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Abstract.The Immersed Boundary Method is a powerful method for simulating flows in complex geometries (structures).
In this method, complex geometries boundaries are always embedded in rectangular domain analysis, and the presence
of the structure is modelled by some way around immersed boundaries (interfaces): (1) modification of the stencil of cal-
culation around the interface; (2) modeling of one forcing term at the interface and spreading this over fluid, and another
mechanism. This work shows a new mathematical modeling for problems of interaction between an incompressible fluid
and structures, and it is based on the concept of forcing termon the interface. In this case, a modeling of forcing term
is based on philosophy of Virtual Physical Model ( determining the force using its own lay that govern the movement of
fluid and desirable dynamic to the interface). The bidimensional equations of methology are solved in the context of finite
difference method, regular staggered grid and explicit Projection Method with second-order accuracy in space and time.
Two problems are simulated, where one or two regions in the fluid separated by the interface are interesting to study: flow
over a stationary circular cylinder and flow inside of three rotating concentric cylinders. Results show a good agreement
with the reported ones in literature.
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1. Introduction

Mathematical Modeling represents special relashionshipsbetween different unknows related to some problems. De-
pending on the problem, different mathematical modeling could be found. For example, for fluid-structure interaction can
be mentioned, between anoter: (1) modeling that imposes (internal) boundary presence by contour condition (Hu, 1996);
(2) modeling that considers a bigger, simpler rectangular domain to the analyse domain and imposes interface presence
by a procedure, based on physical problem. This last modeling is known as the Immersed Boundary Method (Mittal and
Iaccarino, 2005).

The Immersed Boundary Method presents the advantage of being computational cheap related to methodologies that
use boundary conditions (Fadlun et al. (2001)), because theuse of a Cartesian grid allows the use of existing, eficiente
methods to solver discret equations associated to the fluid.Moreover, in problems involving structures in movement, it
is not necesary to reconstruct the Eulerian grid of fluid. Thedisadvantage is there is not exact expression to the forcing
term to be used in the fluid equations properly. This feature leads to appear a lot of methodologies which presented good
behaviour in the experiences presented for the authors.

Peskin was the first in presenting a mathematical model basedon IBM and then the Peskin model is known by
Immersed Bounday Method (Peskin, 1972). Following, it is used the Peskin IBM expression to refer to Peskin specific
model. The aplicability of Peskin methodology was demonstrated in numerical simulations of different problems (Peskin,
2002) and even though he has deduced his mathematical model based for boundaries with elastic properties, it was used
to simulate interaction between fluid and rigid-structure.For example, the study of flow around a rigid circular cylinder
immersed in the fluid (Lai and Peskin, 2001). In this work, to impose physical characteristic of the cylinder rigidity it had
used a force model based on the Hooke’s law defined on the interface. This force modeling needs the value of a constant
to be determined in such a way to impose non movement on the interface.

Another expression for the force field on the interface was presented by Lima e Silva et al. (2003). The force modeling
was based on both the law that governs the fluid and the desirable dynamics for the interface. This force modeling is not
dependent the constants to be adjusted and it is known as Virtual Physical Model. Different numerical simulations for
problems about fluid-structure (rigid) interaction, presented in literature, had shown the applicability of the methodology
IBM/VPM. These are some examples: flow around a circular cylinder; flow around a sphere; flow around an airfoil;
movement of a pendulum immersed in a fluid, between another.

To problems of fluid-structure (rigid) interaction, methodologies of immersed boundary mentioned above and other
ones that was not described on this work (Fadlun et al. (2001)), were used to study problems where the study focus is one
the regions defined by the interface: internal or external flow. The actual proposal is to consider problems where one or
both interface defined regions as interesting parts to study.

A fundamental step to prove if there is or not mathematical coherence in a mathematical modeling is by numerical
verifying of solution convergence. In the case of Peskin methology, they are works like Lai and Peskin (1998), Enriquez-
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Remigio and Roma (2005), etc. that had shown such methodology presents first-order spatial convergence. A similar
result for a IBM/VPM methodology was presented by Arruda (2004) and Enriquez-Remigio (2005). These results was
found to fluid-structure interaction problems in which the structure presents a prescribed motion.

