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Abstract. Structural optimization has shown to be a very effective procedure in vibration control. In this paper, 

optimization methods for passive vibration attenuation are implemented and investigated by two different applications. 

The first application presents results for the case of structures made of two different solid materials which are 

optimized to maximize the separation of two adjacent eigenfrequencies. In the second application, we investigate the 

procedure of minimizing the frequency response displacement in a frequency range of interest and proposed a modified 

methodology to get a wider attenuation region in that range. A numerical method combining finite element analysis 

(FEA) and optimization techniques is used. The assessment of adding proportional damping to an optimized undamped 

structure is discussed with respect to the frequency response. Some results are presented to illustrate the potential of 

these applications. 
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1. INTRODUCTION  

 
In mechanical component design, the use of dissipative mechanisms and active control is usually expensive and 

should be avoided when passive solutions are feasible. Passive vibration control is achieved by adjusting adequately the 
stiffness, damping and mass distributions and has the main advantage and limitation in its simplicity. In some cases, 
finding an optimal distribution of stiffness, damping and mass requires numerical methods which engineers and 
scientific researchers are still reviewing and trying to improve (see, e.g., Olhoff and Parbery, 1984, Mead, 1996, 
Sigmund and Jensen, 2003, Du and Olhoff, 2005, Hussein el al, 2006, Silva et al, 2007a). 

The present work is motivated by our need to apply existing finite element tools to improve passive attenuation of 
vibrations in industrial applications. It is our purpose to achieve considerable vibration attenuation firstly without 
considering damping effects. At the end, the effect of damping on such optimized structures is then analyzed. When 
damping is considered, components subjected to alternated strains dissipate energy. In the literature, there are 
descriptions of several ways of including the damping effects (see, e.g., Nashif et al, 1985) in the structural analysis, as 
well as some methodologies to optimize structures for vibration reduction using damping materials (see, e.g., 
Eschenauer et al, 1993).  

Techniques to obtain reduction of vibration depend on how far (or near) from an eigenfrequency is the specific 
structure being excited. Near the resonance peaks the damping effect is more pronounced, but it can be a choice when 
shift of eigenfrequencies is no more an alternative. Far away of a resonance peak, the decrease in amplitudes can be 
achieved by shifting eigenfrequencies as a consequence of changes in mass and stiffness distributions. It is also of 
interest here to verify how the behavior of an optimized structure without damping considerations is affected when a 
proportional damping is added.  

Structural optimization techniques use the obtained results from structural finite element analysis (FEA) to design 
optimized structures for a specific objective and constraints. Two different objective functions are considered of interest 
here, specifically: i) the difference between two adjacent eigenfrequencies, to be maximized; and ii) the sum of nodal 
displacements at a certain point of the structure, to be minimized for a discrete number of frequencies of interest. It can 
be seen as related with the minimization of resonance responses in a given frequency interval. 

For simplicity, the models presented here were limited to the elastic bar (i.e., link or rod elements) and to Euler-
Bernoulli beams, but extensions to shells and solid models are also applicable as well.  

The numerical implementation technique used in present work combines commercial code ANSYS for finite 
element analysis with optimization algorithms running at MatLab environment. 

Tests done validated that systematic separation of two adjacent eigenfrequencies can be achieved by these methods.  
For longitudinal vibrations, a topology optimization technique (see Diaz and Kikuchi, 1992, Ma et al, 1995, Min et 

al, 1999, Pedersen, 2000, Allaire et al, 2001, Jog, 2002, Tcherniak, 2002 and Jensen, 2003) can be formulated to allow 
a distribution of two materials where a size optimization technique is not applicable. This formulation follows the 
proposed by Pedersen and Jensen, 2006. 

For transversal vibrations, we can minimize directly the peaks of displacement (resonances) in the frequency 
response range of interest as an alternative way to get attenuation. When no damping effects (or little damping) are 



taken into account, the minimization of displacement peaks within a frequency range of interest can present some 
difficulties related to the meaning of the numerical peak value. 

