
 
2.1.2. Obtaining of the estimators GQ and GN 

 
 The thermal model can be represented by a dynamic system given by a block diagram shown in Fig. 3 (Blum and 
Marquardt, 1997): 
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Figure 3. Frequency-domain block diagram (Blum and Marquardt, 1997) 

 
 It can be observed from the block diagram that:  
 
i) The unknown heat flux q(s) is applied to the conductor (reference model), GH, and results in a measurement signal 
Y*M  corrupted by noise N, 
 

Nq̂GNTY HMM +=+=∗    (15) 

ii) The estimate value q̂  is computed from the input data *
MY . Thus, the estimator can be represented in a closed-loop 

transfer function of the feedback loop as  
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Eq. (16) characterizes the behavior of the solution algorithm. The signal and noise transfer function GQ and GN can, 
then, be found by combining Eqs.(15) and (16) as  
 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

N
GG

Gq
GG

GGq̂

NQ G
Hc

C

G
Hc

HC

+
+

+
=

11
    (17) 

 
Thus, from Eq. (17) GN can be written as  
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 It can also be observed in Eq. (17) that if the algorithm estimates the heat flux correctly, GQ is equal to unity, GQ = 
1, and the frequency w is within the pass band. In this case, the noise transfer function GN is equal to the inverse transfer 
function of the heat conductor (GH

-1). From Eq. (16) the resulting algorithm can then be given by  
 
( ) ( ) ( )sYsGsq̂ MN ×=     (19) 

 
 According to Blum and Marquardt (1997) the observer is essentially an on-line scheme. In this case, estimation of 
the heat flux at the current time step is based on current and past temperature measurements only. In this case, any on-
line estimator involves a phase shift or lag. To remove this lag Blum and Marquardt proposes a filtering procedure that 
can be resumed in the use of two discrete-time difference equations 
 

)ik(q̂a)ik(Yb)k(q̂
nn n

i
iM

n

i
i −−−= ∑∑

== 10
   (20) 

and  

)ik(q̂a)ik(qb)k(q̂
nn n

i
i

n

i
i −−−= ∑∑

== 10
   (21) 

 
In Eqs.(20) and (21) ai and bi are coefficients obtained using Eqs.(17) and (18). The transfer function GQ is chosen to 
have the behavior of type I Chebychev filter and its frequency response magnitude assume the form 
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The poles scheb,I… are computed using MATLAB® package software. Thus, the dynamic observer technique can then be 
implemented using Eqs.(20) and (21) and the unknown heat flux can be estimated once GH and Chebyshev filter 
(identification of GQ) are obtained.  
 Despite of its importance, the choice of Chebyshev filter configuration is normally done by using a tentative 
method. Next section presents a procedure to automate this choice by optimizing some filter tuning parameters.  

 
2.2. Optimization technique for filter configuration 
 

It can be mentioned that the Chebyshev filter presents the required behavior for the inverse technique (section 
2.1.2). One of the main characteristic of this filter is that the frequency response magnitude fall monotonically beyond 
the cutoff frequency. In addition, while the modulus of GQ is allowed to fluctuate within a certain tolerance around its 
ideal value of 1 up to the cutoff frequency – referred to as the “passband ripple” – the roll-off beyond the cutoff 
frequency is monotonic and maximally steep (Blum and Marquardt, 1997).  

In order to configure a Chebyshev filter three parameters must be chosen: the cut off frequency (ωc), the ripple, and 
the Chebyshev polynomials order (dp). While the ripple can be chosen based on the noise level of the measurements 
signals the cut off frequency and the polynomial order are parameters more general and its identification can be 
optimized.   

Simulated Annealing is derived from an analogy with the annealing process of material physics. In the process of 
annealing, the metal is heated up to a high temperature, causing the atoms to shake violently. Providing that the cooling 
is slow enough, the metal will eventually stabilize into an orderly structure. Otherwise, unstable atom structure is found. 
There is plenty of information on the current literature, so that in depth description of this technique is out of this work 
scope .  

Simulated Annealing can be performed in optimization by randomly perturbing the decision variable and keeping 
track of the best objective function value for each randomized set of variables. After many trials, the set that produced 
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the best objective function value is designed to be the center, over which perturbation will take place for the next 
temperature. The temperature, that in this technique is the standard deviation of the random number generator, is then 
reduced, and news trials performed.  

Since the parameter ωc and dp are the parameters to be estimated, a suitable objective function can, then, be defined 
as the least-square residuals, F, between the computed heat flux )(iq  and the real q̂ (i), it means  
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1
)(ˆ)(∑

=

−=
nt

i
iqiqF            (23) 

were j represents the index for the thermocouple position and i the index for measurement time. 
Let each configuration be defined by the set of atom positions where E represents the energy of the configuration 

and T is the temperature. In each step of the configuration, an atom is given a small random displacement and the 
resulting change, ∆E, in the energy of the system is computed. When the processes generating new states, this states is 
either accepted or rejected, according to the metropolis criterion (Metropolis et al., 1953): if ∆E ≤ 0, the displacement is 
accepted and this configuration is used as the starting point of the next step. If ∆E ≥ 0, the probability that the 
configuration is accepted is given by the following equation: 
 

( )TKE beEP −=∆ )(              (24) 
 
where Kb is the Boltzmann´s constant. The choice of the probability function given by Eq. (24) has the consequence that 
the system evolves, according to a Boltzmann’s distribution. The inverse algorithm can be summarized in 8 steps. 
 

