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Abstract. This work presents a performance analysis of multimodal passive vibration control of a sandwich beam using 
shear piezoelectric materials, embedded in a sandwich beam core, connected to independent resistive shunt circuits. 
Shear piezoelectric actuators were recently shown to be more interesting for higher frequencies and stiffer structures. 
In particular for shunted damping, it was shown that equivalent material loss factors of up to 31% can be achieved by 
optimizing the shunt circuit. In the present work, special attention is given to the design of multimodal vibration 
control through independent shunted shear piezoelectric sensors. In particular, a parametric analysis is performed to 
evaluate optimal configurations for a set of modes to be damped. Then, a methodology to evaluate the modal damping 
resulting from each shunted piezoelectric sensor is presented using the Modal Strain Energy method. Results show that 
modal damping factors of more than 1% can be obtained for three selected vibration modes. 
 
Keywords: Vibration control, piezoelectric materials, shear piezoelectric sensors, shunt circuits, sandwich beams. 

 
1. INTRODUCTION  
 

The use of piezoelectric materials for the vibration control of flexible structures has been widely studied in the last 
two decades. These materials seem to be well adapted to distributed control of structural vibrations since they are 
produced as very thin patches and layers that can be embedded in a laminate or composite structure and allow direct 
connection with an input/output electrical signal (Sunar and Rao, 1999). Although most of the studies present surface-
bonded extension piezoelectric patches, acting as actuators and sensors, it is also possible to embed thickness-shear 
mode piezoelectric patches in replacement of an internal layer of a laminate structure, or part of it. This is obtained 
through longitudinally-poled piezoelectric patches that, when subjected to through-thickness electric fields, present 
shear strains (Sun and Zhang, 1995). It has been shown that piezoelectric actuators using their thickness-shear mode can 
be more effective than surface-mounted extension piezoelectric actuators for vibration damping (Trindade, Benjeddou 
and Ohayon, 1999; Raja, Prathap and Sinha, 2002; Baillargeon and Vel, 2005). 

However, their use in connection to shunt circuits to provide passive vibration control is much less explored. The 
idea of connecting piezoelectric patches to shunt circuits is basically to control the mechanical energy via the electrical 
energy induced in the shunt circuit due to electromechanical coupling in the piezoelectric (Forward, 1979; Hagood and 
von Flotow, 1991). Most of the recent studies focus on optimizing the shunt circuits by including resistances, 
inductances and capacitances in series and/or parallel. Nevertheless, few studies focus on the optimization of the 
electromechanical coupling in the piezoelectric material. In particular, it was shown that the use of piezoelectric patches 
in thickness-shear mode may be more interesting since the electromechanical coupling is higher than that in extension 
mode (Benjeddou and Ranger-Vieillard, 2004; Benjeddou, 2006; Trindade and Maio, 2006). Therefore, the present 
work reports recent studies on the use of thickness-shear piezoelectric patches connected to resistive shunt circuits for 
the passive vibration control of sandwich beams.  
  
2. THEORETICAL FORMULATION  
 

This section presents a theoretical model for the electromechanical response of a shear piezoelectric patch connected 
to a shunt circuit. The methodology adopted here is the impedance-based formulation put forward by Hagood and von 
Flotow (1991) and recently applied to shear piezoelectric actuators by Benjeddou and Ranger-Vieillard (2004).  
 
2.1. Shunted Shear Piezoelectric Model  
 

For a one-dimensional shear stress loading of a longitudinally poled piezoelectric material, the reduced constitutive 
equations can be written in terms of shear stress T5 and strain S5 and through-thickness electric field E3 and 
displacement 3D  
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where T
11∈  is the dielectric coefficient for constant stress, 15d  is the thickness-shear mode piezoelectric coefficient, and 

Es55  is the transverse shear compliance for constant electric field. 

Supposing both electric field and displacement to be constant through-thickness and introducing the capacitance of 
the piezoelectric patch at constant stress, then  
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where 3Q  is the charge collected on the electrode area A, 3V  is the difference of electric potential in the upper and 

lower electrodes, and h is the piezoelectric patch thickness. 
Substituting Eq. (2) into Eq. (1) and using the relation between electric current and charge flux such that 33 sQI = , 

where s is the Laplace variable, Eq. (1) can be rewritten as  
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Then, introducing T

ocZ  as the open circuit (OC) electrical impedance for constant stress, 
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it is possible to express Eq. (3) in terms of the piezoelectric patch impedance 
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To introduce the shunted damping aspect, let us add a shunt impedance in parallel to the piezoelectric patch, as 

shown in Fig. 1. It can be noticed that the piezoelectric patch can be represented as an equivalent capacitance. 
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Figure 1. Representation of a piezoelectric capacitance in parallel with a shunt impedance. 
 
