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Abstract. Accurate measurement of angular motions is important for a class of modal testing applications. Although 
these quantities can be determined either through expansion of the translational motions or through a direct 
measurement by employing angular accelerometers, there is still need for low cost and reliable alternative techniques 
to quantitatively assess the angular motions in the structure under test. A recently proposed technique using low cost 
PZT transducers seems quite interesting since it uses bimorph piezoceramic patches to measure the structure´s local 
curvature through measurement of the electric potential induced by the extension and compression of the patch´s top 
and bottom stripes, respectively. From this curvature, rotation can be obtained directly by interpolation. In this work, a 
finite element model for the dynamic analysis is proposed to evaluate some important characteristics of bimorphs 
patches applied to the measurement of angular degrees of freedom, which are: i) for one-dimensional structures, like a 
beam, the length of the PZT; and ii) the position of the sensor. Numerical results are compared with experimental data 
considering a cantilever beam as the tested structure. The present study may help to establish a simple and efficient 
piezoelectric rotational sensor leading to a significant improvement on the estimation of the structure´s complete FRF 
response matrix. 
 
Keywords: angular motions, piezoelectric materials, experimental modal analysis, angular FRF 

 
1. INTRODUCTION 
 

Rotational degrees of freedom (RDOFs) have to be taken into account in many areas of structural dynamic analyses 
as independent co-ordinates. However, the possibilities for measuring RDOFs are so limited that in some cases, the 
attempt has to given up and confined to the measured translational degrees of freedom (TDOFs) only (Liu and Ewins, 
1999). 

Several methods have been investigated in order to measure the rotational response. Based on the following ideas: i) 
angular measurements using dedicated sensors based on gyroscopic sensors (Algrain, 1991) and using 
magnetohydrodynamic sensors (Laughling et al., 1992); ii) curve fitting where the data measured directly on the 
vibrating structure in the proximity of the point of interest are fitted with curves (polynomial, splines) in the mono-
dimensional case or (bi-cubic surfaces) in the bi-dimensional case (Ng’andu et al., 1993); iii) the use of laser 
vibrometers in angular measurement of vibrations (Bokelberg et al., 1993); iv) pseudo-rotational transducer comprised 
of an array of two or more translational accelerometers (Yoshimura and Hosoya, 2000) and differentiation of 
translational data (Duarte and Ewins, 2000) and v) PZT transducers (bimorph) that are able to estimate rotational 
quantities (Bello et al., 2003). 

For a general structure the input at an arbitrary point  consists of two vectors: a force and a moment vector. The 
first three components ,  and  are forces in the 

q

1F 2F 3F x , , y z  directions, respectively. The remaining components 
,  and  are moments about the 4F 5F 6F x , , y z  directions, respectively. The structure’s output response at the th 

point consists of two vectors: a vector of linear motions (displacements, velocities or accelerations) and a vector of 
angular motions (displacements, velocities or accelerations). Consequently, the output motion vector at location  has 
six components like the input at location  has six components as well. Thus, between each pair of input-output points 

 and  on the structure, there are potentially 36 input/output FRF relationships (Varoto, 1996). 

p

p
q

p q
Although rotational degrees of freedom can be included in finite element models, experimental FRFs do not because 

of the difficulty of their measurement. Besides, is not possible yet to apply and measure lumped moments to the 
structure to determine the sub-matrices [  and ]FMH [ ]MMH , some strategies could be developed to estimate or measure 

 and consequently [ , because of the symmetry condition.  [ MFH ] ]FMH
In this paper, the use of low cost PZT patches (bimorph), which are able to measure the local curvature of a 

structure, is considered. From it, rotational quantities (rotation) can be obtained either by integration or by interpolation 
techniques. In such case, 75% of the total structure FRF matrix could be determined. Analytical modes method was 
considered to the approximation. A methodology based on genetic algorithm is also presented to find the optimal 
bimorph’s size and position. The bimorph’s results are compared with an angular accelerometer for a cantilever beam. 
 



