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Abstract. The Immersed Boundary Method is a powerful method for sitimgldlows in complex geometries (structures).
In this method, complex geometries boundaries are alwaygedded in rectangular domain analysis, and the presence
of the structure is modelled by some way around immerseddzoigs (interfaces): (1) modification of the stencil of cal-
culation around the interface; (2) modeling of one forciegm at the interface and spreading this over fluid, and anothe
mechanism. This work shows a new mathematical modelingdbigms of interaction between an incompressible fluid
and structures, and it is based on the concept of forcing temnthe interface. In this case, a modeling of forcing term
is based on philosophy of Virtual Physical Model ( determgnihe force using its own lay that govern the movement of
fluid and desirable dynamic to the interface). The bidimemai equations of methology are solved in the context o&finit
difference method, regular staggered grid and explicitjifetion Method with second-order accuracy in space and.time
Two problems are simulated, where one or two regions in the $ieparated by the interface are interesting to study: flow
over a stationary circular cylinder and flow inside of thresating concentric cylinders. Results show a good agre¢men
with the reported ones in literature.

Keywords: Finite difference method, Navier-Stokes equations, ImeteBoundary Method, Fluid-structure interaction.
1. Introduction

Mathematical Modeling represents special relashionghgpseen different unknows related to some problems. De-
pending on the problem, different mathematical modelingabe found. For example, for fluid-structure interactian c
be mentioned, between anoter: (1) modeling that imposéesrial) boundary presence by contour condition (Hu, 1996);
(2) modeling that considers a bigger, simpler rectangutanain to the analyse domain and imposes interface presence
by a procedure, based on physical problem. This last magladiknown as the Immersed Boundary Method (Mittal and
laccarino, 2005).

The Immersed Boundary Method presents the advantage af bemputational cheap related to methodologies that
use boundary conditions (Fadlun et al. (2001)), becausasbef a Cartesian grid allows the use of existing, eficiente
methods to solver discret equations associated to the flateover, in problems involving structures in movement, it
is not necesary to reconstruct the Eulerian grid of fluid. @isadvantage is there is not exact expression to the forcing
term to be used in the fluid equations properly. This featemel$ to appear a lot of methodologies which presented good
behaviour in the experiences presented for the authors.

Peskin was the first in presenting a mathematical model base@M and then the Peskin model is known by
Immersed Bounday Method (Peskin, 1972). Following, it iscithe Peskin IBM expression to refer to Peskin specific
model. The aplicability of Peskin methodology was demaistt in numerical simulations of different problems (Peski
2002) and even though he has deduced his mathematical masbs for boundaries with elastic properties, it was used
to simulate interaction between fluid and rigid-structuter example, the study of flow around a rigid circular cylinde
immersed in the fluid (Lai and Peskin, 2001). In this work nipose physical characteristic of the cylinder rigidityaich
used a force model based on the Hooke’s law defined on théaoeerThis force modeling needs the value of a constant
to be determined in such a way to impose non movement on theane.

Another expression for the force field on the interface was@nted by Lima e Silva et al. (2003). The force modeling
was based on both the law that governs the fluid and the désitgbamics for the interface. This force modeling is not
dependent the constants to be adjusted and it is known asaVPPhysical Model. Different numerical simulations for
problems about fluid-structure (rigid) interaction, praeel in literature, had shown the applicability of the melblogy
IBM/VPM. These are some examples: flow around a circulamdgr; flow around a sphere; flow around an airfoil;
movement of a pendulum immersed in a fluid, between another.

To problems of fluid-structure (rigid) interaction, metlodohies of immersed boundary mentioned above and other
ones that was not described on this work (Fadlun et al. (90@&)e used to study problems where the study focus is one
the regions defined by the interface: internal or external.flbhe actual proposal is to consider problems where one or
both interface defined regions as interesting parts to study

A fundamental step to prove if there is or not mathematichlecence in a mathematical modeling is by numerical
verifying of solution convergence. In the case of Peskinholegy, they are works like Lai and Peskin (1998), Enriquez-
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Remigio and Roma (2005), etc. that had shown such methoglasents first-order spatial convergence. A similar
result for a IBM/VPM methodology was presented by ArrudaO@0and Enriquez-Remigio (2005). These results was
found to fluid-structure interaction problems in which thristure presents a prescribed motion.

