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Abstract. Thiswork presents a performance analysis of multimodal passive vibration control of a sandwich beam using
shear piezoelectric materials, embedded in a sandwich beam core, connected to independent resistive shunt circuits.
Shear piezoelectric actuators were recently shown to be more interesting for higher frequencies and stiffer structures.
In particular for shunted damping, it was shown that equivalent material loss factors of up to 31% can be achieved by
optimizing the shunt circuit. In the present work, special attention is given to the design of multimodal vibration
control through independent shunted shear piezoelectric sensors. In particular, a parametric analysis is performed to
evaluate optimal configurations for a set of modes to be damped. Then, a methodology to evaluate the modal damping
resulting from each shunted piezoelectric sensor is presented using the Modal Strain Energy method. Results show that
modal damping factors of more than 1% can be obtained for three selected vibration modes.
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1. INTRODUCTION

The use of piezoelectric materials for the vibnatomntrol of flexible structures has been widelyd#d in the last
two decades. These materials seem to be well atlapteistributed control of structural vibrationsice they are
produced as very thin patches and layers that eaenfibedded in a laminate or composite structureaiod direct
connection with an input/output electrical signaufar and Rao, 1999). Although most of the stugiiesent surface-
bonded extension piezoelectric patches, actingcagirs and sensors, it is also possible to enthiekness-shear
mode piezoelectric patches in replacement of agrnat layer of a laminate structure, or part ofTiis is obtained
through longitudinally-poled piezoelectric patcheat, when subjected to through-thickness eledteilds, present
shear strains (Sun and Zhang, 1995). It has bemmrsthat piezoelectric actuators using their thedsishear mode can
be more effective than surface-mounted extensienggilectric actuators for vibration damping (TrideaBenjeddou
and Ohayon, 1999; Raja, Prathap and Sinha, 200kagaon and Vel, 2005).

However, their use in connection to shunt circtotprovide passive vibration control is much legplered. The
idea of connecting piezoelectric patches to shirntits is basically to control the mechanical gyevia the electrical
energy induced in the shunt circuit due to electoanical coupling in the piezoelectric (Forwaré79; Hagood and
von Flotow, 1991). Most of the recent studies foaurs optimizing the shunt circuits by including gainces,
inductances and capacitances in series and/orlgladdevertheless, few studies focus on the optution of the
electromechanical coupling in the piezoelectricariat. In particular, it was shown that the usgiefzoelectric patches
in thickness-shear mode may be more interestimgedime electromechanical coupling is higher tha ith extension
mode (Benjeddou and Ranger-Vieillard, 2004; Bemedd006; Trindade and Maio, 2006). Therefore, ghesent
work reports recent studies on the use of thicksbsar piezoelectric patches connected to resistivat circuits for
the passive vibration control of sandwich beams.

2. THEORETICAL FORMULATION

This section presents a theoretical model for thetemechanical response of a shear piezoelgmtiah connected
to a shunt circuit. The methodology adopted hetbdsimpedance-based formulation put forward byddagand von
Flotow (1991) and recently applied to shear pieztteic actuators by Benjeddou and Ranger-Vieil(@@D4).
2.1. Shunted Shear Piezoelectric M odel

For a one-dimensional shear stress loading of gitiadinally poled piezoelectric material, the reddaonstitutive

equations can be written in terms of shear stfBs@nd strainS and through-thickness electric field, and
displacementD,
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where], is the dielectric coefficient for constant streds, is the thickness-shear mode piezoelectric coefficiand

s, is the transverse shear compliance for constantré field.
Supposing both electric field and displacementaabnstant through-thickness and introducing tipaciéance of
the piezoelectric patch at constant stress, then

_Q _V, O, A
Dg_f,es_ﬁ,c;_% 2)

where Q, is the charge collected on the electrode are&,Ais the difference of electric potential in the ap@and

lower electrodes, and h is the piezoelectric pHiitkness.
Substituting Eq. (2) into Eq. (1) and using thetieh between electric current and charge flux ghelh | ; = sQ;,

wheres is the Laplace variable, Eqg. (1) can be rewriien

{| } sC, sAd;, {v}
=l ds e RS (3)
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Then, introducingZ], as the open circuit (OC) electrical impedancectostant stress,

1
Z;C = i:_;— (4)

it is possible to express Eg. (3) in terms of tlezgelectric patch impedance

1
L) zn P, ©
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I

To introduce the shunted damping aspect, let usaaddunt impedance in parallel to the piezoelegtatch, as
shown in Fig. 1. It can be noticed that the piezcieic patch can be represented as an equivalpatitance.