2. THEORETICAL FORMULATION 
 

A laminate beam with elastic and/or piezoelectric layers is considered. The beam is modelled using classical 
laminate theory that is all layers are subjected to the same displacements field and Euler–Bernoulli assumptions are 
considered. The piezoelectric layers are supposed transversely poled and subject to transverse electrical fields and 
elastic layers are assumed insulated. All layers are assumed perfectly bonded and in plane stress state. The length, width 
and thickness of the beam are denoted by ,  and , respectively.  L b h

Axial displacements ( tzxu ,, )  are assumed linear, whereas transverse ones ( )tzxw ,,  are supposed constant through 
thickness. 
 

( ) ( ) ( )txztxutzxu ,,,, β−= , ( ) ( )txwtzxw ,,, =  (1) 
 

Notice that the same displacements fields u  are considered for all layers. From Euler-Bernoulli hypotheses, 
( ) wtx ′−=,β , where •  is used to denote ′ x∂•∂ . The bottom-plan of the bottom layer (beam) is set to coincide with 

the origin of the z -axis. 
Using the usual strain-displacement relations for each layer, the axial 1ε  strain can be written as: 

 
bm zεεε +=1  (2) 

 
where  and . um ′=ε wb ′′−=ε

The superscripts m , b  state for membrane and bending strains. A constant transverse electrical field is assumed for 
the piezoelectric layers and the remaining in-plane components are supposed to vanish. Although electrostatic 
equilibrium equation is only satisfied with a linear electrical field assumption (Rahmoune et al., 1998), it seems that the 
linear part should be negligible for the kind of problems treated in this work (Trindade et al., 2001). Consequently it is, 
for the th piezoelectric layer, j
 

j

jj

h
V

E −=3  (3) 

 
where  is the difference of electric potential of the th laminae, defined by , where  and  are 
the voltages applied on the upper and lower skins of the th piezoelectric layer. 

jV j −+ −= jjj VVV +
jV −

jV
j

 
2.1. Reduced constitutive equations 
 

Linear orthotropic piezoelectric materials with material symmetry axes parallel to those of the beam are considered. 
,  and  ( ; ) denote their elastic, piezoelectric and dielectric constants. For simplicity of 

notation, all layers will be considered piezoelectric. Elastic layers are obtained by making their piezoelectric constants 
vanish. Due to the plane stress assumption, the three-dimensional linear constitutive equations of an orthotropic 
piezoelectric layer can be reduced to (Benjeddou et al., 1997) 

ijc lje ll∈ 6,,1, K=ji 3,2,1=l
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1σ  and  are axial stress and transverse electrical displacement. Notice that electromechanical coupling in the 

piezoelectric face sublayers is between axial strain and transverse electrical field. This is the conventional piezoelectric 
extension actuation mechanism. 

3D

 
 
 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

2.2. Variational formulation 
 

Using d’Alembert’s principle, the following variational equation can be written for the piezoelectric laminated beam 
 

0=+− WHT δδδ , jVwu δδδ ,,∀  (5) 

 
where Tδ , Hδ  and Wδ  are the virtual work of inertial, electromechanical internal and applied mechanical forces, 
respectively. 

The electromechanical internal forces virtual work of the piezoelectric laminate beam is 
 

∑=
j

jHH δδ  (6) 

 
where 
 

( )∫ Ω−=
Ω j

j
jjj

j dEDH 3311 δδεσδ  

 
with  being the volume of the th layer. jΩ j

Using constitutive equations (4), strain (2) and electrical field (3) relations, then integrating through the cross-
sectional area, the above equations, for the th piezoelectric layer, become j
 

dx
h
V

AwIeuAe
h
V

h
V

IewIcuIcw
h
VA

ewIcuAcuH

j

j
j

j
j

j
j

j

j

j

L

j

j
j

j
j

j
j

j

j

jjj
j

j
j

j
j

⎥
⎥
⎦

⎤
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∈−′′−′+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−′′+′−′′+

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+′′−′′= ∫

333131

0
311111311111

δ

δδδ

 (7) 

