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Abstract. We present an assessment of the adaptative QUICKEST upwind scheme of Kaibara et al. (Proceedings of
18th International Congress of Mechanical Engineering, Ouro Preto, MG - COBEM 2005), for the numerical solution of
the 1D Euler equations with application to 2D Navier-Stokesequations. The numerical experiments for the shock tube
problem with two different initial data and incompressibleflows with free surfaces show that this high order bounded
upwind scheme is a good technique for convectively dominated problems.
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1. INTRODUCTION

The discretization of the convective terms is not straightforward and requires additional attention, particularly the non-
linear ones appearing in high Reynolds Navier-Stokes equations. The desirable properties of an advection scheme are
generally the following (see [Verma and Eswaran (1997)]): a) boundedness, i.e., a such scheme must be able to eliminate
spurious oscillation; b) minimal diffusion, i.e., it does not spread the solution by introducing too much artificial (numer-
ical) diffusion; c) accuracy, i.e., the scheme does not produce too great a degradation of accuracy; d) non-compression,
i.e., it does not tend to “square off” a smooth profile; and e) algorithmic simplicity. These five properties can easily
be reached for linear problems with smoothly varying variables. However, in turbulent flows (or compressible flows
with shocks/discontinuities), for instance, the appearance of severe gradients makes the approximation of the non-linear
convective terms a very difficult job.

Although classical upwinding (e.g. first order upwind/hybrid) is bounded, it is highly diffusive. On the other hand, tra-
ditional high order upwind schemes (e.g. Central, QUICK, Lax-Wendroff, etc) are less diffusive, but they are susceptible
to numerical instabilities.

Over the past years, a great deal of research has been done in developing and applying innovative high order up-
wind convection schemes for approximating the non-linear convective terms. Among these, the technique based on
the combination of TVD (Total Variation Diminishing) [Harten (1984)] and NVF (Normalized Variable Formulation)
[Leonard (1988)] has been the most widely used. In particular, the well recognized Superbee [Roe (1985)] and Van-Leer
[van Leer (1974)] schemes, and, more recently, the adaptative QUICKEST (Quadratic Upstream Interpolation for Con-
vective Kinematics with Estimated Streaming Terms) schemeby [Kaibara et al. (2005)] (see also [Ferreira et al. (2007)])
have been proposed to deal with unsteady problems.

The objective of this study is to present the results of the development and implementation of the bounded high order
upwind adaptative QUICKEST scheme for solving 1D Euler equations with application to 2D incompressible Navier-
Stokes equations at high Reynolds numbers.

2. TVD Advection Schemes

The same approach that it will be shown below can be followed for derivation of any high order TVD upwind scheme.
The advection schemes used in this paper are based on the numerical solution of the 1D linear advection equation

φt + aφx = 0, a > 0, (1)

with a given initial valueφ(x, 0) = φ0(x). In order to present the main ingredient of our study, lets usconsider the
following finite difference discretized form of equation (1)

φn+1
i = φn

i − θ(φi+1/2 − φi−1/2), (2)

whereθ = a∆t
∆x is the Courant number;∆t and∆x are, respectively, the time step and the cell size;φi+1/2 andφi−1/2

are interface fluxes. In the case of Lax-Wendroff scheme, theflux φi+1/2 is calculated as

φi+1/2 = φn
i +

1

2
(1 − θ)(φn

i+1 − φn
i ). (3)
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TVD schemes are usually based on the Lax-Wendroff scheme (3). And this basic scheme can be modified by intro-
ducing a flux limiterψ

φi+1/2 = φn
i +

1

2
ψi(1 − θ)(φn

i+1 − φn
i ), (4)

so that whenψi = 1 equation (4) reduces to the Lax-Wendroff scheme, and whenψi = 0 it reduces to the first order
upwind scheme. More generally,ψi = ψ(ri+1/2), whereri+1/2 = (φn

i −φ
n
i−1)/(φ

n
i+1−φ

n
i ) is the ratio of two consecutive

gradients. Equations (2) and (4) can be combined and rearranged into the Harten’s formulation (a combination of a first
order scheme and an antidiffusive flux) (see [Harten (1984)])

φn+1
i = φn

i − θ
[

1 −
1

2
(1 − θ)ψi−1 +

1

2
(1 − θ)

ψi

ri+1/2

]

(φn
i − φn

i−1). (5)

Provided thatθ < 1, the following conditions onψ, proposed in [Jeng and Payne (1995)], imply that the scheme is TVD

0 ≤ ψi ≤ 2/(1 − θ), 0 ≤
ψi

ri+1/2

≤ 2/θ. (6)