In this work, it is presented a mathematical model based on IBM/VPM to solving interaction problem between a
incompressible fluid and a immersed rigid-structure. The presentation of this work is divided in that way: In Section 2,
it is presented the mathematical modeling proposal; the mumerical method as well as some used numerical relationships
are presented on Section 3; numerical results of two simulated problems are presented on the Section 4, showing that:
(1) there is convergence to a problem with known analytical solution; (2) as well as coherences on the computational
parameters found to a known problem; conclusions and futureworks are indicated on Section 5.

2. Mathematical Model

The actual mathematical modeling is based on Immersed Boundary Method that uses a forcing term (in the fluid
equations) to model the presence of the immersed structure.Equations to incompressible fluid in rectangular domain are
given by the Navier-Stokes equations:

ρ
(∂u

∂t
(x, t) + u · ∇u(x, t)

)

= −∇p(x, t) + 2µd(x, t) + f(x, t), x ∈ Ω, (1)

∇ · u(x, t) = 0, x ∈ Ω, (2)

where,u is the velocity andp, the pressure of the fluid. Physical parametersρ andµ, constant on space and time, are

respectively the specific mass and the dynamic viscosity,d = (∇u+∇
tu)

2 is the defomation rate measurer andf is the
external force field that represents the presence of a immersed structure.

On the Figure 1-(a), it is drawn a tipycal domain of fluid-structures interaction (Ω) with the interface (Γ(t)) that
represents the boundary of the immersed structure. In this case, the interface divide the fluid domain in two disjoint
regionsΩ−(t) andΩ+(t) (internal and external region of the interface, respectively). In the other side, in the Figure 1-(b),
it is presented the force field around the interface that imposes the presence of the structure.

Γ(t)
Ω−(t)

Ω+(t)

(a) (b)

Figure 1. Immersed Boundary Method: (a) geometrical configuration of fluid-stuture interaction; (b) force field on the
equations of fluid imposing structure presence.

To model the forcing term, it is used the ideas of Virtual Physical Model (Lima e Silva et al. (2003)): (1) determination
of the forcing term on the interface based on both the fluid equations and the condition of structure motion; (2) the use of
data of interesting region (one of the regions in which the interface divide the fluid domain) to determine the value of the
forcing term expression. In the actual modeling, two forcesare calculated (f− andf+ ), one in such defined region by the
interface. The expression of the total forcing term is

f(x, t) =

{

f+(x, t) + f−(x, t), x ∈ Γ(t) = {X(s, t)/s ∈ [a, b] e t ≥ 0},
0, otherwise,

(3)

whereX(s, t) is the parametric form of the closed curveΓ(t) and expressions to termsf+ andf− are:

f+(X(s, t), t) =
(

ρ
(∂u

∂t

+

+ (u · ∇u)+
)

+ ∇p+ −∇ · (2µd)+
)

(X(s, t), t). (4)
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f−(X(s, t), t) =
(

ρ
(∂u

∂t

−

+ (u · ∇u)−
)

+ ∇p− −∇ · (2µd)−
)

(X(s, t), t). (5)

The superscript (+) or (-) in Eq. (4) and Eq. (5) indicate thatthese forces are calculated by using informations of
regionsΩ+ andΩ−, respectively. The Figure 2, illustrates the immersed interface with the two forcing terms, as well as
the resulting forcing termf.

f
Γ(t)

f−

f+

Ω−(t)
Ω+(t)

Figure 2. Resulting forcing field illustration, Eq. (3), in the new modeling

Temporal derivates in Eq. (4) and Eq. (5), are approximated by

∂u
∂t

+

(X(s, tn), tn) ≈
u+(X(s, tn+1), tn+1) − u+(X(s, tn), tn)

∆t
, (6)

∂u
∂t

−

(X(s, tn), tn) ≈
u−(X(s, tn+1), tn+1) − u−(X(s, tn), tn)

∆t
. (7)

For immersed bodies where the immersed struture velocity,V(s, tn+1), is prescribed or determined by another relation
(no-slip condition):

u+(X(s, tn+1), tn+1) = u−(X(s, tn+1), tn+1) = V(s, tn+1). (8)

By using the Eq. (8) in the equations (6) and (7), we have:

∂u
∂t

+

(X(s, tn), tn) =
V(s, tn+1) − u+(X(s, tn), tn)

∆t
, (9)

∂u
∂t

−

(X(s, tn), tn) =
V(s, tn+1) − u−(X(s, tn), tn)

∆t
. (10)

The expression to the force termf given in Eq. (3), as well as calculation of its composing terms (Section 3.1), they
are this proposal features.