Figure 1. Representation of a piezoelectric capacé in parallel with a shunt impedance.

These systems can be replaced by an equivalentanpe of similar electric behavior

Z;—czsh
= _oTe 6
* Z;rc + Zsh ( )

Then, the first line of Eq. (5) may be solved Ygr, such that
V; = Zeq(|3 - SAdlSTS) (7)

which, when replaced in the second line of Eq. ylds an expression for the shear strain in tesfrehear stress and
electric current
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Analysis of Eq. (8) allows observing that the couplingaokhunt circuit to the piezoelectric patch yields a
modification of the patch compliance. To further investigdtis effect, let us define the thickness-shear mode
electromechanical coupling coefficient (EMCC) and the equivalentieldmpedance normalized by the open circuit
impedance

d - Z
E15 —, Zeq = Z_‘_arq 9)
VSss Du oc

Using Eg. (9) and definitions &€} and Z! , Egs. (2) and (4), the shear strain is written as

k15 =

S =SIT, + (%zm) . (10)
where 3 is a modified elastic compliance for the shear piezoelectric patcleatedrto the shunt circuit
=5 (1-KaZ.) (11)
Notice that the shunt modified elastic compliance dependseoghirt circuit (SC) elastic complianag , that is
for nul electric field, and also on the piezoelectric patch andt slinenit impedances. Hence, it is possible to derive the

equivalent elastic compliance for the standard cases of @@hand short circuit (SC) by noting that an open circuit
condition may be achieved by letting the shunt circuit impeeléend to infinity,Z, — o, so that

Z,=landsd=s2 =s5(L-k2) (12)
and conversely a short circuit condition is obtdifer a nul shunt impedancég,, =0, so that

Z,=0andsy=sg (13)

Inverting Eqg. (10) to obtain stress as functiostodin and electric field, leads to

T, = C5S, — e, (14)

where the new material coefficients are defined as

1 d V,  Zl;
Cizgyefgzé,'%—ﬁ— e; (15)

For the sake of simplicity, the short circuit, opeincuit and shunted shear moduli are definedGi&=cf,,
*=ch, G =c2, respectively. Hence, one may write the shuntedrsimedulus in terms of short circuit one as

G™ = 12_ G~ (16)
1-K5Z

2.2. Case of a Resistive Shunt Circuit

For a resistive shunt circuit, the impedan£g, resumes to the resistand® considered, such thaZg = R.
Therefore, in this case, the normalized equivaddgdtrical impedance is
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Considering a harmonic excitation with frequengy, such thats=i« , and using Egs. (16) and (17), the shear
modulus for the shunted piezoelectric patch carebeitten as the following complex modulus

; T
G = .1+|aRCP G (18)
1+iaRC][L-k2)

Introducing CF,S as the piezoelectric capacitance at constantns{rail strain), such thaCf :CFT) (1—kfs), and
defining p as a non-dimensional resistance or frequency,

p=RCw (19)

the shunted complex shear modulus can be written as

shv | 1 N klz's(l_lp) N sC
"= ) (1—kfs)(1+p2ﬂe )

Equation (20) may then be used to derive an eqeivalhunted damping loss factor. For that, Eq. (@¢written
in the standard complex modulus form

G =G (1+in) (21)

where the real parGy is defined as the storage modulus and the ratiwd®s the imaginary and real parsis
defined as the loss factor. Notice that both aguUfency-dependent, since they are written in tefims as

sh _ (1_k12 +102 sc — ﬂ(zs
SiChi= o e e @

Notice that analysis of Eq. (22) allows the comgami between damping performance, or loss factaldevor
several shear piezoelectric patches and shunttaeses, since the loss factor depends on the mlateri
electromechanical coupling coefficient and on tba-dimensional frequency. In particular, analydishe loss factor

for a thickness-shear mode PZT-5H piezoelectricensdt (k,; = 067) connected a resistive shunt circuit in terms of

the non-dimensional frequency shows that a 31%féxder is achievable by properly tuning the shuirduit resistance
or the excitation frequency (Trindade and Maio, &0 his fact justifies the use of a shunted sipéezoelectric patch
for structural vibration damping. Notice that trehi@vable loss factor for extension piezoelecsimiuch smaller since

its electromechanical coupling coefficieky, is lower.

