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Abstract. An H-Adaptive panel method is proposed for investigating the 3D incompressible and inviscid flow around 

arbitrary body shapes. The Panel method is based on a combination of distribution of sources and doublets applied 

over the boundary and using Dirichlet boundary condition to form the final system of equations. The singularity 

distributions are constants, and the integrals are computed analytically. The Adaptive strategy is based on the 

subdivision of the elements. The local error estimator which compares the solution of two successive iterations is 

present. Also, a global error estimator is used to prevent the possibility of non-convergence. Finally, based on four 

examples, for hydro and aerodynamics, the applicability of the method is shown. 
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1. INTRODUCTION   

The Panel Method is a numerical Technique to compute the flow analysis over an arbitrary 3D body, immersed in a 

inviscid, incompressible and irrotational fluid with a given boundary condition. The Fluid Flow is simulated by 

distribution of singularities that can be sources, doublets and vortices, applied to the boundary. It’s not necessary to 

refine the entire volume, since the formulation has only boundary terms. The refinement is made only on the boundary, 

which considerably reduces the system order. Velocity at any point of the flow is computed using the calculated 

boundary terms. 

The self-adaptive formulations represent an area of great interest for researchers and analysts in the Boundary 

Element Method (BEM) field. Those techniques can be seen as ways of automation of calculation procedures, seeking 

for and minimizing errors. The user provides the minimum necessary information to define geometry, loads and 

boundary conditions, and the program tries to generate the best element mesh that gives the most accurate calculation 

within a certain tolerance. This procedure has the advantage of reducing processing time, also considerably reducing the 

dimension of the equation system and resulting in great computational economy. At the same time, the adaptive strategy 

helps the engineering in the problem analysis, avoiding occasional evaluation errors in mesh distribution.
1
 There are 

three types of Adaptive Formulations: The P Adaptive Technique increases the degree of the interpolation function in 

the critical areas, whereas H refines the mesh of elements, and HP is a combination of H and P techniques. The manager 

of the adaptive process is the error indicator that provides information about size and error distribution. If it is local, this 

information is called indicator. The estimator shows the measure of the global error.  

Formerly, the authors have developed a 2D Adaptive using a hierarchical formulation. (Pessolani e Moraes(2005)). 

This paper is an extension, applying an H formulation on a Source and Doublet Panel Method to treat three dimensional 

bodies. A posteriori error indicator and estimator of Rencis e Mullen (1986) was adopted. It compares the change on the 

element solution between two successive meshes and verifies if another refinement is needed. The formulation is not 

hierarchical, since it doesn’t accumulate the information between iterations.  

 

2.  THE PANEL SOURCE AND DOUBLET METHOD 
 

According to Anderson (1994), the fundamental formulation to develop a solution for the equation, which 

determines the potential in any flow, is based on considering a physical structure with the boundary known  submerged 

in a potential flow. The possibility of the flow in subject to be in an incompressible (∇ ⋅ V = 0, where V is the vector 

velocity) and irrotational field is justified by the fact that the thickness of the boundary layer is very small. Therefore, 

the viscous effects has no influence on the calculation of the pressure and lifting coefficients on the surface. So, the 

continuity's Laplace equation is given by Eq. (1): 

 

0
2

=Φ∇

                                   (1) 

 

The method uses analytical solutions through a combination of elementary flows.  In these solutions, there are the 

doublets, sources or vortex distributions that defined the body boundary (panels), as shown in Fig. 1. 

                                                           

 



Due to influence of the uniform flow (free current Voo), the desired potential solution can be obtained. According to 

the potential obtained we calculate the velocity in some direction, deriving the potential on a right direction.  

 

 
 

Figure 1 – Example of structures on the surface of the wing and singularity elements 

 

Using the Green identity, it's possible to find the Potential general solution at points (x, y, z) in the domain. This 

solution is given by the sum of a combined local distribution of doublets µ and sources σ, on each panel: 
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where S is the boundary structure, w is the wake, r is the vector between the point P(x,y,z) and the panel analyzed, and 

n is the extern normal vector of the panel. 

