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Abstract. Realistic problems are usually characterized by the presence of constraints and several conflicting objectives
to be taken into account simultaneously. The solution to these problems, differently from single objective optimization,
consists in obtaining non-dominated solutions thus forming the so-called Curve of Pareto or Pareto Optimal Front. Two
approaches exist for obtaining the Curve of Pareto: the Deterministic approach that makes use of the Variational Calculus
and the Non-Deterministic one that it is based on the process of natural selection, i.e., in the genetics of the populations
or in purely structural methodologies. The use of the Non-Deterministic approach is getting increasing attention in the
last decade, mainly due to the fact that they do not use derivatives and they can be easily implemented. The algorithm
known as Differential Evolution (DE), which is considered as a structural approach, has shown to be a viable alternative
for handling realistic problems. This work is dedicated to the extension of DE for cases in which multiple objectives are
considered. For this purpose, two operators are used to obtain the optimal solutions, namely the ranking of the Pareto-
optimal solutions and the exploration of neighborhood potential solutions. The algorithm was tested in classic problems
found in the literature. The obtained results have shown promising results as compared with other evolutionary strategies
such as the one based on genetic algorithms.
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1. INTRODUCTION

Most real-world problems involve the simultaneous optimization of two or more (often conflicting) objectives. The
solution of such problems (called multi-criteria or multi-objective optimization problem - MOOP) is different from that
of a single-objective optimization problem. The main difference is that multi-objective optimization problems normally
have not one but a set of solutions which are all equally good (Stadler, 1984).

The development of specific methodologies for the treatment of multiple objectives allows the formulation of the
optimization problem such that various objectives can be taken into account simultaneously. As a number of optimal
solutions are found, it is possible to explore these solutions according to the practical application studied (Deb, 2001).

There are several methods available in the literature for solving MOOP (Deb, 2001). These methods follow a
preference-based approach, in which a relative preference vector is used to scalarize multiple objectives. Since classi-
cal searching and optimization methods use a point-by-point approach, at which the solution is successively modified, the
outcome of this classical optimization method is a single optimized solution. However, Evolutionary Algorithms (EA)
can find multiple optimal solutions in one single simulation run due to their population-based search approach. Thus, EA
are ideally suited for multi-objective optimization problems. A detailed account of multi-objective optimization using
EA and some of the applications using genetic algorithms can be widely found in the literature (Zitzler and Thiele, 1999;
Knowles and Corne, 2000; Deb, 2001).

The main goal of this paper is to introduce a systematic methodology for the solution of multi-objective optimization
problems by using the Differential Evolution Algorithm. This work is presented as follows. Section 2 shows the basic
concepts on Multi-Objective Optimization, emphasizing Differential Evolution. In Section 3 and Section 4 the proposed
methodology is introduced and some case studies are presented. Finally, the conclusions are outlined in Section 5.

2. MULTI-OBJECTIVE OPTIMIZATION

When dealing with MOOP, the notion of optimality needs to be extended. The most common one in the current
literature is that originally proposed by Edgeworth (Edgeworth, 1881) and later generalized by Pareto (Pareto, 1896). This
notion is called Edgeworth-Pareto optimality, or simply Pareto optimality, and refers to finding good tradeoffs among all
the objectives. This definition leads us to find a set of solutions that is called the Pareto optimal set, whose corresponding
elements are called nondominated or noninferior.

The concept of optimality in single objective is not directly applicable in MOOPS. For this reason a classification of
the solutions is introduced in terms of Pareto optimality, according to the following definitions (Deb, 2001):

Definition 1 - The Multi-objective Optimization Problem (MOOP) can be defined as:

Minimize/Mazimize y = f(x) = (fi(z), f2(x), ..., frn(2)) m=1,...M (1)
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z = (x1,79,2,) € X n=1,..,N 3)

where z is the vector of decision (or design) variables, y is the vector of objective functions and X is denoted as the
decision (or design) space. The constraints g(x)>0 determine the feasible region.

Definition 2 - Pareto Dominance: For any two decision vectors u and v, u is said to dominate v, if u is no worse than
v in all objectives and u is strictly better than v in at least one objective.

Definition 3 - Pareto Optimality: When the set P is the entire search space, or P = S, the resulting non-dominated set
P’ is called the Pareto-optimal set. Like global and local optimal solutions in the case of single-objective optimization,
there could be global and local Pareto-optimal sets in multi-objective optimization.

Definition 4 - Non-dominated Set: Among a set of solutions P, the non-dominated set of solutions P’ are those that
are not dominated by any member of the set P.

