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Abstract. The main purpose of this work is the numerical computation of incompressible fluid flows by Control 
Volume-Finite Element Method (CVFEM). The domain is discretized by using finite elements and the equations are 
discretized into control volumes around the nodes of the finite elements. The time discretization of the equations is 
done by using a fractional step. The flow equations are filtered by computating the large eddies and the small eddies 
are modeled by Smagorinsky’s eddy viscosity model for the sub-grid-scale stresses. The two-dimensional benchmark 
problem of the lid-driven cavity flow is solved to validate the numerical code and the preliminary results are presented 
and compared with available results from the literature.  
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1. INTRODUCTION 

 
In recent years, numerical solution of the incompressible Navier-Stokes equations there has been  a considerable 

research effort invested in the design of high resolution and requires discretization in both space in time. With the 
growing confidence in these methods and increased computer power, these schemes are increasingly being applied to 
the solution of viscous flow problems.  

Fractional step methods developed for the Navier-Stokes equations have been investigated since the pionners works 
of Chorin (1968a -b, 1969) and Teman (1969a -b). In this method the Navier-Stokes equations in time at each time-step 
by first solving the momentum equations using an approximate pressure field to yield an intermediate velocity field that 
will not, in general, satisfy continuity. A Poisson equation is then solved with the divergence of the intermediate 
velocity as a source term to provide a pressure or pressure correction, which is then used to correct the intermediate 
velocity field, providing a divergence free velocity. The pressure is updated and integration then proceeds to the next 
time step.  

In this paper two methods for the solution of incompressible Navier-Stokes equations is outlined. In the first, called 
Method I (Ramaswmany et al., 1992) in the first step, the intermediate velocity was advanced in an explicit way. The 
boundary condition for the solution of the Poisson equation of the pressure was of first type, that is, null pressure in a 
die point. In  the other, called Method D* (Kim and Lee, 2002), in the first step, the diffusive term was discretized in an 
implicit way and the boundary condition for solution of the Poisson equation of the pressure was of second type, that is, 
the free gradient of pressure at boundaries. 

 
2. PROBLEM FORMULATION 
 
2.1. Governing equations 
 

In this section is to briefly the fluid flow equations considered for solution, with an emphasis on the physical 
aspects that are important when establishing finite element models . Mathematically, the laminar or turbulent flows may 
be expressed by the mass conservation and momentum equations that can be written in indicial notation, as follows: 
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where i, j=1,2 and iu  are the velocity components along the Cartesian co-ordinates ix ; p  is the pressure; ρ  is the 

fluid density; µ  is the flu id dynamic viscosity and 
iuS is a source term accounting for the other terms not appearing 

explicitly in Eq. (2). Although needless, in the Eq. (1), the density was left within of partial derivative in order to 
facilitate the numerical program implementation. 
 
2.2. Dimensionless equations and boundary condition 
 

Defining the dimensional variables with the asterisk as superscript, the dimensionless variables can be written 

as 
*L

x
X i

i = ; 
0u

u
U i

i = ; 0
2

0 0

p p
P

uρ
−

= ; 
L
ut

t 0
*

= ; 
0

*

ρ
ρ

ρ = ; 
0

*

µ
µ

µ = ; 
0

00Re
µ

ρ Lu
= , where L is a characteristic length; 

0u  a characteristic velocity; 0p  a reference pressure; 0ρ  a reference density, Re the Reynolds number of the flow 

under consideration and 0µ  the reference absolute viscosity. Therefore, after filtering the equations (1) and (2) they can 
be rewritten in dimensionless form as  
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The effective viscosity eµ  is defined by 
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where the eddy viscosity, tµ , can be calculated using the LES - Large Eddy Simulation to numerical simulation of 
turbulent fluid flows. 

The boundary conditions for solving equations (3) and (4) are null velocities (non slip condition) at walls and 
for pressure it is necessary only to fix a value at a  single point in the domain since the flow is incompressible. 
 
3. DEVELOPMENT OF THE ALGORITHM 

3.1 Time and spatial discretization 
 

Using the time-splitting method (Ramaswamy et al., 1992), the Eq. (3) and Eq. (4), can be rewritten as: 
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where iF  is a source term. 

The intermediate velocity ∗
iU  can be achieved by the equations:  
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where θ  is a parameter of time discretization. Note that ∗

iU do not satisfies the continuity equation. 
By applying the divergence in Eq. (10) and using the Eq. (11), we obtain 
 

 
( )

i

i

i

n

i X

U

tX
P

X ∂
∂

∆
−=











∂
∂

∂
∂−

∗+ ρ11

. (12) 

 
In this way, we can compute the flow in following three steps: 
 
Step 1 
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Step 2 
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Step 3 
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In CVFEM, the spatial discretization is carried from variational formulation or weak form, obtained taking the 

scalar product of equations terms by weighting functions that are unity constants inside control volume around the 
nodes of the finite element mesh.  
 Therefore, integrating by parts the Eq. (13), (14) and (15), we obtain, respectively: 
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where jn  is the outward normal vector to the area of a control volume where there are convective and diffusive fluxes. 