To maintain the convection about using capital letters to variables defined on the interface, it is denoted the force in
Eq. (3) byF = F(X(s, t), t), because it has only different values from zero on the interface. Such force is also named a
Lagrangian force

3. Numerical Method

In this work it is used a finite difference method of second order in a grid of regular MAC type. The advancing
time was based on a explicit second order Runge-Kutta methodand the Navier-Stokes equation solutions was made by a
projection method.

The curveX(s, t) was discrete inNpl points equally spaced (∆sk), denominated by Lagrangian grid (spacing between
the Lagrangian grid points equals to the middle of regular Eulerian grid spacing points,∆x = ∆y).

In practise the Lagrangian grid points do not coincide to theEulerian grid points (fixed), and this do not allow us
to determine the terms that composes the force in Eq. (4) and Eq. (5) and the total forcing term formulate Eq. (3),
directly. The first difficulty could be solver by an interpolation process, and the second one, by a extapolation process (or
distribution), Following, it is presented the interpolation and extrapolation process that were used in this work.

3.1 Calculation process of the force given by VPM

Field forcing terms given in Eq. (4) and Eq. (5) have first and second order derivate on the space. To calculate such
terms, it is adopted a similar precedure to that one adopted by Lima and Silva et al. (2003), i.e. to consider aditional points
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on the interesting region, detemining values on these points for velocity and pressure (by an interpolation process) and
then determine the term values that are finding. In this work,it is considered six aditional points in each region determined
by the interface. Three of these six points are on thex-direction and three other ones are ony-direction. The Figure 3,
presents an example of six aditional points in each of regions defined by the interface (X+

i , i = 1,2,.. , 6 eX−

i , i = 1,2,.. ,
6.).

X+
1X

+
2X+

3

X+
4

X+
5

X+
6

Figure 3. Additional pointsX+
1 , . . . , X+

6 eX−

1 , . . . , X−

6 used on determination process of force term components (4) and
(5), respectivelly.

In these auxiliary points and in the Lagrangian point we determine velocity and pressure denoted by:(u∗

i , v
∗

i , p∗i )
i = 1, 2, ... , 6 and(u∗

fk, v∗fk, pre∗fk), where * could be + or - , depending on the region calculation.It is adopted the
following interpolation process:

φ∗(Xi) =

∫

Ω
φ(x)δ(x − Xi)I

∗(x)dx dy
∫

Ω δ(x − Xi)I∗(x)dx dy
, (11)

where the functionφ represents the variable to be interpolated (velocity or pressure component). FunctionI∗(x) is a
function that indicates if a point is from interesting region * ( Ω+(t) or Ω−(t) ). It is 1 if thex point is from the region *
and 0, in another case.

3.2 Extrapolation process to calculate the Euleriana grid force

Lima and Silva et al. (2003) used an extrapolation process ofthe force calculated from Lagrangian points to Eulerian
points. Such process is given by the following discrete fomula:

f(xij) =

Npl
∑

k=1

F(Xk)
D(xij − Xk)

∆x∆y
(∆sk)2, (12)

where functionD is a function of distribution with the property of
∑

i,j D(xi,j) = 1 (Peskin, 2002).
A reason to the statement (12) could be found in Enriquez-Remigio (2005) . The extrapolation formula (12), allows to

satisfy the following discrete identity

∑

i,j

fij∆x∆y =

Npl
∑

k=1

Fk∆sk∆sk, (13)

Such statement, Eq. (13), indicates that interface force iscompletely spread to the fluid domain.

3.3 Calculation of the drag and lift coefficient

The f = (fx, fy) force defined in Eq. (3) is the force with the interface acts over the fluid to impose the boundary
presence. Because the action-reaction principle, the bodyexperiments a force with the same intensity but in opposite
direction; based on it and on the statement (13) and supposing that the fluid movement is in thex-direction, the drag and
lift forces are given byFD andFL, respectively, where

FD =
∑

i,j

(−fxij
)∆x∆y =

Npl
∑

k=1

(−(Fk)x)∆sk∆sk, (14)
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FL =
∑

i,j

(−fyij
)∆x∆y =

Npl
∑

k=1

(−(Fk)y)∆sk∆sk, (15)

Therefore, the drag and lift coeficient are given by:

CD =
FD

(1/2)ρU2
∞

d
, CL =

FL

(1/2)ρU2
∞

d
, (16)

where,U∞ andd represent an specific speed and distance, respectively.