1.    Obtain the thermal model and identification of GH. 
2.    Initially, guess the values of the cut off frequency (ωc) and Chebyshev polynomials degree (dp).    
3.    Formulate of transfer function of a Chebyshev low-pass filter GQ (s), Eq. (22). 
4.  Obtaining of GN by using Eq. (18) 
5.    Obtain of the heat flux by using Eq. (20) and (21). 
6.  Optimize of the objective function F, Eq. (23), with relation the design variables ωc and dp using the simulated 

annealing technique.  
7.    Return to step 3. 
8     Repeat the process is until the value of objective function be minimized ( ε  less than a small number) 
 
Figure 4 and 5 present, respectively, the inverse and simulated annealing algorithm schemes. 
 
 

 
                                                           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Inverse algorithm scheme  
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Figure 5. Simulated annealing algorithm scheme (Saramago et al., 1999) 
 

3. RESULTS AND DISCUSSION 
 
3.1. Three dimensional simulated problem optimization  
 
 The three-dimensional case described in Fig. (1) is analyzed in this section. Temperature distribution for the direct 
problem are generated using the solution of Eq. (1) considering a known heat flux evolution q(t). Random errors, jε , are 
then added to these temperatures. The temperatures with error are then used in the inverse algorithm to reconstruct the 
imposed heat flux. The parameter jε  assumes values of 0, ± 0.5°C (1.5% of the maximum temperature).  
 The simulated temperature are calculated from the following equation 
 

j)t,L(T)t,L(Y ε+= .    (23) 
 
 The case simulates a copper sample with dimensions 30x30x20mm, thermal conductivity of k=401 W/mK and 
thermal diffusivity of α= 117 10-6m2/s submitted a sinusoidal heat flux. Figure 6 presents simulated temperature sensor 
locations and Figures 7 present the simulated temperature at the opposite face to the heat fluxes.  

Different guess for values of ωc and dp are used in order to verify the simulated annealing convergence. Table 1 
shows these tests. It can be observed that SA converges to the minimum values independently of the initial guess. . 

A small variation in the cut off frequency values can also be observed. In this case the final value is assumed the 
average values from estimated frequencies. Figure 8 shows a comparison between the real and estimated heat flux input.   
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Figure 6. 3D thermal model test with simulated temperature sensor locations. 
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Figure 7. Simulated temperature at the sensor position with jδ =± 0.5°C 

 
Table1. Optimum values of tuning parameters obtained by using simulated annealing 

 
Initial guess Optimum  values (Simulated annealing) 

ωC p.d ωC p.d. 

0.1 6 0.35693 4 

0.5 7 0.35721 4 

1.2 3 0.35663 4 

3 5 0.28958 4 

4.5 7 0.28992 4 
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Figure 8. Imposed and estimated heat flux 
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3.2. Experimental three dimensional problem optimization 
 

 An experimental test was carried out in order to analyze the algorithm efficiency. Fig. 9 a shows the apparatus. An 
AISI304 stainless steel samples with dimensions of 127 x 127x47 mm is used in this test. The sample initially in 
thermal equilibrium at T0 is then submitted to a unidirectional and uniform heat flux. The heat flux is supplied by a 
318 Ω electrical resistance heater, covered with silicone rubber, and this heat flux is acquired by a transducer both with 
lateral dimensions of 100 x 100 mm. The temperatures are measured using surface thermocouples (type k). The signals 
of heat flux and temperatures are acquired by a data acquisition system HP Series 75000 with voltmeter E1326B 
controlled by a computer. One thermocouple was brazed on the bottom surface as shown in Fig. 9 b. Figures 10 a and b 
shows the experimental results: imposed heat flux and temperature evolution measured at thermocouple position.  
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Using experimental temperature, Fig 10 b, and a Chebyshev filter initial configuration the optimization problem is 
solved. Table 2 shows initial guess the best values computed of the parameters using simulated annealing. The optimum 
filter is configured using cut off frequencies and Chebyshev’s polynomial degrees average values. The IHCP is solved 
using the experimental temperature and the optimum Chebyshev filter configuration. Figure 11a shows the heat flux 
estimated in this work and presents a comparison with the result computed by Sousa (2006). In the Sousa’s work, the 
Chebyshev filter has been configured by a tentative method without the optimization technique. Figure 11 b presents the 
absolute error between the imposed and estimated heat flux imposed using results from this work and from the Sousa’s 
work.  Although the results seems to be a similar behavior the technical proposed here presents the great advantage of  
obtaining of optimal configuration minimizing the time costs and the user strong dependence.  

 
Table 2. Optimum values of tuning parameters obtained using simulated annealing 

 
Initial guess Optimum  values (Simulated annealing) 

ωC pd ωC pd 

0.5 8 0.9974 13 

0.1 6 0.8218 12 

1.2 10 1.0939 13 

1 3 08995 12 

0.1 2 0.8795 12 

1 14 1.0743 14 
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4. CONCLUSION 

 
 This work has proposed a new procedure to configure the Chebyshev filter used in the inverse technique called 

dynamic observers based on Green’s functions, early presented by Sousa (2006). The basic idea here is to minimize the 
great user dependence that is present in the dynamic observers technique. This work has show that the determination of 
tuning parameter like the cut off frequency (ωc) and Chebyshev polynomials degree (dp) can be the way to obtain the 
optimum configuration with a low time cost and using an automatic process.  

The efficiency of the optimization process can be observed when comparing with the estimated and experimental 
imposed heat flux heat flux values obtaining estimations error less than 2%. It also can be observed that although a 
direct comparison with the Sousa´s work  do not present estimation results advantage the user dependence was greatly 
reduced.   
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