The dependence onθ can be avoided by accepting the following subset of the preceding TVD constraints, proposed by
Sweby in [Sweby (1984)],

0 ≤ ψi ≤ 2, 0 ≤
ψi

ri+1/2

≤ 2. (7)

The choice ofψ = ψ(r) dictates the order of the scheme and its boundedness properties. For example, second order
accuracy (but not TVD) can be attained by the choice of a convex linear combination of Lax-Wendroff and Warming-Beam
,ψ(r) = r, schemes (see [Warming and Beam (1976)]), that is

ψ(r) = (1 − α)1 + αr, 0 ≤ α ≤ 1. (8)

So, the interface fluxes in Equation (2) can be approximated by many different ways, by selecting different flux limiter
ψ(r) as described above, leading to different high order TVD upwind schemes. In this work, we selected the well known
Superbee and Van-Leer schemes, and the modern adaptative QUICKEST scheme. The flux limiters for these schemes are
as follows:

• Superbee:

ψ(r) = max{0,min{2r, 1},mim{r, 2}} (9)

• Van-Leer:

ψ(r) =
r + |r|

1 + |r|
(10)

• Adaptative QUICKEST :

ψ(r) = max

{

0,min

[

2r(1 − θ),
2

3
− |θ| +

θ2

3
+

(

1 − θ2

3

)

r, 2(1 − θ)

]

}

(11)

Within the Sweby TVD region, the plot of the flux limiter for the adaptative QUICKEST scheme, for several values of
θ, is presented in Fig. 1. It is interesting to note that when the parameterθ tends to 0, the flux limiter passes through the
point (1,1) in the TVD region, which is the necessary and sufficient condition for second order accuracy [Harten (1984)].

3. NUMERICAL RESULTS

In this section, we examine the performance of the Lax-Wendroff, Van-Leer, Superbee and adaptative QUICKEST
schemes for solving 1D test problems. The adaptative QUICKEST scheme is then applied to solving 2D fluid flow
problems. For 1D tests, we have chosen two Riemann problems from [Sod (1978)] and [Shu and Osher (1988)] (see also
[Toro (1997)]). For the 2D case, the collapse of a liquid column and a turbulent jet impinging onto a rigid surface were
selected. The computer code employed in this study to solve the Navier-Stokes equations is a modified version of the
Freeflow simulation system developed by Castelo et al. [Castelo et al. (2000)] (see also [Ferreira et al. (2007)]).
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Figure 1. Flux limiter of the adaptative QUICKEST scheme in the Sweby TVD region for several values ofθ.

3.1 1D Riemann problems

The first test case is the well known Riemann-Sod’s 1D shock tube problem [Sod (1978)]. This problem is used in
the experimental investigation of several physical phenomena, such as chemical reaction kinetics, shock structure, and
aerothermodynamics of supersonic/hypersonic vehicles. The governing equations are the 1D Euler equations

ut + f(u)x = 0, (12)

with u = (ρ, ρv, E)T , f(u) = (ρv, ρv2 + p, v(E + p))T and initial conditions(ρ, v, p)T = (1, 0, 1)T for x < 0.5 and
(ρ, v, p)T = (0.125, 0, 0.1)T for x ≥ 0.5. The variablesρ, v, p andE are the density, velocity, pressure, and the total
energy per unit volume respectively, withp = (γ − 1)[E − ρv2/2]. Due to the unavailability of an exact solution to this
problem, a numerical solution using a fine mesh is consideredas the most accurate solution (the Exact one). Displayed
in Figs. 2 and 3 are the exact solution and the numerical results for density produced by the Lax-Wendroff, Superbee,
Van-Leer, and adaptative QUICKEST schemes on a uniform meshof 60 computational cells over0 ≤ x ≤ 1 and at
time 0.2 seconds. For this case, one can see that, on average,the differences among the results produced by Superbee,
Van-Leer and adaptative QUICKEST schemes are, practically, not visible. On the other hand, as it is well recognized, the
Lax-Wendroff schemes presented poor results.

In order to show that the adaptative QUICKEST scheme is more appropriated for solving more difficult problem,
we present next the simulation of the Shu-Osher problem [Shuand Osher (1988)]. The initial condition is(ρ, v, p)T =
(3.86, 2.63, 10.33)T if x < 0.8 and (ρ, v, p)T = (1 + 0.2sin5x, 0, 1)T if x ≥ 0.8, which represents a shock front
propagating into a sinusoidal density distribution. Figures 4 and 5 depict the numerical results for density obtained with
Lax-Wendroff, Superbee, Van-Leer and adaptative QUICKESTschemes, on the 200 computational cells and at time
t = 1.5s. It can be seen from these pictures that the adaptative QUICKEST produces, in fact, the most accurate solution,
that is very close to the analytical solution. The Van-Leer and Superbee schemes offer poor results. The numerical results
by Lax-Wendroff scheme is not acceptable, because it presents spurious oscilations and the peack clipping problem.