We found that, for optimization purposes, the peak location seems to be more meaningful than numerical peak 
values and this fact is used here. We notice that problems of separation of eigenfrequencies and of minimization of peak 
displacement at frequency response are not independent. Indeed, one way of minimizing displacement peaks for a given 
frequency or frequency range is to increase the separation of the two adjacent eigenfrequencies.  

Motivated by these observations on the minimization problem of the maximum displacement at a certain point of the 
structure we then pursue an alternative optimization methodology. It is hereafter called the modified algorithm to 
contrast with the original algorithm. As the original formulation tends to move both peaks to the right, it would be 
desirable to investigate if it is possible to move right peak rightwards and left peak leftwards. 

The idea of this modified algorithm yields surprisingly good results inside the region of interest and better than those 
obtained with the original algorithm. The sensitivities were changed in the sign to decrease the lower frequencies within 
the range of interest and kept the same for the ones that increase the higher frequencies inside the mentioned frequency 
interval. Current work is being undertaken to develop a new formulation that considers naturally the presented idea. 
 
2. MODEL FOR STRUCTURAL ANALYSIS AND OPTIMIZATION 

  
2.1. Structural response via finite element analysis 

 
The mathematical model used here to characterize the structural responses is restricted to the elastic bar and to 

the Euler-Bernoulli beam model. The structural analysis in terms of the finite element method is expressed by a 
modal problem (Equation 1) to obtain the eigenvalues (eigenfrequencies) or by a harmonic analysis (Equation 2) 
to obtain the frequency response: 

[ ] [ ] [ ]( ){ } { }0
2 =−+ iii MCjK φωω , 

(1) 

[ ] [ ] [ ]( ){ } { }ωωω FUMCjK apap =−+ 2 , (2) 

where a proportional (Rayleigh) damping is used. The damping matrix C is usually expressed as a linear combination of 

the global Stiffness matrix K and the global Mass matrix M ( [ ] [ ] [ ]MKC αβ += ), but only β-damping is used in 

this work, i.e., C is simply defined by: 

[ ] [ ]KC β= . (3) 

In the above expressions, ω is the eigenfrequency, φφφφ the eigenmode, ωap the applied force excitation frequency, 

U the respective maximum displacement and Fω the magnitude of the applied force. 
Next, we introduce the two optimization problem formulations used here to maximize the attenuation of 

vibrations at desired points of a given harmonically excited structure. The first one is the maximization of the 
separation between two specific adjacent eigenfrequencies, while the second problem is a minimization of 
displacements (peak and intermediate points) inside of the given frequency range of interest. 
  
2.2. Maximization of the separation of two adjacent eigenfrequencies by a distribution of two materials in a 

uniform section rod: a topology optimization’s problem. 

 
In this section, the objective is to find an optimized distribution of two different material components along a 

given rod, as the distribution illustrated by Figure 1. The distribution should maximize the separation of two 

specified adjacent eigenfrequencies ωi+1 and ωi , i.e. for a given ‘i’ (i=1, 2, 3, 4, 5,…).  
 

 

Figure 1. Example of a distribution of two material components along the rod. 

A topology optimization method is used and formulated without damping effects as: 
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After obtaining the optimized solution, it will be studied with damping addition. The formulation follows the work 
presented by Jensen and Pedersen (2006) where the material interpolation proposed for this problem is different from 
the usual SIMP technique described by BendsØe and Sigmund (2003). It is expressed by the following relations: 

( )1-/EE*t1

E
E

21

1

+
= , (5) 

( )121 -*t ρρρρ += . (6) 

The design variable for each element ‘e’ is te and it has one value in the interval between te = 0 (where 0 means 
only material 1 is present, in our case only epoxy) and te =1 (only material 2, in our case only Aluminium). To 
relax the problem for a continuum variation of the parameter t, mixtures between these materials are allowed and 
represented by intermediate values of t. Material properties are then computed by (5-6). 