4. Results

In this section they are presented numerical results obtained with the new proposal. Two problems are simulated: (1)
internal flow in three rotating concentric cylinders and (2)flow around a stationary cylinder. With the first one we can
verify: (a) the applicability of the methology to numericalsimulation fluid-structure interaction where two regions defined
by the interface are interesting to study and (b) the approach order of this method. In the second one, we can verify the
applicability of the methodology to solver problems where only one region are interesting to study.

4.1 Internal flow of three rotating concentric cylinders

Flow in three rotating concentric cylinders is an extensionof interior flow of two rotating concentric cylinders. This
last one is known as circular Couette flow, that has analytical solution. Suppose thatw1 andw2 are rotation velocities
of concentric cylinders withr1 andr2 ratio (r1 < r2), respectively. So, the exact velocity to the flow between the two
cylinders is given in cylindrical Coordinates by:

v(r) = Ar +
B

r
, (17)

whereA andB are constants to be determined by the wall conditions, values of these constants are, respectively:

A =
w2r

2
2 − w1r

2
1

r2
2 − r2

1

,

B =
(w1 − w2)r

2
1r2

2

r2
2 − r2

1

.

To represent the cylinder presences on Eulerian bidimensional domain it is used three Lagrangian grid. The first
grid represents the first internal cylinder, withr1 ratio andw1 rotational velocity; the second grid represents the second
cylinder, with r2 ratio andw2 rotational velocity and the third grid represents the thirdcylinder with r3 ratio andw3

rotational velocity (Figure 4).

r1

r2

r3

Figure 4. Three concentric internal (r1), middle (r2), external (r3) cylinders.

In this work it is simulated the case in which the second cylinder is rotating in counter-clockwise direction and the
other cylinders are stopped.

Simulation parameters are:

• Ω = [0, 0.009]× [0, 0.009]

• ρ = 1000Kg/m3, µ = 0.001kg/m s

• r1 = 0.001m, r2 = 0.002m, r3 = 0.0035m, d12= 0.001m, d23= 0.0015m, r2/r1 = 2 e r3/r2 = 1.75

• w1 = 0.0rad/s, w2 = 2.0rad/s ew3 = 0.0rad/s
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• Initial condition:u(x, 0) = (0, 0)

• Boundary condition in external Eulerian contour for the velocity is homogeneous Dirichlet

It was realized simulations to three different sizes of Eulerian and Lagrangian grids. In Table 1, it is presented
descriptions related to the Eulerian and Lagrangian grids,where:Npl1, Npl2 andNpl3 are the quantity of Lagrangian
points to the first, second and third cylinders, respectivelly; and NCdij is the quantity of Eulerian cells of separation
between the cylinder i and j.

Table 1. Circular Couette flow:Eulerian and Lagrangian gridsizes.

Nx = Ny Npl1 Npl2 Npl3 ∆x NCd12 NCd23

90 126 252 440 1.0e-02 10 15
180 252 504 880 5.0e-03 20 30
360 504 1008 1760 2.5e-03 40 60

The criterion to determine if the steady state was reached isbased on Oliveira (2000):

‖
∂(u, v)

∂t
‖max <

ǫ

NxNy

,

where the value ofǫ is a constant, and in that case it is adopted the value of 0.001.
It is calculated the maximum error norm on the ring regions ofthe concentric cylinders, between the numerical solution

obtained and the exact solution respectively, Eq. (17), as well as the ratio of errors to grids NxN and 2Nx2N. Results of
Table 2 show a convergence of order one. These results was expected, because of Immersed Boundary Method is a first
order method, as discussed in Arruda (2004), Enriquez-Remigio (2005), Lai and Peskin (2001), and so on.