2.1 Multiple-Objective Evolutionary Algorithms (MOEAs)

Multiple-Objective Evolutionary Algorithms (MOEAs) is the term employed in the evolutionary multi-criteria opti-
mization field to refer to as a group of evolutionary algorithms formulated to deal with MOOP. This group of algorithms
conjugates the basic concepts of dominance described in the later section with the general characteristics of evolutionary
algorithms. MOEAS are able to deal with non-continuous, non-convex and/or non-linear spaces, as well as problems
whose objective functions are not explicitly known (Deb, 2001).

Since the first MOEA (VEGA (Schaffer, 1985)), the development of MOEAS has successfully evolved, producing
better and more efficient algorithms. The existing MOEAS are classified in two groups (Zitzler and Thiele, 1999; Deb,
2001), according to its characteristics and efficiency. On the one hand there is a first group known as first-generation,
which includes all the early MOEAS (Weighted Sum, VEGA (Schaffer, 1985), NPGA (Horn and Nafpliotis, 1993),
NSGA (Srinivas and Deb, 1994). On the other hand there is a second group named second-generation MOEAS, which
comprises very efficient optimizers like SPEA (Zitzler and Thiele, 1999)/SPEA2 (Zitzler et al., 2001) and NSGA-II
(Deb et al., 2002), among others. Basically, the main features that distinguish second generation MOEAS from the
first-generation group are:

e Mechanism of adaptation assignment in terms of dominance: between one non-dominated solution and another
dominated, the algorithm will favor the nondominated one. Moreover, when both solutions are equivalent in dom-
inance, the one located in a less crowded area will be favored. Finally, the extreme points, (i.e. the solutions that
have the best value in one particular objective) of the non-dominated population are preserved and their adaptation
is better than any other non-dominated point, to allow maximum front expansion;

e [ncorporation of elitism: the elitism is commonly implemented using a secondary population of nondominated
solutions previously stored. When performing recombination (selection-crossover-mutation), parents are taken
from this archive in order to produce the offspring.

2.2 Multi-Objective Differential Evolution

Differential Evolution (DE) (Price and Storn, 1997) is an improved version of the Goldberg’s Genetic Algorithm (GA)
(Goldberg, 1989) for faster optimization. Unlike simple GA that uses binary coding for representing problem parameters,
DE is a simple yet powerful population based, direct search algorithm for globally optimizing functions with real valued
parameters. Among the DES advantages are its simple structure, easiness of use, speed and robustness (Babu and Gaurav,
2000; Babu et al., 2001; Babu et al., 2005; Price et al., 2005). Price and Storn (1997) gave the working principle of DE
with single strategy. The crucial idea behind DE is a scheme for generating trial parameter vectors. Basically, DE adds
the weighted difference between two population vectors to a third vector. The key parameters of control in DE are: NV
the population size, p. the crossover constant, and F' the weight applied to random differential (scaling factor). Price and
Storn (1997) have given some simple rules for choosing key parameters of DE for any given application. Normally, N
should be about 5 to 10 times the dimension (number of parameters in a vector) of the problem. As for F), it lies in the
range 0.4 to 1.0. Initially /' = 0.5 can be tried then F" and/or [V is increased if the population converges prematurely.

DE has been successfully applied in various fields. Some of the successful applications of DE include: digital filter
design (Storn, 1995), batch fermentation process (Chiou and Wang, 1999), estimation of heat transfer parameters in trickle
bed reactor (Babu and Sastry, 1999), synthesis and optimization of heat integrated distillation system (Babu and Singh,
2000), optimization of an alkylation reaction (Babu and Gaurav, 2000), optimization of thermal cracker operation (Babu
and Angira, 2001), solution of multi-objective optimal control problems with index fluctuation applied to determine the
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switching times (events) and time of operation of the fermentation process (Lobato et al.; 2007), and other applications
(Price et al., 2005).

Recently, several attempts to extend the DE to solve multi-objective problems can be found in the literature. The most
representative of them are briefly described below:

e PDE (Abbass, 2002): It handles only one (main) population. Reproduction is undertaken only among nondomi-
nated solutions, and offspring are placed into the population if they dominate the main parent. A distance metric
relationship is used to maintain diversity;

e PDEA (Madavan, 2002): It combines DE with key elements from the NSGA-II (Deb et al., 2002) such as its
nondominated sorting and ranking selection procedure;

e MODE (Xue et al., 2003): It uses a variant of the original DE, in which the best individual is adopted to create
the offspring. Also, the authors adopt Pareto ranking and crowding distance in order to produce and maintain
well-distributed solutions;

o VEDE (Parsopoulos et al., 2004): It is a parallel, multi-population DE approach, which is based on the Vector
Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985);

e NSDE (Iorio and Li , 2004): It is a simple modification to the NSGA-II (Deb et al., 2002) where the real-coded
crossover and mutation operators of the NSGA-II are replaced with the DE scheme.

e DEMO (Robic and Filipic, 2005): It combines the advantages of DE with the mechanisms of Pareto-based ranking
and crowding distances sorting. In DEMO, the newly created candidates immediately take part in the creation of
the subsequent candidates.

e MODE (Babu et al., 2005): algorithm based on DE and in the concept of Pareto. The authors applied the proposed
algorithm to optimize industrial adiabatic styrene reactor considering productivity, selectivity and yield as the main
objectives.