To solve this equation numerically, the structure is divided in N panels each one with its singularity elements as 

shown in the figure 1.  Assuming an incompressible and irrotacional flow, then the wake panels must be parallel in the 

free current, also assuming that the velocity within the geometry is zero, Dirichlet’s boundary condition, it’s possible to 

say that the inner potential of the aerodynamic structure must be constant: 

 

( ) const
ii =Φ+Φ=Φ ∞

*                                                                 (3) 

 

where the inner potential is the sum of the free current (φoo) and the disturbed flow (φ). 

Putting a point P(x, y, z) inside of the tridimensional structure and using the Dirichlet’s boundary condition, it can 

be said that the inner potential, in terms of the singularity combination on the surface, is given by: 
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For constant strength singularity elements on each panel, the influence of panel j at a point P is given by 
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When a doublet and source distribution exist on each panel, the influence of panel j at a point P is given by: 
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 After the calculations of those integrating the boundary condition in some point next to surface, becomes: 
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where N is the number of elements (panels) of the structure, µµµµ is the doublet which will be calculated and σσσσ is the 

source which will be calculated by Eq. (8) 

The Eq. (7) shows a non-penetration condition on the surface, as it being the velocity a derivate of the potential flow 

and constant, it will be zero inside of the structure. 

Then, to determine the singularity distribution of each panel it’s established that the sources on the surface boundary 

be known through Eq. (8): 

 

σk = nk ⋅ Q∞                                                                                                          (8) 

where Qoo is the free current and  nk is the normal vector calculated by Eq. (9). 
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where Ak and Bk are defined by Fig. 2 

 
 

Figure 2 – Parallel vectors on the panel Ak, Bk and normal vector nk 

 

where φi
*
 is arbitrary constant. So it’s possible to do φi

*
= φ∞. The Eq. (7) becomes: 

 

0
111

=++ ∑∑∑
===

Nw

l

ll

N

k

kk

N

k

kk CCB µµσ                       (10) 

 

The coefficients Bk, Ck e Cl can be calculated using analytical or numeric integration. Katz e Plotkin (2002) 

developed analytical expressions to the coefficients B and C. 
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where x1, x2 e z are local coordinates as shown in Fig. 3. 

 

 



 
 

Figure 3 – Local coordinates x1, x2, z at each panel 

 

Looking at the Eq. (10) we ended the flow on the collocation point of each panel where it is disturbed by others N 

panels. 

Considering the Kutta's condition, the circulation at the trailing edge must be zero. The doublet in the panel of the 

wake added to the difference between the doublets of the first and last panels must be zero. The equation that represents 

this is given by: 

 

 
 

Figure 4 – Kutta’s condition 

  

The equation of first collocation point is: 
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The elements cii of doublet matrix must be equal at 0.5, because they represent the performance strength of the 

doublet of the panel by itself. So, it's possible to reduce the order of the matrix C by relating the doublet in the wake 

panel to the doublet in the first and last panels. This relation is given by: 

 

aij = cij,     j ≠ 1,N                   

ai1 = ci1 - ciw,   j=1                                             (14) 

aiN = ciN + ciw,  j = N               

 

where N is the last element matrix. The matrix system finally becomes: 
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Once the strength of the doublets µj is known, the potential outside the surface can be calculated. Through the 

boundary condition proposed by Dirichlet, we arrive at the following equation for the external potential, as shown in the 

beginning. 

 

Φu = Φi - µ                                                          (16) 
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The first local external tangential velocity component above each collocation point can be calculated by 

differentiating the velocity potential along this tangential direction, that is: 
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where ∆lc is the length of the panel  along the tangential direction. 

On the same way, the second local external tangential velocity component will be: 
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where ∆le is the length of the panel  along the tangential direction.  

The local external normal velocity component is given by: 

 

qn = σ                                     (19) 

 

The total velocity above each collocation point is given by the free current component plus the disturbed flow 

component as shown below. 