These systems can be replaced by an equivalent impedance of similar electric behavior 
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Then, the first line of Eq. (5) may be solved for 3V , such that 

 
( )51533 TsAdIZV eq −=  (7) 

 
which, when replaced in the second line of Eq. (5), yields an expression for the shear strain in terms of shear stress and 
electric current 
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Analysis of Eq. (8) allows observing that the coupling of a shunt circuit to the piezoelectric patch yields a 

modification of the patch compliance. To further investigate this effect, let us define the thickness-shear mode 
electromechanical coupling coefficient (EMCC) and the equivalent electrical impedance normalized by the open circuit 
impedance 
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Using Eq. (9) and definitions of TPC  and T

ocZ , Eqs. (2) and (4), the shear strain is written as 
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where shs55  is a modified elastic compliance for the shear piezoelectric patch connected to the shunt circuit 
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Notice that the shunt modified elastic compliance depends on the short circuit (SC) elastic compliance Es55 , that is 

for nul electric field, and also on the piezoelectric patch and shunt circuit impedances. Hence, it is possible to derive the 
equivalent elastic compliance for the standard cases of open (OC) and short circuit (SC) by noting that an open circuit 
condition may be achieved by letting the shunt circuit impedance tend to infinity, ∞→shZ , so that 

 
1=eqZ  and ( )2
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and conversely a short circuit condition is obtained for a nul shunt impedance 0=shZ , so that 

 

0=eqZ  and Esh ss 5555 =  (13) 

 
Inverting Eq. (10) to obtain stress as function of strain and electric field, leads to 
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where the new material coefficients are defined as 
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For the sake of simplicity, the short circuit, open circuit and shunted shear moduli are defined as Esc cG 55= , 

Doc cG 55= , shsh cG 55= , respectively. Hence, one may write the shunted shear modulus in terms of short circuit one as 
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2.2. Case of a Resistive Shunt Circuit  
 

For a resistive shunt circuit, the impedance shZ  resumes to the resistance R  considered, such that RZ sh = . 

Therefore, in this case, the normalized equivalent electrical impedance is 
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Considering a harmonic excitation with frequency ω , such that ωis = , and using Eqs. (16) and (17), the shear 

modulus for the shunted piezoelectric patch can be rewritten as the following complex modulus 
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Introducing S

pC  as the piezoelectric capacitance at constant strain (nul strain), such that ( )2
151 kCC T

p
S
p −= , and 

defining ρ  as a non-dimensional resistance or frequency,  
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the shunted complex shear modulus can be written as 
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Equation (20) may then be used to derive an equivalent shunted damping loss factor. For that, Eq. (20) is rewritten 

in the standard complex modulus form 
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where the real part sh

RG  is defined as the storage modulus and the ratio between the imaginary and real parts η  is 

defined as the loss factor. Notice that both are frequency-dependent, since they are written in terms of ρ  as 
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Notice that analysis of Eq. (22) allows the comparison between damping performance, or loss factor levels, for 

several shear piezoelectric patches and shunt resistances, since the loss factor depends on the material 
electromechanical coupling coefficient and on the non-dimensional frequency. In particular, analysis of the loss factor 
for a thickness-shear mode PZT-5H piezoelectric material )67.0( 15 =k  connected a resistive shunt circuit in terms of 

the non-dimensional frequency shows that a 31% loss factor is achievable by properly tuning the shunt circuit resistance 
or the excitation frequency (Trindade and Maio, 2006). This fact justifies the use of a shunted shear piezoelectric patch 
for structural vibration damping. Notice that the achievable loss factor for extension piezoelectric is much smaller since 
its electromechanical coupling coefficient 31k  is lower. 