 
Notice that there are membrane-bending coupling terms due to the multilayer characteristic of the beam. , jA jI  and  
are, respectively, the area and the first and second moments of area of the th layer cross-section. These are 

jI
j
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where the local z -axis of the th layer is situated at its bottom plan, such that j
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The inertial forces virtual work of the laminate beam is 

 
∑=

j
jTT δδ  (9) 

where 
 

( )[ ]∫
Ω

Ω+−=
j

jjj dwwuuT &&&& δδρδ  

 
with  being the volume mass density of the th layer and jρ j •&  stating for t∂•∂ . Using the displacements relations 
(1) and integrating through the cross-sectional area, the above equation become 
 

( )∫ +−=
L

jjj dxwwuuAT
0

&&&& δδρδ  (10) 



 
Notice that the rotary inertia and the translation-rotation inertial coupling terms are neglected to simplify the model. 

The virtual work of axial and transversal forces applied to each layer can be written as 
 

∑=
j

jWW δδ  (11) 

 
where 
 

( )∫ ′++=
L

jjjj dxMwwVuNW
0

δδδδ  (12) 

 
where ,  and  are the normal, transversal and moment resultants applied to the th layer. jN jV jM j
 
2.3. Equations of motion 
 

The equations of motion for the entire beam could be written by 
 

( ) 0=+−∑
j

jjj WHT δδδ , jVwu δδδ ,,∀  (13) 

 
Using the relations in (7), (9) and (11) the above equation becomes 
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Notice that, in despite of the Euler-Bernoulli hypotheses where  and  are the same for each layer, the differences of 
electric potential  of each layer are independent. Hence, the equations of motion become 

u w
jV
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Since we are interested in evaluating the unknown electric potential induced at a piezoelectric sensor by the 

vibration of the structure, Eq. (15c) could be solved for  leading to jV
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Notice that equation (16) is the reason to use bimorph sensors. With only one piezoelectric patch it is not possible 

to determine the voltage only from the curvature w ′′  since it is also dependent of the axial displacement. However, if 
we make use of an identical pair of piezoelectric patches bonded on each other (bimorph), we may write that 
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where for piezoelectric patches with rectangular cross-section 
 

wh
e

VV ′′
∈

−=− 2

33

31
12  (18) 

 
Finally, the local curvature could be directly associated with the voltage measured from each bimorph by 
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3. GETTING ROTATIONS FROM PZT BIMORPH MEASUREMENTS 
 

To determine rotation from the local curvature measured using the bimorph transducer one approximation method is 
proposed in what follows. 

 
3.1. Analytical modes interpolation 
 

Using analytical modes for interpolation, the beam displacement field can be approximated by: 
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where ( )xiφ  represents the th analytic modal shape for a cantilever Euler-Bernoulli beam. In such case, the terms i ( )i

ja  
( ) can be evaluated for a given polynomial order . pj K,0= p

The analytical modes coefficients ( )tiα  can be determined by enforcing the structure’s four boundary conditions 
and the curvatures, evaluated from the voltages induced on the bimorph sensors, at  measurement locations for each 
time instant . However, having assumed  bimorph sensors, the total number of coefficients that can be determined 
is , since the geometric boundary conditions are already embedded into the analytical modes shapes. 

N
it N

2+N
According to (20) and boundaries conditions for a cantilever beam, the system could be written by 
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Notice that the total number of modes that can be used into the approximation is equal to , since we have to write 
a square matrix to solve the system of equations (21). 