In this work, it is presented a mathematical model based oW/VB®M to solving interaction problem between a
incompressible fluid and a immersed rigid-structure. Thesentation of this work is divided in that way: In Section 2,
it is presented the mathematical modeling proposal; the enigad method as well as some used numerical relationships
are presented on Section 3; numerical results of two simdlptoblems are presented on the Section 4, showing that:
(1) there is convergence to a problem with known analyticit®n; (2) as well as coherences on the computational
parameters found to a known problem; conclusions and futor&s are indicated on Section 5.

2. Mathematical Model

The actual mathematical modeling is based on Immersed Boyrdethod that uses a forcing term (in the fluid
equations) to model the presence of the immersed strudfgpeations to incompressible fluid in rectangular domain are
given by the Navier-Stokes equations:

p(@(x,tﬂ—u-Vu(x,t)) = Vp(x, ) + 2ud(x, 1) +F(x, 1), X € Q, )

ot
V -u(x,t) = 0, X € Q, (2)

where,u is the velocity and, the pressure of the fluid. Physical paramefeesd ., constant on space and time, are

respectively the specific mass and the dynamic viscodity, w is the defomation rate measurer anig the
external force field that represents the presence of a inedetsucture.

On the Figure 1-(a), it is drawn a tipycal domain of fluid-stures interaction() with the interface I'(¢)) that
represents the boundary of the immersed structure. In #se,che interface divide the fluid domain in two disjoint
regionsQ~(¢) andQ ™ (¢) (internal and external region of the interface, respebtjvén the other side, in the Figure 1-(b),
it is presented the force field around the interface that sepdhe presence of the structure.

Q* (1)

(@ (b)
Figure 1. Immersed Boundary Method: (a) geometrical conditjon of fluid-stuture interaction; (b) force field on the
equations of fluid imposing structure presence.

To model the forcing term, it is used the ideas of Virtual RtgidModel (Lima e Silva et al. (2003)): (1) determination
of the forcing term on the interface based on both the fluichiqos and the condition of structure motion; (2) the use of
data of interesting region (one of the regions in which therfiace divide the fluid domain) to determine the value of the
forcing term expression. In the actual modeling, two formescalculatedf(” andf* ), one in such defined region by the
interface. The expression of the total forcing term is

)+ (X t),  xeT(t) ={X(s,t)/s € [a,b] e t >0},
foxt) = { 0, otherwise, (3)
whereX (s, t) is the parametric form of the closed cumé) and expressions to terrfis andf~ are:
+ ou™ + + +
X0 = (p(F + W VU ) + Vot = V- 2ud)* ) (X(s, ), ). (@)
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= (X(s,0),1) = (p(%i—k(u-Vu)_)+Vp_—V-(2ud)_)(X(s,t),t). ()

The superscript (+) or (-) in Eq. (4) and Eq. (5) indicate tiintse forces are calculated by using informations of

regions2™ andQ2~, respectively. The Figure 2, illustrates the immersedfate with the two forcing terms, as well as
the resulting forcing term.

f "‘1 f+
L'(t) |

0

Figure 2. Resulting forcing field illustration, Eq. (3), imetnew modeling

Temporal derivates in Eq. (4) and Eq. (5), are approximayed b

ou™ U (X (8, 1), arn) — UF(X(s, ta), 1)
E (X(S,tn),tn) ~ Al , (6)
% (X(s,tn),tn) = uf(x(s’t”“)’t”?t_ui(x(s’t"%t”). 7

Forimmersed bodies where the immersed struture veldéi®y,t,, 1), is prescribed or determined by another relation
(no-slip condition):

U+(X(S,tn+1),tn+1) = Ui(X(S’thrl)’thrl) = V(Svthrl)- (8)
By using the Eqg. (8) in the equations (6) and (7), we have:

out  V(sitpgr) —UT(X(s, ), )