Due to the frequency-dependent behavior of the shunted shear piezoelectric loss factor, there is an optimal 
frequency/resistance range of interest in order to obtain a maximum loss factor. From Eq. (22), it is possible indeed to 
show that the maximum loss factor and the corresponding non-dimensional frequency are 
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Since S

pRCωρ = , an expression for the shunt circuit resistance that maximizes the loss factor in terms of the 

excitation frequency can be obtained as 
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Hence, Eq. (24) can be used to adjust the shunt circuit resistance so that it leads to a maximum loss factor for a 
given operating frequency-range. 
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3. MODELING OF SANDWICH BEAMS WITH SHUNTED SHEAR PIEZOELECTRIC PATCHES 
 

From the previous section, it is clear that a shear piezoelectric patch connected to a properly tuned resistive shunt 
circuit dissipates a significant amount of energy when excited at a certain frequency-range. Therefore, it is of great 
interest to integrate such mechanism to a vibrating structure so that its vibratory energy can be dissipated by the shunted 
piezoelectric patch. According to previous studies (Benjeddou, Trindade and Ohayon, 1999), it is possible to couple 
bending vibrations of a sandwich beam with the shear strains of a longitudinally-poled piezoelectric patch embedded in 
the sandwich beam core. This is done here using a sandwich beam finite element model (Benjeddou, Trindade and 
Ohayon, 1999) in which the individual stiffness matrices for the elastic structure and the piezoelectric patches can be 
separated, in such way that the equations of motion are written as 
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where M , SK , PK  are the mass matrix and the elastic structure and piezoelectric patches stiffness matrices, 

respectively. F is the vector of external applied mechanical forces. The individual stiffness matrices SK  and PK  are 

obtained in two steps. First, the total stiffness matrix TK , corresponding to the elastic structure and piezoelectric 

patches, is obtained using short circuit (for nul electric field) piezoelectric material properties, such that 
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where Nm ,,1K=  with N being the number of piezoelectric patches. Then, the elastic structure stiffness matrix is 
obtained by making all elastic, piezoelectric and dielectric constants of the piezoelectric patches to vanish. 
Consequently, the contribution of each piezoelectric patch to the total stiffness matrix can be evaluated as 
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In order to account for the coupling between the piezoelectric patches and the shunt circuits, the short circuit shear 

modulus is factored out of the piezoelectric stiffness matrices, such that 
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and the equations of motion are written as 
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where a damping matrix C, corresponding to all other sources of damping, is added a posteriori. 

Then, for the case of piezoelectric patches connected to resistive shunt circuits subjected to harmonic excitation, the 
short circuit shear modulii sc

mG  can be replaced by their equivalent shunted complex modulii *sh
mG . Consequently, Eq. 

(29) can be rewritten in the frequency-domain as 
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where 0q  and 0F  are the amplitudes of the generalized displacements )(tq  and applied forces )(tF , respectively. 

 
4. SHUNT DAMPING EVALUATION USING MSE METHOD  
 

To evaluate the damping added by the shunted piezoelectric patches to the structure, an iterative version of the 
Modal Strain Energy (MSE) method, as proposed in (Trindade, Benjeddou and Ohayon, 2000; Johnson and Kienholz, 
1982) for structures with viscoelastic elements, is considered. In fact, each shunted piezoelectric patch behaves much 
like a viscoelastic material, that is, it adds an imaginary part to its stiffness and makes the stiffness dependent on 
frequency. In the MSE method, the modal damping added to the structure by one of its elements is approximated by the 
energy fraction contained in the corresponding element multiplied by the element loss factor and divided by the total 
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strain energy of the structure when it vibrates in one of its eigenmodes. The energy ratio is normally measured as the 
ratio between modal stiffnesses, such that the damping (loss factor) added by the m-th piezoelectric patch is 
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where, in the present case, the stiffness of the m-th piezoelectric patch connected to a shunt circuit is sh

mRPmPmR GKK = . 

In the case of a frequency-dependent stiffness, the evaluation of the structure real eigenmodes must be done 
iteratively from Eq. (30), ignoring the complex terms, 
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where jω  are the structure eigenfrequencies to be evaluated. 

Also, each piezoelectric patch stiffness is also dependent on the electric resistance of the shunt circuit connected to 
it, as shown in section 2. The electric resistance, however, can be tuned to optimize the damping of a selected mode. 
This is done here by defining the (optimal) resistance of the shunt circuit tuned to damp the m-th eigenmode as 
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To simplify the eigenfrequencies evaluation, an initial guess of the optimal resistances is performed based on the 

behavior of the storage modulus curves. That is, for the evaluation of the m-th optimal resistance, it is supposed that the 
k-th )1,,1( −= mk K  shunted piezoelectric patches are in open-circuit condition; while the l-th ),,1( Nml K+=  

shunted piezoelectric patches are in short-circuit condition. Hence, the stiffness of all shunted piezoelectric patches is 
properly approximated. 