 

Qk = (Q ∞ c, Q ∞ e, Q ∞ n)k + (qc, qe, qn)k                         (20) 

 

The pressure coefficient can be calculated by the following equation:  
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3. THE ADAPTIVE TECHNIQUE 
 

 To automatize the potential computation, an adaptive routine which includes an error indicator and estimator was 

introduced. The error indicator has the function of identifying which elements need the refinement and then subdivide 

it. The global error estimator is a way of controlling the evolution error and avoid numerical errors due to the 

refinement.  

The indicator error used is based on the work of Rencis and Mullen (1986) developed for the Laplace equation for 

the Boundary Element Method. It compares two successive solutions on the element, and then computes the number of 

elements necessary for the next iteration.  

For 3-D bodies, the number of subdivisions necessary on the element j for the iteration (i+1) is given by: 

 

 

                                                                                                                                                                                    (22) 

 

 

 

Where ε is a pre-fixed tolerance, h is the area of panel j on the i
th

 and the (i-1)
th

 and γ is the doublet computed on each 

panel j by the expression: 
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The comparison of the two solutions is given by the term: 

 

 

                                                                           (24) 

Based on the number of elements, the program refines the mesh and performs the next iteration, and then the error 

estimator is applied again. The program executes as many iteration as necessary until a satisfactory convergence is 

found. 
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4.  APPLICATIONS  
 

To validate the program two generic structures were executed: the first structure was a Van de Vooren’s wing while 

the second was a structure representing a tube with a valve. 

 

4.1 Rectangular wing with a Van de Vooren section 

 

We studied the behavior of the incompressible and uniform flow around a rectangular wing with a Van de Vooren 

section. We used a wing with a 10m span, 20
o
 angle of attack and submerged in a free current (Qoo) with 1m/s. 

The wing described is shown below:  

 

 

 
 

Figure 5 – A non discretized wing submerged on an uniform potential flow 

 

Being the constant panel based on a (17), (18), (20) and (21), the necessary expressions to calculate the tangential 

velocity span wise, the tangential velocity chord wise and the pressure coefficient on a wing surface are give by:  

 

(26) 
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where α is the angle of attack in radians, Qoo is the free current,      is the unitary normal vector , µ is the doublet, ∆lc and 

∆le the length of the panels chord-and-span wise, respectively. 

First, the wing section was defined with 26 points, as shown on the Fig. 6, with 3stripes placed on the span and 3 

panels on the wake. It was a total of 78 panels. 

We can see on Fig. 6 a concentration of panels on the leading edge. In fact, this occurs because at that part the 

geometry is grocery.  

The tolerance used was 0.02 and the maximum aspect ratio was 40 by element. 
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After 3 iterations the H-adaptive strategy generates 59 points on the normal section, 60 stripes of panels on the chord 

totaling 3540 panels. Also the wake was discretized and generates 60 panels totaling 3600 panels on the surface of the 

wing. 

The section discretized is shown on the Fig. 7. It can be seen that the discretization is mainly greater at the leading 

edge. 
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Figure 6 – First iteration after discretization of the wing  
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Figure 7 – Last iteration after discretization of the wing. 
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Figure 8 – Distribution of pressure (CP) on the surface of the wing after last iteration. 

 

In the lack of an analytical solution for a 3D wing, a comparison was performed of the pressure coefficients 

between the results obtained by the program and the results of 2D Van de Vooren’s wing. 

These data are compared with the results of the central stripe which have a type of flow the same as 2D. This can 

be seen in Fig. 8. 

It’s possible to see in Fig. 8 that the last iteration and the 2D analytical results are very close, mainly on the 

leading edge where the gradient of the pressure coefficient is steeper and where the elements are more refined. 

The error indicator detected necessitated the refinement on the leading edge of the bad panels and shows the good 

results of the H-adaptive strategy. 