This normal vector has been defined as jdxidydSn
rrr

−=  for integration in the counterclockwise direction. 
 

3.2 Finite -element formulation  
 

In FEM, the unknown variables can be interpolated, inside a Lagrange element, in the following form 
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where αN e 'αN are the two-dimensional interpolating functions inside the element; e
iU α  e eP 'α are the nodal velocities 

and pressure values in nodes α  and 'α , respectively. The notation 'α  is used to consider that the pressure can be 
interpolated by interpolation functions of different order of that used to interpolate the velocity or other scalar variable. 
Generally, the pressure is interpolated by functions of one order lower than the velocity, in order to avoid numerical 
instabilities. 

Considering, then, the equations to a control sub-volume associate to a certain element node we obtain 
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By substitution of the interpolated variables defined by Eq. (19) and (20) in Eq. (21) and (23), we obtain the 
following system, in the scalar form, to one element: 
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 In the Equations (24) to (26), the matrices elements are defined as 
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An alternative formulation of Poisson pressure equation can be obtained from Eq. (10) by direct integration of 
that equation without compute the divergence and we obtain 
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From Eq. (11), we obtain 
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In this case, taking αβαβ MM =  in Eq. (33) and using the Eq. (34) results 
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 Others formulations can be obtained, as, for example, the fractional step method D* (Bell et al., 1989; Kim and 

Lee, 2002), in which, taking '' βαβα PGF ii −= , solve the Eq. (24) with ,
2
1

=θ  0== ∗∗∗ θθ  and Eq. (35) and (36). In 

this case, the matrices are defined as 
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 In another formulation, known by method I (Ramaswamy, 1988; Ramaswamy et al., 1992), the Eq. (24) is 
solved taking 0=θ  e 1=∗θ  and the Eq. (35) and (36). In this case, the matrices in the Poisson equation are defined 
as 
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4. NUMERICAL EXAMPLE AND RESULTS  
 

The lid-driven cavity flow of a Newtonian fluid is taken as the application of the proposed scheme. The 
problem definition is given in Fig.1. The square cavity of unity side has its lower left corner at the origin of a Cartesian 
coordinate system. The velocities are set to zero at all walls, except the velocity along the x - axis for the upper plate. 
The pressure was set equal to zero at the mid bottom point. The problem definition is given in Fig. 1, as well the mesh 
for discretization of the domain. The typical element, Plane 77 or 82 of the preprocessor ANSYS 6.0®, modified for the 
inclusion of the central node, was used to create a regular non uniform mesh of 40 by 40 elements, with 81 by 81 nodes 
along the coordinated axes. The results for the Reynolds numbers of 100, 400, 1,000 and 3,200 of the present work were 
compared with results from Ghia et al. (1982) at steady state.  

The lid-driven cavity flow of a Newtonian fluid has occupied the attention of the scientific computational 
community since the pioneering paper of Burggraf back in 1966. Over the years, the problem has spawned a large 
number of papers; mainly concerned with the development of computational algorithms where, in a continuous drive to 
demonstrate the superior accuracy and stability properties of their latest numerical method, authors have applied it to 
this problem in two-dimensional or three-dimensional forms. This is a classical example of re-circulating fluid flows in 
a confined area. From a purely computational viewpoint, is an ideal prototype non-linear problem which is a readily 
posed for numerical solution. The classical lid-driven cavity problem has been investigated by many authors. In the 
recent work of Bruneau and Saad (2006), simulations of the 2D lid-driven cavity flow have been performed for various 
Reynolds numbers. Accurate benchmark results are provided for steady solutions as well as for periodic solutions 
around the critical Reynolds number. 
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Figure 1 - Cavity flow: (a) configuration, coordinates and boundary conditions 

(b) finite element mesh (40x40) 

 