Each finite element is associated with one value of te although each design variable can be assigned to several 
consecutive finite elements. With these, the optimization is done according to the iterative procedure described in 
Section 3. The modal problem used does not include the damping effect and the shifting of the eigenvalues is done 
under this assumption. The optimized solution is afterwards analyzed by harmonic FEA (for specific boundary 
conditions in displacement and applied force) according to Equation (2) and (3) for different Rayleigh damping 

parameter β values. 
 
2.3. Size optimization to minimize the sum of nodal displacements in a given frequency range. 

 

This problem consists on minimizing the sum of )()( T
ii Luu ωω  that is a displacement positive measure at 

certain points of the structure for a discrete number of frequencies inside a given frequency range of interest 

[ωinitial, ωfinal]. The matrix L locates the corresponding degrees of freedom. The optimization problem is set for a 
distribution of external diameters De (see Fig. 2) where the number of variables used is equal to the number of 
elements. 

 

Figure 2. Example of a distribution of diameters along the beam.  

The optimization problem of finding optimal diameters D is formulated without considering damping effects 
as: 

[ ] [ ]( ){ } { }
.,...,2 ,1D

,

:

)()( min

maxemin

2

Nfreq

1i

T

D

NelemeDD

FUMK

tosubject

Luu

ap

ii

=≤≤

=−

∑
=

ωω

ωω

. 

 

(7) 

After obtaining the optimized solution, it will be studied with damping addition. The number of frequencies Nfreq 
within the range of interest is calculated at each iteration with the initial, final and interior peak corresponding 

frequencies (ωi), as illustrated in the following figure.  

Frequency Range of Interest

ωο ω1 ω2 ω3 ω4 ω5

initial

1

2

3

4

final

 

Figure 3. Schematic representation of the points used to set Nfreq value based on the frequency response. 

Do1 , Do2 , Do3 , ... , DoN 



In the particular case of the Fig. 3, Nfreq is equal to six (i=0, 1, …, 5) but, depending on the frequency 
response, this number can be larger or smaller. We kept this value fixed during the optimization process. 
As mentioned before, this problem is related with the minimization problem of resonance responses as described 
by Eschenauer et al (1993). They use a minmax formulation that minimizes with respect to design variables the 

maximum vibration response (a resonance) inside the given frequency range of interest [ωinitial, ωfinal]. There are 

two main differences: 1) in our work we consider the objective function as the sum of )()( T
ii Luu ωω  that is a 

positive measure related with the frequency range of interest; and 2) we are not considering damping optimization 
which is the main purpose of the work reported by Eschenauer et al (1993). Other interesting difference is that our 
approximation deals with a fixed number of displacements in the interval of frequencies, while Eschenauer et al 
(1993) involves an approximation based upon modal identification to get the maximum displacement in the 
interval. A detailed discussion on the comparison between these two methodologies is subject of future work. 

For the optimization, an iterative procedure is described in Section 3. 
  
3. METHOD OF SOLUTION 

 
The implementation of the first optimization problem introduced in Section 2.2 uses the fmincon function available 

in the Optimization Toolbox of MatLab. This function finds a constrained minimum of a scalar function of several 
variables starting from an initial guess and without requiring any sensitivity analysis from the user. This requires some 
programming effort to build the interface between the structural analysis code (Ansys) and the optimization routine 
(MatLab).  

The used medium-scale optimization routine solves a sequential quadratic programming (SQP), i.e. a quadratic 
programming (QP) sub problem at each iteration. The routine computes a quasi-Newton approximation to the Hessian 
of the Lagrangian at x. The objective function and restrictions are calculated in the commercial finite element software 
ANSYS, while the optimization process is performed within MatLab (see Carvalho et al, 2006). 