E (X(Svtn)vtn) - At ) (9)
@7 _ V(S7tn+1) — U_(X(S,tn),tn)

Y (X(8,tn),tn) = 7 . (20)

The expression to the force tefngiven in Eq. (3), as well as calculation of its composing tei(®ection 3.1), they
are this proposal features.
To maintain the convection about using capital letters tiatdes defined on the interface, it is denoted the force in

Eq. (3) byF = F(X(s,t),t), because it has only different values from zero on the iaterf Such force is also named a
Lagrangian force

3. Numerical Method

In this work it is used a finite difference method of secondeornith a grid of regular MAC type. The advancing
time was based on a explicit second order Runge-Kutta methddhe Navier-Stokes equation solutions was made by a
projection method.

The curveX(s, t) was discrete iV pl points equally spaceds), denominated by Lagrangian grid (spacing between
the Lagrangian grid points equals to the middle of reguldefan grid spacing pointg)z = Ay).

In practise the Lagrangian grid points do not coincide toBEéerian grid points (fixed), and this do not allow us
to determine the terms that composes the force in Eq. (4) and(®) and the total forcing term formulate Eq. (3),
directly. The first difficulty could be solver by an interptitan process, and the second one, by a extapolation promess (
distribution), Following, it is presented the interpotatiand extrapolation process that were used in this work.

3.1 Calculation process of the force given by VPM

Field forcing terms given in Eq. (4) and Eq. (5) have first aedosd order derivate on the space. To calculate such
terms, it is adopted a similar precedure to that one adoptédhita and Silva et al. (2003), i.e. to consider aditionaiisi
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on the interesting region, detemining values on these péamtvelocity and pressure (by an interpolation procesd) an
then determine the term values that are finding. In this wibisconsidered six aditional points in each region detesdi
by the interface. Three of these six points are onatfdirection and three other ones areypuirection. The Figure 3,
presents an example of six aditional points in each of regitafined by the interfac(, i=1,2,.. ,6 eX;,i=1,2,..,
6.).

Figure 3. Additional pointX{, ... ,X{ eX7,...,Xg used on determination process of force term componentsi(4) a
(5), respectivelly.

In these auxiliary points and in the Lagrangian point we ieiee velocity and pressure denoted ky:, v}, p;)
i = 1,.27 o ,6 and(u;k,v;k,pre;k), where * could be + or - , depending on the region calculatibris adopted the
following interpolation process:

o*(X;) = Jo #(X)3 (X — X;) I* (X)dz dy
VT X = X)X dady
where the functior represents the variable to be interpolated (velocity osguee component). Functidri(x) is a

function that indicates if a point is from interesting regio( Q" (¢) or Q= (¢) ). Itis 1 if thex point is from the region *
and 0O, in another case.

(11)

3.2 Extrapolation process to calculate the Euleriana griddrce

Lima and Silva et al. (2003) used an extrapolation proce#iseoforce calculated from Lagrangian points to Eulerian
points. Such process is given by the following discrete flamu

Npl PR —
flxs) = > ) 2R 12
k=1 ‘

where functionD is a function of distribution with the property (zfjm D(x;,;) = 1 (Peskin, 2002).
A reason to the statement (12) could be found in Enriquezigerf2005) . The extrapolation formula (12), allows to
satisfy the following discrete identity

Npl
> fiAzAy = FrAspAsy, (13)
,J k=1

Such statement, Eq. (13), indicates that interface forcerigpletely spread to the fluid domain.
3.3 Calculation of the drag and lift coefficient

Thef = (f,,f,) force defined in Eq. (3) is the force with the interface actsrdhe fluid to impose the boundary
presence. Because the action-reaction principle, the bagdgriments a force with the same intensity but in opposite
direction; based on it and on the statement (13) and supgptsi the fluid movement is in thedirection, the drag and
lift forces are given by, and 'y, respectively, where

Nopl

Fp = Y (fo,)AzAy =Y (—=(Fi)z)AsiAsy, (14)

ij k=1
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Fr o= > (~fy,)AzAy =) (—(Fi)y)AspAsy, (15)
i,j k=1

Therefore, the drag and lift coeficient are given by:
FD FL

71 AN 779 19 CL = 7T o8N 779 39

(1/2)pUZd (1/2)pUZd

where,U, andd represent an specific speed and distance, respectively.