 

4.2 Immersed pipe line supported by a cube. 

 

As a second application, we have considered an oil pipe submerged and anchored at the bottom of the sea by a 

block, submitted to a uniform flow of 1m/s normal to the section pipe. 

Analytical Solution 

First Iterartion 

Final Iterartion 



In Fig. 9 one can see the discretization over the pipe and the block surface with 40 elements. The cube has 1 

element on each side, and the pipe has 8 nodes per section defining the geometry. It’s a very poor mesh, and the 

adaptive strategy will act to improve it. On the curved boundary, the program uses a geometric processor developed by 

Moller and Pessolani (2006) that tend to round the sharp corners between linear elements. Each pipe is 3 meters long 

and  the cube has a 2m side. 

 
 

Figure 9 – Initial Mesh with 22 trapezoidal elements 

 

The final discretization is shown on figure 10. At the pipe region it can be seen the effect done by the geometric 

processor, smoothing the boundary and approximating it to a circle. The refinement was concentrated on the critical 

points of the pipe: on the “leading edge” and on the top, where the velocity gradient is steeper. The cube had an uniform 

mesh distribution. 

 
Figure 10 – Final Discretization with 2400 elements 

 

Finally, on Fig. 11 one can see the velocities range on tube normal section. The critical points can be seen, at the 

“leading edge” of the pipe, and on the top. In these regions the program made a better refinement to capture this effect.  

 

 
 

Figure 11 – Range on Tangential velocity distribution on the pipe surface after last iteration. 

 

4.3 An airplane at flying at low Reynolds number 
 

As a third example, consider a little airplane flying in laminar regime submitted to a uniform flow of 1m/s normal. 

It could any complex structure submitted to air or water like an oil platform or a ship. 
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In Fig. 12 one can see the velocity distribution over the airplane with 2560 elements and 2230 panels after 4 

iterations. It can be observed a detail of the approximation on the wing and on the horizontal tail. Also, the error 

indicator tried to refine the mesh on the critical areas. 

 
 

Figure 12 – Velocity distribution on the airplane surface 

 

4.4 Uniform Flow acting on a platform jacket  

 

At last, consider a jacket of a Petroleum Platform Structure, submitted by an uniform unitary flow from down to 

up on the 45º direction on the XZ Plane. 

On Fig. 13 one can see the velocity percent gradient varying from 0% (below 0.9m/s) to 100% (higher that 

2,0m/s). On the horizontal tubes the flux makes an static load. It can be seen that the maximum is at the front of the tube 

(“Leading edge”), where the flux change its direction, while the minimum is at the “shoulder” of the tube. These results 

are consistent with the theory. 

If one wants to consider the dynamics loads, it must take in account the waves at the surface, or the vortices that 

are loosing of the tubes. 

 

 
 

Figure 13 – Percentage of the velocity on the panels of a platform jacket acting at 45º on the XZ Plane. 

 

 



5. CONCLUSIONS 
 

An Adaptive H program based on Panel Source and Dirichlet Method for solving a potential flow over a generic 3D 

Body was shown.  

The wing example showed the accuracy response. The second example showed the applicability of these kind of 

programs in maritime structures like immersed pipes and offshore structures. Those programs compute the velocity and 

the pressure over a boundary surface submitted to a flow. 

The adaptive programs seem to be very useful. Given an initial poor mesh, only necessary to describe the geometry 

of the problem, the program generates the other meshes necessary to give good results. The use of an adaptive 

geometric pre-processor was fundamental to refine smooth boundaries. Using it, engineers have their woks so much 

simplified and those programs can be executed in personal computers of small capacity, since it requests less memory 

and computational effort than the conventional analysis. 

The applications showed that the error estimator works well, refining the mesh on the critical points. 

It’s also important to notice the advantages of boundary formulations over domain ones, especially on infinite 

domains. This formulations don’t need to refine the entire volume and can solve fluid problems with a considerable 

reduction of the system dimension and the input data. 

As the subject of future works, this formulation can be extended to the analysis of wave propagation and fluid-

structure iteration, using the Boundary Element Method. 
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