3.2 2D Collapse of a liquid column

The collapse of a column of water onto a horizontal wall is a popular test case to validate numerical schemes for cal-
culating transient free surface flows. The experimental results are available in [Martin and Moyce (1952)]. The geometry
used is a rectangular column (a=0.050 m wide and2a=0.100 m high) in hydrostatic equilibrium and confined between
walls. At the beginning, a dam is instantaneously removed and the fluid is subject to vertical gravity and is free to flow out
along a rigid horizontal wall. In order to compare with the experimental data given in [Martin and Moyce (1952)], the free-
slip boundary condition was used to correctly model this flowat walls. The Reynolds number based on the characteristic
lengthL = 2a and the characteristic velocityU =

√

L|g| wasRe ≈ LU/ν = 99 × 103 (|g| = 9.81 ms−2). Four meshes
were used in this problem, namely: 150×75 (δx = δy = 0.002 m) computational cells; 300×150 (δx = δy = 0.001
m) computational cells; 600×300 (δx = δy = 0.0005 m) computational cells; and 750×375 (δx = δy = 0.0004 m)
computational cells. Figures 6 and 7 show, respectively, the comparison of the numerical results and experimental data
for the position of the fluid front (Xmax) versus time and the height of residual fluid column (Y max) versus time. Good
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Figure 2. Results for density (ρ) of the Sod shock tube problem, at timet = 0.2s and with60 cells, using Lax-Wendroff,
Superbee and Van-Leer schemes.
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Figure 3. Results for density (ρ) of the Sod shock tube problem, at timet = 0.2s and with60 cells, using adaptative
QUICKEST scheme.

agreement between numerical and experimental results is observed from these figures.

3.3 2D Turbulent impinging jet flow

A jet impinging normally onto a flat rigid surface is a good example of a free surface flow, but it is difficult to simulate
this problem because the free surface boundary conditions must be specified on an arbitrarily moving boundary. This
free surface flow in turbulent regime is also chosen as a representative test case because there is (see [Watson (1964)]) an
approximated analytical solution for the total thickness of the fluid layer flowing on the surface. In summary, for a given
volumetric fluxQ through the inlet section of diameterL = 2a, the analytical solution is















h(x) =
81(7A)

1

4 k

800

(

ν

Q

)
1

4

(x+ l), if x ≥ x0

h(x) = a+
(

1 − A
k

)

δ, if x < x0,

(13)

where

δ(x) =

(

81

320(9A− 2)

)
4

5

7
1

5 k

(

aν

Q

)
1

5

x
4

5 ,

x0 =
320(9A− 2)

81 × 7
1

4A
5

4

aRe
1

4 ,

l =
160(1 − 2A)

9 × 7
1

4A
5

4

aRe
1

4 , A = 0.239, k = 0.260.

We simulated this free surface flow, in turbulent regime, using the Freeflow code equipped with the standardκ − ε
model on three different meshes, namely: the coarse mesh (200 × 50 computational cells,δx = δy = 0.001 m); the
medium mesh (400 × 100 computational cells,δx = δy = 0.0005 m); and the fine mesh (800 × 200 computational
cells,δx = δy = 0.00025 m). The Reynolds number involved was 5.0×104, which was based on the maximum velocity
Umax = 1.0 m/s and diameter of the inletL = 0.01 m (orQ = νRe = 0.01 m2/s). On these three meshes, a comparison
is made between the free surface height (the total thicknessof the layer), obtained from our numerical solutions and from
the analytical viscous solution of Watson. This is displayed in Fig. 8. One can see from this figure that the numerical
results on these meshes are similar, showing, in some regions, a small difference when compared to Watson’s solution.
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Figure 4. Results for density (ρ) of the Shu-Osher shock tube problem, at timet = 1.5s and with200 cells, using
Lax-Wendroff, Superbee and Van-Leer and schemes.
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Figure 5. Results for density (ρ) of the Shu-Osher shock tube problem, at timet = 1.5s and with200 cells, using
adaptative QUICKEST scheme.
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Figure 6. Computations and experimental data for the surge front position versus nondimensional time.
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Figure 7. Computations and experimental data for the remaining fluid column position versus nondimensional time.
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