3. METHODOLOGY

The proposed algorithm in this work for MOOP using DE has the following structure: an initial population of size
N is randomly generated. All dominated solutions are removed from the population through the operator Fast Non-
Dominated Sorting (Deb, 2001). In this way, the population is sorted into non-dominated fronts F}; (sets of vectors that
are non-dominated with respect to each other). This procedure is repeated until each vector is member of a front. Three
parents are selected at random in the population. A child is generated from the three parents (this process continues until
N children are generated). Starting from population P; of size 2N, neighbors are generated each one of the individuals of
the population in the following way (Hu et al, 2006):

X(z) = [z — Dk(9)/2,x + Di(9)/2] €y

where
k
Di(g) = U ~ L] 5)

Dx(g) is a vector in R™ and a function of the generation counter g. R is the number of pseudo fronts defined by the
user and the initial maximum neighborhood size in a population is D g (0)=[U-L], where L and U represent the lower and
upper bounds of the variables. The pre-defined number of individuals in each pseudo front is given by (Hu et al, 20006):

NE = TNE_1 k=2,..,.R (6)

where ny, is the number of individuals in the k-th front and r (<1) is the reduction rate. For a given population with NV
individuals, nj, can be calculated as

1—r ,_
" (7

nk:N

According to Hu ef al. (2006), if » < 1, the number of individuals in the first pseudo front is the highest and each
pseudo front has an exponentially reducing number of solutions, this emphasizing a local search. On the contrary, a
greater r results in more solutions in the last pseudo front and hence emphasizes the global search.

This way, the neighbors generated are classified according to the dominance criterion and only the neighbors non-
dominated (FP>) will be put together with P; to form Ps. The population P; is then classified according to the dominance
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criterion. If the number of individuals of the population Ps is larger than a number defined by the user, it is truncated
according to the criterion the Crowding Distance (Deb, 2001). The Crowding Distance describes the density of solutions
surrounding a vector. To compute the Crowding Distance for a set of population members the vectors are sorted according
to their objective function value for each Objective Function. To the vectors with the smallest or largest values an infinite
Crowding Distance (or an arbitrarily large number for practical purposes) are assigned. For all other vectors the Crowding
Distance is calculated according to:

j=0
dist,, = 3 Siiwr = fiio1 .
m—1

|fj,maz - fj,min‘

where f; corresponds to the j-th objective function and m equals the number of Objective Functions.

In this work, the treatment of constraints is made through of the Static Penalization Method (Vanderplaats, 1999).
In the previous mentioned reference, the author affirms that the difficulty in the choice of the parameters constitutes the
main drawback in this method, because no general rule can be applied to determine these parameters. To overcome
this disadvantage, Castro (2001) proposed an approach that consists of the attribution of limit values to each objective
to play the role of penalization parameters. According to this author, it is guaranteed that any nondominated solution
dominates any solution that violates at least one constraint. In the same way, any solution that violates one constraint will
dominate any solution that presents two constraint violations, and so on. This way, layers of solutions are obtained, and
consequently the number of constraint violations corresponds to the rank of the solution. For a constrained problem the
vector containing the objective functions to be accounted for is given by:

f(l') = f(l') + T'pNyiol (9)

where f(x) it is the vector of objective functions, 7, it is the vector of penalty parameters that depends on the type of
problem considered, and n,,,; is the number of violated constraints.

4. ILLUSTRATIVE EXAMPLES
In this section two cases to demonstrate the efficiency of the proposed methodology are studied.
4.1 Beam with Section I

The objective of this problem is the determination of the curve of Pareto for the multi-objective optimization of the
beam with section I, as presented in Fig. 1 (Castro, 2001):

-

Figure 1. Beam with section I.

The properties of the beam and the values of the loads are (Castro, 2001):

e Young Modulus (F) = 2 x 10* kN/cm?;

e Yielding stress of the beam (o) = 16 kN/cm?;

e Vertical load (P) and horizontal load (@), applied in the mid point of the beam: 600 KN and 50 kN, respectively.
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The design variables, x1, T2, 3 and x4, are the dimensions of the beam (given in centimeters), whose magnitudes
should not violate the following constraints: 10 < z; < 80, 10 < x5 < 50,0.9 < 23 <5e0.9 < x4 < 5. Besides, the
problem presents the following design constraint:

My = Mg

Y, L - 10

Wy T Wy = ° (10)
where M,, (30000 kN cm) and M, (25000 kN c¢m) are the maximum moments in the directions Y and Z; Wy and Wy, are
the resistance modules of the section in the directions Y and Z, and o it is the stress limits established. The shear modules
are calculated by the following expressions:

r3(w1 — 214)3 + 22024 (423 + 331 (21 — 224))
6(E1

Wy = (1)