2+N

Finally, the rotation at a position  can be approximated by outx
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )outNNoutNNoutoutout xtxtxtxttxw 22112211 ...., ++++ ′+′++′+′=′ φαφαφαφα K  (22) 
 
4. NUMERICAL RESULTS 
 

A Matlab® program was developed according to assumptions made previously to determine rotational FRFs for an 
aluminum cantilever beam with dimensions 325500 ×× mm3. The beam was excited by a transversal force at its free 
end in the 0-500 Hz frequency range (Figure 1). 
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Input
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L

bx

 
 

Figure 1. Configuration of the numerical set-up 
 
In order to provide a quantitative comparison, an overall error term (fitness) was created to be used for comparisons 

between angular FRFs (FRFA) from finite element and bimorph results (Cafeo et al., 1992).  
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where  represents the number of points into the range of analysis. N

Figure 2 shows the necessity of optimize the bimorph’s pair: length-position. It could be observed that for a specific 
output response point ( ) there is a great change for the fitness function in terms of the position of the bimorph 
sensor along the beam and in terms of bimorph’s length. 

outx

 

 
 

Figure 2. Fitness function according to 3 types of bimorph’s length and beam’s position 
 
4.1. Optimization using genetic algorithms 
 

Genetic Algorithms (GAs) are adaptive heuristic search algorithm premised on the evolutionary ideas of natural 
selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for 
evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. 

In this paper, genetic algorithm was used for optimal placement and sizing of the bimorph on a cantilever beam 
considering the fitness function presented in (23). A simple genetic algorithm based on binary basis was used with the 
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following configuration: population size = 30; mutation rate = 0.05, crossover rate = 1.00 with one-point brake and 
chromosome with 14 bits: 6 bits for bimorph’s position and 8 bits for bimorph’s length. 

Figures 3 and 4 presents best, average and worst fitness evolution and optimal results for two different beam’s point 
response: mm and mm. The optimal locations and size were found as follows: 100=outx 250=outx 271 =bx mm, 

mm and mm, mm, respectively.  291 =bs 1772 =bx 252 =bs
 

  
 

Figure 3. Fitness evolution and comparison between FE (---) and bimorph (⎯) angular FRFs for beam angular 
response at 100mm 

 

  
 

Figure 4. Fitness evolution and comparison between FE (---) and bimorph (⎯) angular FRFs for beam angular 
response at 250mm 

 
Notice that we make use of analytical modal shapes with a polynomial order  equal 8.  p

 
4.2. Experimental results 
 

Figure 5 shows the basic experimental set-up used during the tests. The test used a PCB impact hammer 086C03 
( NmV28.2  without extender), a Kistler 8836M01 angular accelerometer (18.5 grams) to measure the angular 
acceleration, an ICP sensor power unit model 480C02 and a VDC power supply. 

Exponential windows were used in both the input and output signals and the angular accelerometer sensor were 
attached to the beam by a single 10-32 socket head cap screw. 4096 spectral lines were used into the Fourier signal 
analyzer (SignalCalc® ACE). 

Figure 6 shows a comparison between angular FRFs obtained by an angular accelerometer and the numerical results 
of the bimorph sensor for beam angular response at 250mm and 400mm, respectively. 

Notice that in the Fig. 6 the angular FRFs are quite similar but the angular FRF from angular accelerometer does 
not consider the presence of bimorph, as well as, angular FRF from numerical bimorph does not consider the presence 



of the angular accelerometer. Also, the noise that can be seen in the angular receptances is due the accelerometer low 
sensitivity (about ) which leads to low signal to noise ratio. 2//34 sradVμ

 

 
 

Figure 5. Experimental set-up 
 

  
a) mm 250=outx b) 400=outx mm 

 
Figure 6. Comparison between Kistler 8836M01 (---) and numerical bimorph angular FRFs ( ⎯). 

 
5. CONCLUSIONS 
 

In this work, dynamic analysis was proposed to evaluate a piezoceramic bimorph sensor that can provide curvature 
measurements from which, by interpolation techniques, angular frequency response functions can be determined.  

The comparison of the bimorph sensor results to those obtained directly by rotational degrees of freedom included in 
a finite element model shows that the bimorph sensor is reliable for rotational FRF measurements. The analysis also 
showed the suitability of the optimization algorithm to obtain optimal locations and size of the bimorph sensor in beam-
like structures in order to procure a good agreement between FE results and bimorph results. 

Further work will be focused into the optimization of position and length of several bimorph sensors using genetic 
algorithms for structures like beam and plates. 
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