Cp = (16)

4. Results

In this section they are presented numerical results obdaivith the new proposal. Two problems are simulated: (1)
internal flow in three rotating concentric cylinders and f{@)v around a stationary cylinder. With the first one we can
verify: () the applicability of the methology to numerisaiulation fluid-structure interaction where two regioe$ided
by the interface are interesting to study and (b) the approader of this method. In the second one, we can verify the
applicability of the methodology to solver problems whené/ane region are interesting to study.

4.1 Internal flow of three rotating concentric cylinders

Flow in three rotating concentric cylinders is an extengibmterior flow of two rotating concentric cylinders. This
last one is known as circular Couette flow, that has analysiclution. Suppose that; andw, are rotation velocities
of concentric cylinders withr; andrs ratio (-1 < r2), respectively. So, the exact velocity to the flow betweenttto
cylinders is given in cylindrical Coordinates by:

B
v(r) = Ar + - a7

whereA and B are constants to be determined by the wall conditions, gadfithese constants are, respectively:

'LUQT% — wlrf

4 = 2 _ 2
2"

2,.2

(w1 — wa)riry

B = -
Ty —T
2"

To represent the cylinder presences on Eulerian bidimeakiiomain it is used three Lagrangian grid. The first
grid represents the first internal cylinder, withratio andw; rotational velocity; the second grid represents the second
cylinder, with r, ratio andw, rotational velocity and the third grid represents the thliytinder with r3 ratio andws
rotational velocity (Figure 4).

T3

Figure 4. Three concentric internah §, middle ¢-2), external £3) cylinders.

In this work it is simulated the case in which the second dgdinis rotating in counter-clockwise direction and the
other cylinders are stopped.
Simulation parameters are:

e Q= 0,0.009] x [0,0.009]

p = 1000Kg/m3, p = 0.001kg/m s

r1 = 0.001m, ro = 0.002m, r3 = 0.0035m, d12=0.001m, deg= 0.0015m, r3/r1 =2 €rs/ro = 1.75

wy = 0.0rad/s, we = 2.0rad/s ews = 0.0rad/s
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e Initial condition:u(x, 0) = (0,0)
e Boundary condition in external Eulerian contour for theoe#ly is homogeneous Dirichlet

It was realized simulations to three different sizes of Hale and Lagrangian grids. In Table 1, it is presented
descriptions related to the Eulerian and Lagrangian gvid&re: Nply, Npl, and Npls are the quantity of Lagrangian
points to the first, second and third cylinders, respedjiveind NCd;; is the quantity of Eulerian cells of separation
between the cylinderiand j.

Table 1. Circular Couette flow:Eulerian and Lagrangian gizes.

NI = Ny Npll Nplg Nplg Az NCdlg NCng
90 126 | 252 | 440 | 1.0e-02 10 15
180 252 | 504 | 880 | 5.0e-03 20 30
360 504 | 1008 | 1760 | 2.5e-03 40 60

The criterion to determine if the steady state was reachledssed on Oliveira (2000):

O(u,v) €
I llmaz < ,
ot NN,

where the value of is a constant, and in that case it is adopted the value of 0.001

Itis calculated the maximum error norm on the ring regiontsiefconcentric cylinders, between the numerical solution
obtained and the exact solution respectively, Eq. (17),elkag the ratio of errors to grids NxN and 2Nx2N. Results of
Table 2 show a convergence of order one. These results wastexly because of Immersed Boundary Method is a first
order method, as discussed in Arruda (2004), Enriquez-gert2005), Lai and Peskin (2001), and so on.