-2 3+ 2x403
Wy — (z1 3646)53 + 2w473 (12)
2

The objectives of this problem are the area of the cross section (in cm?) and the maximum static displacement (in cm),
which are both to be minimized, according, respectively, to equation 13:

min fi = 2xexy + x3(x1 — 224)
PL? (13)
48F1

where the moment of inertia I is calculated by equation (14):

min fo =

w3(x1 — 214)3 + 22074 (422 + 311 (21 — 214))

T (14)

I =

The parameters used by PMOGA and by MODE are presented in Tab. 1.

Table 1. Parameters used to solve the I-beam problem.

Parameter | PMOGA | MODE
Ngen 500 50
N 50 30
Pe 0.85 0.85
Pm 0.05 -
F - 0.50
R - 10
r - 0.90
Tp, 1000 1000
Tps 10 10

The initial population and the solution obtained by MODE, compared with those obtained by PMOGA, are presented
in Fig. 2 and in Fig. 3, respectively.
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Figure 2. Initial population for the I-beam problem.
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Figure 3. Results obtained for the I-beam problem.

4.2 Welded Beam

The problem consists of a beam submitted to a force F' applied to one of its ends that is to be welded to another
structural component satisfying the conditions of stability and the design limitations. The four design variables, thickness
of the weld (h), length of the weld (7), width of the beam () and thickness of the beam (b), they are suitable in the Fig. 4
(Castro, 2001).

The two conflicting objective functions to be minimized are the cost of the beam and the displacement of the free end
of the beam:

min f; = 1.10471h%] + 0.04811tb(14 + 1)
2.1952 (15)

t3b

subject to the following constraints:

min fo =

T — Tmax S 0 (16)

0 — Omazx S O (17)
F—-P.<0 (18)
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Figure 4. Welded beam.

2.1952
tgb — Umaz S 0 (19)
h—b<0 (20)

for 0.125 < h, b < 5,1 > 0.1,¢ < 10.

The first two constraints guarantee that the shear stress and the normal stress developed along the support of the beam
are respectively smaller than the permissible shear stress (7,4,) and normal stress (0,,,q,) Of the material. The third
constraint guarantees that the resistant effort (along the direction of ¢) of the beam end is larger than the applied load F'.
The fourth constraint is a maximum limit (w,,4, ) for the displacement in the end of the beam. Finally, the fifth constraint
guarantees that the thickness of the beam is not smaller than the thickness of the weld.

The stress and the terms of the equations (16-18) are given by:

lTlTQ
T= TR+ T+ 21
’¢1 2 02512+ (h+1)?) @b

6000
_ 22
71 \@hl (22)
~6000(14 + 0.50)4/0.25(% + (h + t)?) 23)

© 2(0.707hI(E +0.25(h + 1)2))

504000

= 24
20 (24)
P, = 64746.022(1 — 0.02823461)tb* (25)

The adopted data for this problem are the following (Castro, 2001): F' = 6000 1b, 7,4, = 13600 psi, £ = 30 X 106 psi,
Omaz = 30000 psi, G =12 x 106 psi, Umqe = 0,25 in and L = 14 in.
The parameters used by PMOGA and by MODE are presented in Tab. 2.

Table 2. Parameters used to solve the problem of the welded beam.

Parameter | PMOGA | MODE
Ngen 500 50
N 200 100
Pe 0.85 0.85
Pm 0.05 -
F - 0.50
R - 10
r - 0.90
Tpy 100 100
T'pg 0.01 0.01

The initial population and the solution obtained by MODE are presented in Fig. 5 and in Fig. 6, respectively.
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Figure 5. Initial population for the problem of the welded beam.
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Figure 6. Results obtained for the problem of the welded beam.

5. DISCUSSIONS AND CONCLUSIONS

In this paper, a new differential evolution approach is presented for dealing with multi-objective optimization prob-
lems. This methodology consists in the extension of the Algorithm of Differential Evolution to problems with multiple
objectives, through the incorporation of two operators to the original algorithm, namely the mechanisms of rank ordering
and the exploration of the neighborhood potential solution candidates.

The proposed algorithm is applied to two classical problems of engineering. In the resolution of the two cases stud-
ies, the parameters used by MODE led to good results as compared to those found in the literature, however with a
smaller number of individuals in the population and a smaller number of generations. The computational time for the
two applications studied was about 30 seconds for the first case and 160 seconds for second case, using a PENTIUM IV
microcomputer with 3.2 GHz and 2 GB RAM.

Finally, the results show that the proposed algorithm represents an interesting alternative for the treatment of optimiza-
tion problems with conflicting objectives.
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