For the optimizations of section 2.2 we defined an iterative procedure with the following steps: 
1) Initialize by giving initial design values and the order ‘i’ of the lowest eigenvalue to separate; 
2) Run a harmonic analysis for the initial design; 
3) Start the optimization loop in MatLab by calling fmincon. After writing the values of the current iteration design 

variables for a file it will call ANSYS program in batch mode and will return to fmincon the current calculated values of 

eigenfrequencies ωi+1 and ωi; 
4) After satisfying the stopping criteria, run a harmonic analysis for the final design this time using damping 

properties. 
The second optimization problem, introduced in section 2.3, uses the MatLab version of Method of Moving 

Asymptotes (MMA) developed by Svanberg (1987). The original problem could be, in principle, done with the same 
algorithm as the previous problem, but we decided to use an idea that requires sensitivities instead. That is the reason 
why we decided to use the MMA optimizer. 

An interface was built to manage the reading and writing of the relevant data from (and to) files for use in both the 
FEA software and the MMA optimizer (for a more detailed description, see Carvalho el al, 2006). The calculation of the 
objective and constraint function analytical sensitivities (MMA requires sensitivities) is made in the interface. 

The iterative procedure uses MMA with the following steps: 
1) Initialize by supplying the initial design values, generally, whole structure with uniform external diameter. 
2) Start the optimization loop at MatLab by calling MMA procedure. It will call ANSYS (after writing the current 

iteration values of De to a file) to run a harmonic analysis without damping effects in batch mode and will return to 

MMA procedure the values of displacement for the frequency range of interest [ωinitial�� , ωfinal]. Next, calculate 
sensitivities in the interface module written in MatLab. 

3) When the stopping criterion is satisfied, plot the final design. 
4) Run a harmonic analysis for the final design this time using damping properties. 

  
4. NUMERICAL RESULTS 

 

4.1. Results from the maximization of the separation of two adjacent eigenfrequencies ωωωωi+1 and ωωωωi by a 

distribution of two different materials in a uniform section rod. 

 
Here, a given rod is optimized for the formulation of section 2.2 (to maximize the separation of two adjacent 

eigenfrequencies ωi+1 and ωi, where three cases i=1, 5 or 7 are considered). We use an Epoxy (EP) for material 1 
and an Aluminium (AL) for the material 2. The rod has a 0.01 m uniform diameter, a total length of L=0.825m and 

the material properties are: 3
ALAL kg/m2870 , GPa 70.0E == ρ  and 3

EPEP kg/m1142 GPa, 1.4E == ρ . 

The number of design variables ‘te’ is eleven, all with the same length, and bar finite elements (element LINK1 
in ANSYS) were used for each design variable. The number of finite elements should be adjusted between the 
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highest frequency in analysis and the finite element length. A modal analysis is done by ANSYS with no 
transversal displacements, Uy=0, for all nodes and Ux=0 at x=L. 

The initial design consists in all design variables te being 0.5, as indicated by a blue line at the figures 4 a), 6 a) 
and 8 a). Using the optimization procedure described in Section 3, the optimized designs were obtained for a 
specific ‘i’ value and presented at mentioned figures (The red line in figure 4 a) indicates a sequence of materials: 
EP/AL/EP/AL). Improvement in the separation of two adjacent frequencies (‘i’ and ‘i+1’), relatively to the initial 

design, i.e. from initial separation ∆ini to optimized final value ∆fin were obtained as shown by the values in 

figures 4 b), 6 b) and 8 b), for ‘i’=1, 5 and 7, respectively. The frequency response of displacement at node x=(L-
(L/11)) – the node that separates left 10 variables from the last design variable - is presented at Figures 4 b), 6 b) 
and 8 b) for an applied axial force with 200 N magnitude at x=0 m.  