Replacing the expression for the non-dimensional frequency j
S
p

m
opm CR ωρ =  in the equations of storage modulus 

sh
mRG  and loss factor mη  of each piezoelectric patch, yields 
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An iterative algorithm for the MSE method, shown in Fig. 2, was used in which the evaluation of the j-th 

eigenfrequency is performed accounting for the updating of the j-th optimal resistance, whenever the j-th eigenmode is 
being damped by some shunted piezoelectric patch, and of the j-th storage modulus. 

 

 
Figure 2. Iterative algorithm for the evaluation of the structure eigenfrequencies  

accounting for changes in stiffness of shunted piezoelectric patches.  
 
From Eqs. (34) and (35) and recalling that a damping factor relates to a loss factor as 2ηζ = , the j-th modal 

damping factor of the structure is written as 
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This expression accounts for the contributions of all shunted piezoelectric patches for a given eigenmode. It is 

expected that the shunted piezoelectric patch which is tuned for a given eigenfrequency should be responsible for the 
major contribution for the corresponding eigenfrequency. However, as it is illustrated later, other shunted piezoelectric 
patches could also have a significant contribution. 
 
5. NUMERICAL RESULTS 

 
To illustrate the methodology proposed in the previous sections, it is now applied to a cantilever sandwich beam 

with three piezoelectric patches embedded in its core layer, as shown in Fig. 3. 
The geometrical properties of the structure, shown in Fig. 3, are based on a previous study, which has shown that 

relatively thick facing layers lead to higher shear strain energy in the piezoelectric patches (Trindade and Maio, 2006). 
In order to evaluate optimal ranges for position and length of the piezoelectric patches, the following geometric 
parameters are varied: the distance d between the first piezoelectric patch and the clamped end, the spacing e between 
the patches and the length L of the patches. The material properties are: Young modulus 210 GPa, Poisson ratio 0.3 and 
density 7850 kg m-3 for the steel; Young modulus 35.3 MPa, shear modulus 12.76 MPa and density 32 kg m-3 for the 
rigid foam; Young modulus 61.1 GPa (SC), shear modulus 23 GPa (SC), density 7500 kg m-3, shear piezoelectric 
coefficient 17 C m-2 and constant stress dielectric coefficient 27.7 nF m-1 for the PZT-5H piezoceramic material.  

A parametric analysis was performed to evaluate the effects of the distance, spacing and length of the piezoelectric 
patches on the passive shunted damping. Three values for the piezoelectric patches length were considered: 25 mm, 20 
mm and 15 mm. For each of the lengths, the distance from the clamp and the spacing between patches were varied 
defining a set of geometric configurations. For each configuration, the choice of the eigenmodes to be damped by each 
piezoelectric patch was performed by, first, tuning each shunted piezoelectric patch to the three selected eigenmodes 
(3rd, 4th and 5th), one at a time. Then, the damping factors provided for each eigenmode and for each patch are 
compared and the pair patch-eigenmode leading to the highest damping factor is selected. This procedure is repeated 
until all piezoelectric patches are assigned to one eigenmode each. This procedure aims to assure patch-eigenmode 
assignments that maximize the overall damping for each geometric configuration. Then, using the three selected patch-
eigenmode tuned pairs, the modal damping factors for the third, fourth and fifth eigenmodes are evaluated. 

 

 
 
Figure 3. Schematic representation of the cantilever sandwich beam with three piezoelectric patches (not in scale). 
 
Figure 4 shows the average damping factor as a function of patches spacing and distance and for the three patches 

lengths considered. It is possible to observe that smaller distances yield higher average damping while the optimal 
spacing depends on the patches length. The comparison between these results has shown that the higher average 
damping factor is obtained for L=20 mm length patches, spaced by e=14 mm and with the first patch d=3 mm distant 
from the clamp. However, average damping factors around 1.5% can be observed throughout the ranges d=3-7 mm and 
e=11-14 mm. For the optimal configuration, the average damping factor is 1.54%, while the individual modal damping 
factors for the third, fourth and fifth modes are, respectively, 0.94%, 1.87% and 1.80%. This damping performance was 
obtained by tuning the piezoelectric patches P1, P2 and P3 to the 5th, 4th and 3rd eigenmodes, respectively. 