Due to the frequency-dependent behavior of the teldushear piezoelectric loss factor, there is atimap
frequency/resistance range of interest in orderbtain a maximum loss factor. From Eq. (22), ipéssible indeed to
show that the maximum loss factor and the corredipgmon-dimensional frequency are

2

T max :Lz for pop = \Jl_k125 (23)
2\1-kj;

Since p =awRC?, an expression for the shunt circuit resistanee thaximizes the loss factor in terms of the
excitation frequency can be obtained as

1

Ro e —
" aCT -k

Hence, Eq. (24) can be used to adjust the shuniitnesistance so that it leads to a maximum fasw®r for a
given operating frequency-range.

(24)
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3. MODELING OF SANDWICH BEAMSWITH SHUNTED SHEAR PIEZOELECTRIC PATCHES

From the previous section, it is clear that a shpgazoelectric patch connected to a properly tumssistive shunt
circuit dissipates a significant amount of energyew excited at a certain frequency-range. Thergfbiie of great
interest to integrate such mechanism to a vibrattngcture so that its vibratory energy can beipided by the shunted
piezoelectric patch. According to previous studiBenjeddou, Trindade and Ohayon, 1999), it is fussio couple
bending vibrations of a sandwich beam with the sk&ains of a longitudinally-poled piezoelectrigtgh embedded in
the sandwich beam core. This is done here usingndvsich beam finite element model (Benjeddou, Tatel and
Ohayon, 1999) in which the individual stiffness rieas for the elastic structure and the piezodleg@atches can be
separated, in such way that the equations of matierwritten as

Mi(t) +(Ks + K, Jatt) = F () (25)

where M, K , K, are the mass matrix and the elastic structure @iedoelectric patches stiffness matrices,
respectively F is the vector of external applied mechanical fercehe individual stiffness matricds; and K, are
obtained in two steps. First, the total stiffnesatnimK,, corresponding to the elastic structure and piezteéc
patches, is obtained using short circuit (for dattic field) piezoelectric material propertieach that

KT:KS+ZK§$“ (26)

where m=1,...,N with N being the number of piezoelectric patches. Thiea,dlastic structure stiffness matrix is
obtained by making all elastic, piezoelectric anlettric constants of the piezoelectric patchesvémish.
Consequently, the contribution of each piezoelegtatch to the total stiffness matrix can be eveldas

K§H:KT—[KS+ZK§J (27)

nzm

In order to account for the coupling between threzpeélectric patches and the shunt circuits, thet glireuit shear
modulus is factored out of the piezoelectric séffa matrices, such that

K =K, G (28)

Pm™~m

and the equations of motion are written as
Md(t) +Ca(t) +(Ks +ZKpmG:ij(t) =F(@) (29)

where a damping matrig, corresponding to all other sources of dampingdideda posteriori.
Then, for the case of piezoelectric patches coedetct resistive shunt circuits subjected to harmericitation, the

short circuit shear moduliG® can be replaced by their equivalent shunted compleduliiG>" . Consequently, Eq.
(29) can be rewritten in the frequency-domain as

{— WM +iaC + K+ K, Gi(wfi+ inm(w)]}qo =F, (30)

whereq, and F, are the amplitudes of the generalized displacesng(} and applied force& (t) , respectively.

4. SHUNT DAMPING EVALUATION USING MSE METHOD

To evaluate the damping added by the shunted piezoelectric patcties dtyucture, an iterative version of the
Modal Strain Energy (MSE) method, as proposed in (TrindBdejeddou and Ohayon, 2000; Johnson and Kienholz,
1982) for structures with viscoelastic elements, is consitdn fact, each shunted piezoelectric patch behaves much
like a viscoelastic material, that is, it adds an imaginary foaits stiffness and makes the stiffness dependent on
frequency. In the MSE method, the modal damping addecktstthicture by one of its elements is approximated by the
energy fraction contained in the corresponding element madifly the element loss factor and divided by the total
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strain energy of the structure when it vibratesme of its eigenmodes. The energy ratio is normakgasured as the
ratio between modal stiffnesses, such that the dagr(fpss factor) added by tmeth piezoelectric patch is

O Kpr®

e (31)
A8

n'=nn,

where, in the present case, the stiffness ofrtitie piezoelectric patch connected to a shunt diisuk , , = K, G..