These separations obtained are evident when comparing frequency response curves from initial design with 
corresponding curves of optimized designs (see figures 5 a), 7 a) and 9 a) for ‘i’=1, 5 and 7, respectively). The 
effect of introducing damping in the harmonic analysis of the optimized structure is the expected i.e. damping 
effect is localized around resonances as presented at figures 5 b), 7 b) and 9 b). 
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Figure 4. Results obtained with ‘i’ = 1. a) Material distributions along the rod longitudinal axis. b) Changes in 

eigenvalues due optimization, from ∆ini = 1205.1 to ∆fin = 3969.6, initial and final eigenvalue separation, respectively. 
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a)       b) 

Figure 5. Results obtained with ‘i’ = 1. a) Axial displacement frequency response at x=L-L/11. b) Transmissibility 

between x=0 and at x=L-L/11 for different β damping parameters. 
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Figure 6. Results obtained with ‘i’ = 5. a) Material distributions along the rod longitudinal axis. b) Changes due 

optimization, from ∆ini = 1226.8 and ∆fin = 7445.1, initial and final eigenvalue separation, respectively. 
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Figure 7. Results obtained with ‘i’ = 5. a) Axial displacement frequency response at x=L-L/11. b) Transmissibility 

between x=0 and at x=L-L/11 for different β damping parameters. 
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Figure 8. Results obtained with ‘i’ = 7. a) Material distributions along the rod longitudinal axis. b) Changes due 

optimization, from ∆ini = 1228.7 and ∆fin = 5155.9, initial and final eigenvalue separation, respectively. 

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

4
8

1
0
5
6

2
0
6
4

3
0
7
2

4
0
8
0

5
0
8
8

6
0
9
6

7
1
0
4

8
1
1
2

9
1
2
0

1
0
1
2
8

1
1
1
3
6

1
2
1
4
4

1
3
1
5
2

1
4
1
6
0

1
5
1
6
8

1
6
1
7
6

1
7
1
8
4

1
8
1
9
2

1
9
2
0
0

2
0
2
0
8

2
1
2
1
6

2
2
2
2
4

2
3
2
3
2

w (in Hz)

a
b

s
(u

) 
in

 L
o

g Initial

Optimized

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

4
8

1
0

5
6

2
0

6
4

3
0

7
2

4
0

8
0

5
0

8
8

6
0

9
6

7
1

0
4

8
1

1
2

9
1

2
0

1
0

1
2

8
1

1
1

3
6

1
2

1
4

4

1
3

1
5

2

1
4

1
6

0

1
5

1
6

8

1
6

1
7

6

1
7

1
8

4
1

8
1

9
2

1
9

2
0

0

2
0

2
0

8

2
1

2
1

6

2
2

2
2

4

2
3

2
3

2

w (in Hz)

a
b

s
(u

L
m

d
L

/u
0

) 
in

 L
o

g

Without damping

beta=1.E-6

beta=1.E-7

 
a)       b) 

Figure 9. Results obtained with ‘i’ = 7. a) Axial displacement frequency response at x=L-L/11. Right: Transmissibility 

between x=0 and at x=L-L/11 for different β damping parameters. 
 

While optimization cases with ‘i’= 5 and 7 run with small number of finite element analysis (FEA), the same 
was not the case for ‘i’= 1. Indeed, after an initial significant improvement a very high number of FEA calls was 
done due a slow convergence to the presented design (see figure 4 a). 

We notice that for high frequencies the damping model chosen is not (physically) the most adequate. Anyway, 
our purpose of testing damping effect on the optimized solution was achieved. The optimization procedure can 
also work with damping but at the expense of computational running time efficiency. Additional issues are to be 
addressed on future work. 

 
4.2. Results from size optimization to minimize the sum of nodal displacement u

T
Lu for a given frequency range 

[ωωωωinitial, ωωωωfinal] 
 
A steel hollow shaft is considered with 210 GPa of Young modulus and material density of 7800 kg/m3, a total 

length of 0.5 m is fixed, internal diameter 0.002m is fixed and a design variable initialized with 0.008m external 
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diameter. Each element diameter, in this case, is an optimization design variable. 
The optimization function is the sum of quadratic displacement uT

Lu for a specific node and a frequency range 
given by the interval of [3000, 6000] Hz. Matrix L is a zero matrix with ones at the diagonal elements 
corresponding to the displacement degrees of freedom of the node where displacement is to be minimized. The 
sensitivities of this objective function can be found by the adjoint method as e.g. in Sigmund and Jensen (2003) 
and Silva et al (2007b). 