Two fractional step method’s implementations were accomplished for obtaining the components of velocity U and 
V in the time, validated through the comparison with Ghia et al. (1982). In the first implementation, called Method 1, in 
the first step, the intermediate velocity was advanced in an explicit way. The boundary condition for the solution of the 
Poisson equation of the pressure was of first type, that is, null p in a die point. In the second implementation, called 
method D*, in the first step, the diffusive term was discretized in an implicit way and the boundary condition for 
solution of the Poisson equation of the pressure was of second type, that is, the free gradient of pressure at boundaries. 
 The Fig. 2 and 3 show the results for profiles of U(Y) velocity at X=0,5 (mid vertical line) and V(X) velocity at 
Y=0,5 (mid horizontal line) for the Reynolds number of 400 of the present work, respectively for Methods 1 and D*, 
compared with results from Ghia et al. (1982), at steady state. While, the Fig.  4 and 5 show the results for profiles of 
U(Y) velocity at X=0,5 (mid vertical line) and V(X) velocity at Y=0,5 (mid horizontal line) for the Reynolds number of 
1000 of the present work, respectively for Methods 1 and D*, compared with results from Ghia et al. (1982), at steady 
state. Notice that, in the Method 1, close to the inflection point of the velocity the values were underestimated. In both 
cases, for Reynolds number 400 and 1000, that corresponds to the laminar regime, a certain discrepancy is observed 
among the results resultant, perhaps, due to some anomaly of CVFEM with the fractional step method. The Fig. 6 
illustrates the velocity profile U for Reynolds number 3200 of the fractional step method of the method 1, described 
previously, for steady state. The results are compared with Ghia et al. (1982). In this case, the results are wavy and they 
did not present agreement. This way the influence of the viscosity of Smagorinsky, still has to be better investigated. 
This Reynolds 3200 corresponds to the transition strip of laminar to turbulent regime. The application the fractional step 
with CVFEM for high Reynolds numbers flows has to be enhanced as was pointed out by Campos (2005). 
Modifications in the form of implementation shall be investigated to verify if the solution converge for high Reynolds 
numbers flows and if for other geometries the fractional step is suitable. 
 The implementation of fractional step method, used for the solution of the equation of Navier-Stokes, was 
shown to be quite complex. Although, since the decade of 60, it haas been exhaustively studied in CFD literature and 
several implementations have been proposed, studies involving theoretical fundamentation and aspects of application 
still continue in process, according to very recent works like Codina and Blasco (2004) and Vijalapura (2005). The 
fractional step method possesses only characteristics when compared with all the other methods for the numerical 
solution of the Navier-Stokes. One of them is the fact that the boundary conditions imposed in the incompressible phase 
of the calculation are different depending on the way assumed by the equations and of the type of adopted space 
discretization. Basically, it is necessary to be distinguished the discreet representation if the variable pressure is or not 
defined at the contour. If the pressure is defined at the contour, a condition of additional contour is requested to 
determine the value of the contour of this variable. The other alternative is when the variable pressure is not defined at 
the contour that happens, for instance, when we use approaches with finite elements representing the field pressure 
through a continuous polynomial by parts and that is discontinuous in the contours. The choice of the lid-driven cavity 
flow for the test of the method was due to fact that this satisfies the restrictions at contours of the domain, besides the 



mass flow to be null through the walls. With effect, this problem is framed in the restricted group of problems that 
satisfies the restrictions in the contours of the domain for the application of the method. In this work, in an of the steps 
of the methodology the velocity field from the Navier-Stokes equations is obtained with the correction of the velocity 
field obtained through the solution of the Burges equation, that is the simplified version of the Navier-Stokes equations 
for the cases that the gradient of the pressure can be despised.  
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Figure 2: Method 1, Re= 400 (a) U-velocity at X = 0,5  (b) V-velocity at Y = 0,5 
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Figure 3: Method D*, Re= 400 (a) U-velocity at X = 0,5  (b) V-velocity at Y = 0,5 
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Figure 4: Method 1, Re= 1000 (a) U-velocity at X = 0,5  (b) V-velocity at Y = 0,5 
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Figure 5: Method D*, Re= 1000 (a) U-velocity at X = 0,5  (b) V-velocity at Y = 0,5 
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Figure 6: Method 1, Re= 3200, U-velocity at X = 0,5   

 



5. CONCLUSIONS 

 
 A CVFEM with fractional step was proposed in this work to solve the Navier-Stokes equations. The case of the lid-
driven cavity flow was analyzed and showed that the numerical method needs to be enhanced for convergence of the 
solution for high Reynolds flows. The fractional step method of time discretization posses advantages, once it simplifies 
the differential equations to be solved, however, with the CVFEM method it has to more investigated. The 
accomplished test allowed the investigation of some aspects of the method that would influence to the solution, such as 
the relationship among the quality of the numeric solution the refine of the mesh of the discretization and the use of 
boundary conditions adapted to the numeric solution of the equation of Poisson for the pressure. Other options of 
fractional steps can be more appropriated with the CVEFM method, they should be implemented in future works. 
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