In the case of a frequency-dependent stiffness,etfeduation of the structure real eigenmodes mestdbne
iteratively from Eq. (30), ignoring the complexites,

ol = .

where w; are the structure eigenfrequencies to be evaluated

Also, each piezoelectric patch stiffness is algoetielent on the electric resistance of the shuaotiticonnected to
it, as shown in section 2. The electric resistahosyever, can be tuned to optimize the damping sélacted mode.
This is done here by defining the (optimal) resis&aof the shunt circuit tuned to damp th¢h eigenmode as

mo_ 1
Ry

@, Cp 1=k

To simplify the eigenfrequencies evaluation, atiahiguess of the optimal resistances is perforimesked on the
behavior of the storage modulus curves. That isthfe evaluation of therth optimal resistance, it is supposed that the
k-th (k=1...,m-1) shunted piezoelectric patches are in open-circuit condition; whdd-th (I =m+1,...,N)
shunted piezoelectric patches are in short-circuit condition. Hémeestiffness of all shunted piezoelectric patches is
properly approximated.

Replacing the expression for the non-dimensional frequemecy Rggc;“'wj in the equations of storage modulus

(33)

G and loss factor},, of each piezoelectric patch, yields

$ m)_ (1‘k125)+(RorEC§wj)2' *
Gl Ry)= {(1_ K+ (Rpcse )| ° )

(e, R})= : Recoo b (35)

1-k5 )+ (RG]

An iterative algorithm for the MSE method, shown Rig. 2, was used in which the evaluation of jké
eigenfrequency is performed accounting for the tipdaf thej-th optimal resistance, whenever fkh eigenmode is
being damped by some shunted piezoelectric patchofthej-th storage modulus.

o Raf—g—{R, = vieicp ik |——»{Klel)= ks + ZR7G2" (e R))
error:‘afi”—afi‘/a{ |<—|wjk*1 = eig{M , K(wlk)}|<—

Figure 2. lterative algorithm for the evaluationtloé structure eigenfrequencies
accounting for changes in stiffness of shuntedqabtric patches.

From Egs. (34) and (35) and recalling that a dagfattor relates to a loss factor gs=r7/2, thej-th modal
damping factor of the structure is written as
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This expression accounts for the contributions Ibshunted piezoelectric patches for a given eigashn It is
expected that the shunted piezoelectric patch wisichned for a given eigenfrequency should beaasiple for the

major contribution for the corresponding eigenfreagy. However, as it is illustrated later, otheurgled piezoelectric
patches could also have a significant contribution.

5.NUMERICAL RESULTS

To illustrate the methodology proposed in the presisections, it is now applied to a cantileverdsach beam
with three piezoelectric patches embedded in its tayer, as shown in Fig. 3.

The geometrical properties of the structure, showhig. 3, are based on a previous study, whichdhasvn that
relatively thick facing layers lead to higher shetain energy in the piezoelectric patches (Trildand Maio, 2006).
In order to evaluate optimal ranges for positiord d&ngth of the piezoelectric patches, the follayigeometric
parameters are varied: the distaddeetween the first piezoelectric patch and the plkdnend, the spacirgbetween
the patches and the lendttof the patches. The material properties are: Youodulus 210 GPa, Poisson ratio 0.3 and
density 7850 kg i for the steel; Young modulus 35.3 MPa, shear med@R.76 MPa and density 32 kg’ fior the
rigid foam; Young modulus 61.1 GPa (SC), shear rmsi23 GPa (SC), density 7500 kg*nshear piezoelectric
coefficient 17 C nf and constant stress dielectric coefficient 27. riifor the PZT-5H piezoceramic material.

A parametric analysis was performed to evaluateefferts of the distance, spacing and length ofibeoelectric
patches on the passive shunted damping. Threesvidu¢he piezoelectric patches length were coms@le25 mm, 20
mm and 15 mm. For each of the lengths, the distéoee the clamp and the spacing between patches wamied
defining a set of geometric configurations. Forleagnfiguration, the choice of the eigenmodes tddmped by each
piezoelectric patch was performed by, first, tungagh shunted piezoelectric patch to the threetseleeigenmodes
(3rd, 4th and 5th), one at a time. Then, the dagf@ctors provided for each eigenmode and for gaatbh are
compared and the pair patch-eigenmode leadingetdiighest damping factor is selected. This proedurepeated
until all piezoelectric patches are assigned to eigenmode each. This procedure aims to assur@-pajenmode
assignments that maximize the overall damping é&mhegeometric configuration. Then, using the tleedected patch-
eigenmode tuned pairs, the modal damping facterthéothird, fourth and fifth eigenmodes are evidda

5,0mim

5,0mm

Figure 3. Schematic representation of the cantilssadwich beam with three piezoelectric patchesi(nscale).