The optimization results are shown in Figure 10. 

Optimization: 3000 to 6000Hz
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Figure 10. Results obtained with the original formulation. On the left hand side is the optimized geometry with 
a clamped node at left end and vertical force of magnitude 0.01 N at right end of the beam. On the right are for 

comparison the displacement frequency responses at node of applied force: blue line for the initial design and red 
for the optimized undamped structure. 

The standard formulation tends to move both peaks (ωi) to the right (inside a frequency band of interest), while 
it would be desirable to investigate if it is possible to move right peak to right and left peak to left (according to a 

middle frequency ωm). We implemented the idea of changing sign of the derivatives for the left peaks according to 
the arrow directions indicated in Figure 11. 
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Figure 11. Illustration of the modification proposed to move right peak rightwards and left peak leftwards. 

For the tested examples, the new algorithm gave surprisingly good results, better than those obtained with the 
original formulation (see Fig. 12). 



Optimization: 3000 to 6000Hz
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Figure 12. On the left hand side is an illustration of the optimized geometry obtained with the modified algorithm 
for a clamped node at left and a vertical force of magnitude 0.01 N at right end. On the right are for comparison the 

displacement frequency responses at node of applied force given by: blue line for the initial design (original), green line 
for the optimized using the original formulation and red line for the optimized structure using the modified algorithm. 

Physically, to minimize the target displacement the original optimization procedure tends to increase the value 
of the external diameter (increasing both mass and stiffness). One can observe that the stiffness effect dominates 
over the mass effect and consequently in general peaks move rightwards. Based on this, we decided for the left 
frequency peaks inside the region of interest (see Fig. 11) to impose a change in the “direction” of the design 
change step by inverting the sign of the objective function derivatives. Current work is being done to develop a 
formulation that considers naturally the idea of the modified algorithm. 

Finally, we run a harmonic analysis this time using damping properties and the results are presented in Fig. 13 for 
the initial design, in Fig. 14 for the optimized structure and in Fig. 15 for the modified formulation. 

Adding damping to the original design.
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Figure 13. The transversal displacement frequency responses for the initial design at node of applied transversal 

force from the harmonic analysis with different β damping values. 

Optimization method without damping.

Adding damping to the optimized design.
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Figure 14. The transversal displacement frequency responses for the optimized design by original formulation at 

node of applied transversal force with different β damping values.  
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Optimization method without damping.

Adding damping to the optimized design.
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Figure 15. The transversal displacement frequency responses for the optimized design by modified formulation at 

node of applied transversal force with different β damping values.  

This optimization procedure can also work with damped model but again it loses computational running time 
efficiency. 
 
5. CONCLUSIONS 

 
Two structural optimization problems for the passive vibration attenuation and respective testing examples were 

presented. Well known optimization methodologies were reviewed. Based on a critical analysis of the results from the 
first problem we proposed a new algorithm for the second problem and presented improved results obtained by this 
way.  

The advantage of the proposed optimization strategy results from moving relatively to the centre of the frequency 
range of interest the right peaks to right direction and the left peaks to left. It was implemented by changing sign of the 
derivatives for the left peaks according to the arrow directions indicated in Fig. 11. This idea of changing sign of certain 
terms is not straightforward and for this reason work is being done to present a mathematical formulation that considers 
naturally the modified algorithm. As expected, damping effect is localized around resonances, but for high 
frequencies the damping model chosen is not physically the most adequate. 

For the sake of simplicity, the models were limited to the elastic bar (i.e., link or rod elements) or to Euler-Bernoulli 
beams, but the algorithms used can be readily applied to shells and solids as well. 

We investigated damping influence on the optimized structures and concluded that the added proportional damping 
to the optimized structures did not significantly changed the main behavior obtained by optimization, as expected. It 
supports the methodology of doing optimization without damping followed by a check on the effect of damping 
addition to the optimized structure. 

Current work is being done to test extension of these approaches to 3D examples of industrial interest. 
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