Table 2. Error norms on interesting regions: Region 12, Region 23. Case where the middle cylinder rotates and the other
ones are stopped.

n ‖erro(12)‖∞ Ratio ‖erro(23)‖∞ Ratio
90 1.73041e-02 1.69802e-02
180 1.25020e-02 1.384107 1.22614e-02 1.384850
360 5.26030e-03 2.376671 5.43021e-03 2.257997

0.00400
0.00373
0.00346
0.00320
0.00293
0.00266
0.00239
0.00213
0.00186
0.00159
0.00132
0.00106
0.00079
0.00052
0.00025

Figure 5. Ring region flow of three rotating concentric cylinders. The case in which the middle cylinder rotates counter-
clockwise. Streamlines in function of the velocity norm (black lines represent the circular concentric cylinders).

The streamlines on the Figura 5 show three important behaviour obtained by the methodology: (1) streamlines around
the middle cylinder follows its rotation counter-clockwise direction; (2) streamlines on the internal region around the
internal cylinder and external region around the external cylinder are counter-rotative, reflecting the recuperationof non-
movement boundary condition that was virtually modelled over this cylinder; and (3) streamlines around the Eulerian
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boundary domain,γ = ∂Ω, present recirculations on neighborhood corners of this domain. Note that the external flow to
the ring channel is inducted purely by the force field calculated by VPM. It is interesting to perceive that secondary cells
was capturated on four domain corners.

4.2 Flow over a circular cylinder

Flow around a circular cylinder is a classic problem that wasused to test numerical methodologies. To this problem,
depending on Reynolds number, drag and lift coeficients are known, between another. Moreover, this problem tests
methodology flexibility to lead with problems where one of regions defined by the interface is interesting to study.

Following, it is presented results obtained from simulation of flow around circular cylinder by using the new proposal
for several Reynolds numbers. Simulations were developed following the same configurations that was used by Lima and
Silva et al. (2003), basically.

The flow moves itself from left to right side because of the imposition of constant velocity,U∞, as a left boundary
condition. In the other boundaries it was imposed homogeneous Neumann condition type. The domainΩ = [0, Lx] ×
[0, Ly], whereLx = 35D andLy = 15D, andD is the diameter of the circular cylinder. The circular cylinder position
have as coordinatesx = 16.5D andy = 7.5D (Figure 6). The Reynolds number is defined asRe = ρU∞D

µ
. The initial

condition to the velocity is(U∞, 0). In this case, it was considered a circular cylinder with a diameterD = 0.1. The
fluid densityρ = 1, U∞ = 1.0 and the viscosity were imposed in such a way that it could be possible obtain the properly
Reynolds number.. The Eulerian grid consists of700 × 300 cells (∆x = 0.005) and the number of Lagrangian points of
theNpl = 256 points.

7.5D

DU∞

35D

16.5D

15D

Figure 6. Geometry for flow passing a stationaty cylinder.

In Tables 3 e 4, it is presented a summarize of drag and lift coefficients to different Reynolds numbers, respectivelly,
obtained by the actual methogology and registered on literature. You can see that the results present good concordance
with those ones just obtained by another authors.

Table 3. Drag coefficients to different Reynolds numbers.

Re Present work Lima e Silva Triton Liu De Tullio Le
et al. (2003) et al. (1998) et al. (2007) et al (2006)

40 1.537 1.54 1.48 1.55 1.56
80 1.380± 0.004 1.40 1.29
100 1.357± 0.010 1.39 1.350± 0.012 1.32± 0.010 1.37± 0.009
150 1.329± 0.018 1.37 1.339± 0.030
200 1.317± 0.037 1.310± 0.049 1.34± 0.045 1.34± 0.030
300 1.302± 0.063 1.27
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Table 4. Lift coefficients to different Reynolds numbers.

Re Present work Liu et al. (1998) De Tullio et al. (2007) Le et al. (2006)
40 0.0
80 ± 0.258
100 ± 0.321 ± 0.390 ± 0.331 ± 0.323
150 ± 0.486 ± 0.530
200 ± 0.617 ± 0.690 ± 0.680 ± 0.430
300 ± 0.748

5. Conclusion

In this work it was presented a new approach to use IBM/VPM, that presents a general feature, in the sense of it serves
to model problems where one or both regions divided by the interface are interesting to study. Results presented for two
problems show that:

• First-order spatial convergence;

• Applicability to solver problems where one of the interfaceregions is interesting to study.

Some future steps could be focused on studying the use of thismethodology to solver more complex problems.
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