Figure 4 shows the average damping factor as aifunof patches spacing and distance and for theetpatches
lengths considered. It is possible to observe $hadller distances yield higher average dampingenmtieé optimal
spacing depends on the patches length. The corapabistween these results has shown that the hiayenage
damping factor is obtained fa=20 mm length patches, spaceddst4 mm and with the first patadx3 mm distant
from the clamp. However, average damping factorsrad 1.5% can be observed throughout the radg@s’ mm and
e=11-14 mm. For the optimal configuration, the agerdamping factor is 1.54%, while the individualdabdamping
factors for the third, fourth and fifth modes amspectively, 0.94%, 1.87% and 1.80%. This damperjormance was
obtained by tuning the piezoelectric patches P1ari®PP3 to the 5th, 4th and 3rd eigenmodes, ragphct

Table 1 shows the breakdown of the modal dampintpifa with individual contributions from each pietectric
patch to each eigenmode. It can be observed ttiedugih each patch was tuned to only one eigennaldpatches
contribute to all eigenmodes, including the 2ndeerigode which was not included in the tuning. Aseexgd, the
largest contributions for the fifth and fourth eigeodes damping were produced by their assignedhest®l and P2,
respectively. However, the same behavior was ns¢med for the third eigenmode, for which the sematbntribution
comes from its assigned patch P3. This can be iegpldy the fact that the third eigenmode was dise dne to have a
patch assigned to it, due to its overall smallengiag, and thus was assigned to the last patclehlai(P3).
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Figure 4. Average damping factors as function egpelectric patches spaciagnd distance for
three patches lengths: a) 25 mm, b) 20 mm, b) 15 mm

Table 1. Damping factors for the second to fiftpegimodes with individual contributions
from each patch and loss factors of each patchdit eigenfrequency.

Damping factor (%) Loss factor (%)
Modes Patch1 Patch|2 Patch 3 Total Patth 1 PatdRa2ch 3
2 0.13 0.07 0.08 0.28 8.66 13.07 19.90
3 0.31 0.39 0.24 0.94 20.96 27.40 30.86
4 0.65 0.77 0.45 1.87 28.11 30.86 27.40
5 0.93 0.44 0.43 1.80 30.86 28.111 20.96

It is worth noticing that the significant cross-taoution between patches is obtained thanks tontide frequency
range of the shunted patches loss factors, dueeterhall optimal electric resistance of the comesiing shunt circuits.
This fact can also be observed from Fig. 5 and Tabable 1 presents also the loss factor of eachted piezoelectric
patch when excited at the second to fifth eigenfeaxgies and Fig. 6 shows these loss factors atidasf frequency.
It can be observed that, as expected, the maximsmfactor (30.86%) for each patch is obtainedsatarresponding
tuned eigenfrequency. However, significant losstdiacvalues are maintained at the other eigenfrecjgen In
particular, a minimum loss factor of almost 21%okstained at the 3rd, 4th and 5th eigenfrequenaeslf patches.
Even at the second eigenfrequency, which was wtided in the tuning procedure, loss factors upd#% are obtained
for the third patch.

The frequency response function of the sandwichmbia velocity, when excited by a transversal foapplied at
the same point, was evaluated and is shown in@Figr the following electric boundary condition€ - all patches in
short-circuit, OC — all patches in open-circuit @B — all patches optimally shunted. To help anatythe damping
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performance from the frequency response, a zoomndréthe 2nd to 5th eigenfrequencies is shown in FigFor
comparison purposes, the uncontrolled beam is sgubdo have a constant modal damping factor of %,16
representing damping sources other than the slnenits.
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From Figs. 6 and 7, it is possible to observe thatduction of approximately 20 dB can be achiewvethe
amplitude at resonance for the 3rd, 4th and S5tlereigdes, which were prioritized by the shunted geéectric
patches. In addition, a reduction of approximafdlydB is observed for the 2nd eigenmode. Thesdtsaadicate that
not only wider frequency ranges are achievablealad the damping performance of each eigenmodeisdased when
using a larger number of piezoelectric patches.

6. CONCLUSIONS

This work has presented a performance analysiseopassive vibration control of a sandwich beamgisi set of
shear piezoelectric patches, embedded in the sahdwgam core and connected to resistive shuntitsirda was
shown that a loss factor of 31% is achievable l®aslpiezoelectric patches connected to properlyduasistive shunt
circuits. The damping factor added to the struchyreach shunted piezoelectric patch was evaluatid) an iterative
version of the modal strain energy method. Usingdhshunted piezoelectric patches, tuned to das3rith 4th and
5th eigenmodes, it was shown that average dammotprs up to 1.5% are achievable, yielding a rédncof
approximately 20 dB in the vibration amplitude esanance.
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