Table 1 shows the breakdown of the modal damping factors with individual contributions from each piezoelectric 
patch to each eigenmode. It can be observed that although each patch was tuned to only one eigenmode, all patches 
contribute to all eigenmodes, including the 2nd eigenmode which was not included in the tuning. As expected, the 
largest contributions for the fifth and fourth eigenmodes damping were produced by their assigned patches, P1 and P2, 
respectively. However, the same behavior was not observed for the third eigenmode, for which the smaller contribution 
comes from its assigned patch P3. This can be explained by the fact that the third eigenmode was the last one to have a 
patch assigned to it, due to its overall smaller damping, and thus was assigned to the last patch available (P3). 
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Figure 4. Average damping factors as function of piezoelectric patches spacing e and distance d for 
three patches lengths: a) 25 mm, b) 20 mm, b) 15 mm. 

 
Table 1. Damping factors for the second to fifth eigenmodes with individual contributions 

from each patch and loss factors of each patch at each eigenfrequency. 
 

 Damping factor (%) Loss factor (%) 
Modes Patch 1 Patch 2 Patch 3 Total Patch 1 Patch 2 Patch 3 

2 0.13 0.07 0.08 0.28   8.66 13.07 19.90 
3 0.31 0.39 0.24 0.94 20.96 27.40 30.86 
4 0.65 0.77 0.45 1.87 28.11 30.86 27.40 
5 0.93 0.44 0.43 1.80 30.86 28.11 20.96 

 
It is worth noticing that the significant cross-contribution between patches is obtained thanks to the wide frequency 

range of the shunted patches loss factors, due to the small optimal electric resistance of the corresponding shunt circuits. 
This fact can also be observed from Fig. 5 and Tab. 1. Table 1 presents also the loss factor of each shunted piezoelectric 
patch when excited at the second to fifth eigenfrequencies and Fig. 6 shows these loss factors as functions of frequency. 
It can be observed that, as expected, the maximum loss factor (30.86%) for each patch is obtained at its corresponding 
tuned eigenfrequency. However, significant loss factor values are maintained at the other eigenfrequencies. In 
particular, a minimum loss factor of almost 21% is obtained at the 3rd, 4th and 5th eigenfrequencies for all patches. 
Even at the second eigenfrequency, which was not included in the tuning procedure, loss factors up to 20% are obtained 
for the third patch. 

The frequency response function of the sandwich beam tip velocity, when excited by a transversal force applied at 
the same point, was evaluated and is shown in Fig. 6 for the following electric boundary conditions: SC – all patches in 
short-circuit, OC – all patches in open-circuit and OP – all patches optimally shunted. To help analyzing the damping 
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performance from the frequency response, a zoom around the 2nd to 5th eigenfrequencies is shown in Fig. 7. For 
comparison purposes, the uncontrolled beam is supposed to have a constant modal damping factor of 0.16%, 
representing damping sources other than the shunt circuits. 
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Figure. 5. Loss factor of the three shunted piezoelectric 
patches tuned to the 3rd, 4th and 5th eigenmodes as a 

function of frequency. 
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Figure 6. Frequency response function of beam tip 
velocity with short-circuited (sc), open-circuited (oc) and 

optimally shunted (op) piezoelectric patches. 
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Figure 7. Zoomed frequency response function of the tip velocity of the sandwich beam  
around eigenfrequencies: (a) 2, (b) 3, (c) 4 and (d) 5. 
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From Figs. 6 and 7, it is possible to observe that a reduction of approximately 20 dB can be achieved in the 
amplitude at resonance for the 3rd, 4th and 5th eigenmodes, which were prioritized by the shunted piezoelectric 
patches. In addition, a reduction of approximately 10 dB is observed for the 2nd eigenmode. These results indicate that 
not only wider frequency ranges are achievable but also the damping performance of each eigenmode is increased when 
using a larger number of piezoelectric patches. 
 
6. CONCLUSIONS 
 

This work has presented a performance analysis of the passive vibration control of a sandwich beam using a set of 
shear piezoelectric patches, embedded in the sandwich beam core and connected to resistive shunt circuits. It was 
shown that a loss factor of 31% is achievable by shear piezoelectric patches connected to properly tuned resistive shunt 
circuits. The damping factor added to the structure by each shunted piezoelectric patch was evaluated using an iterative 
version of the modal strain energy method. Using three shunted piezoelectric patches, tuned to damp the 3rd, 4th and 
5th eigenmodes, it was shown that average damping factors up to 1.5% are achievable, yielding a reduction of 
approximately 20 dB in the vibration amplitude at resonance. 
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