Table 2. Error norms on interesting regions: Region 12, ®&egB. Case where the middle cylinder rotates and the other
ones are stopped.

n | llerro(12)|leo Ratio lerro(23)]] s Ratio
90 1.73041e-02 1.69802e-02
180 | 1.25020e-02| 1.384107| 1.22614e-02| 1.384850
360 | 5.26030e-03| 2.376671| 5.43021e-03| 2.257997

00400
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00346
00320
00293
00266
00239
00213
00186
00159
00132
00106
00079
00052
. 00025

coocoocoo000000000

NS 2

Figure 5. Ring region flow of three rotating concentric cgliéns. The case in which the middle cylinder rotates counter-
clockwise. Streamlines in function of the velocity normath lines represent the circular concentric cylinders).

The streamlines on the Figura 5 show three important bebawgintained by the methodology: (1) streamlines around
the middle cylinder follows its rotation counter-clockeidirection; (2) streamlines on the internal region aroure t
internal cylinder and external region around the exterplishder are counter-rotative, reflecting the recuperatibnon-
movement boundary condition that was virtually modelleérahis cylinder; and (3) streamlines around the Eulerian
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boundary domainy = 012, present recirculations on neighborhood corners of thisalo. Note that the external flow to
the ring channel is inducted purely by the force field calmddy VPM. It is interesting to perceive that secondaryscell
was capturated on four domain corners.

4.2 Flow over a circular cylinder

Flow around a circular cylinder is a classic problem that wsed to test numerical methodologies. To this problem,
depending on Reynolds number, drag and lift coeficients amvk, between another. Moreover, this problem tests
methodology flexibility to lead with problems where one ajimns defined by the interface is interesting to study.

Following, it is presented results obtained from simulatd flow around circular cylinder by using the new proposal
for several Reynolds numbers. Simulations were developlémhifing the same configurations that was used by Lima and
Silva et al. (2003), basically.

The flow moves itself from left to right side because of the asifion of constant velocityl/.., as a left boundary
condition. In the other boundaries it was imposed homogeséteumann condition type. The doméin= [0, L] x
[0,L,], whereL,, = 35D andL, = 15D, andD is the diameter of the circular cylinder. The circular cylém position
have as coordinates= 16.5D andy = 7.5D (Figure 6). The Reynolds number is definedras= %. The initial
condition to the velocity iU, 0). In this case, it was considered a circular cylinder with antéterD = 0.1. The
fluid densityp = 1, U,, = 1.0 and the viscosity were imposed in such a way that it could Issipte obtain the properly
Reynolds number.. The Eulerian grid consist§@i x 300 cells (Axz = 0.005) and the number of Lagrangian points of
the Npl = 256 points.

Figure 6. Geometry for flow passing a stationaty cylinder.
In Tables 3 e 4, it is presented a summarize of drag and liffficents to different Reynolds numbers, respectivelly,
obtained by the actual methogology and registered on fiteza You can see that the results present good concordance
with those ones just obtained by another authors.

Table 3. Drag coefficients to different Reynolds numbers.

Re | Presentwork | Lima e Silva| Triton | Liu De Tullio Le

et al. (2003) etal. (1998) | etal. (2007) | etal (2006)
40 | 1.537 1.54 1.48 1.55 1.56
80 | 1.380+-0.004| 1.40 1.29
100 | 1.357+0.010| 1.39 1.350+ 0.012| 1.324-0.010| 1.374 0.009
150 | 1.329+ 0.018 | 1.37 1.339+ 0.030
200 | 1.317+0.037 1.310+ 0.049| 1.344-0.045| 1.3440.030
300 | 1.302+ 0.063| 1.27
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Table 4. Lift coefficients to different Reynolds numbers.

Re | Presentwork| Liuetal. (1998)| De Tullio et al. (2007)| Le et al. (2006)
40 0.0

80 +0.258

100 +0.321 +0.390 +0.331 +0.323
150 +0.486 + 0.530

200 +0.617 + 0.690 + 0.680 +0.430
300 +0.748

5. Conclusion

In this work it was presented a new approach to use IBM/VPIst, pinesents a general feature, in the sense of it serves
to model problems where one or both regions divided by therfiate are interesting to study. Results presented for two
problems show that:

e First-order spatial convergence,;
e Applicability to solver problems where one of the interfaegions is interesting to study.

Some future steps could be focused on studying the use ahtitisodology to solver more complex problems.
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