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Abstract. This paper presents an implementation of a Fluid-Structure Interaction Scheme using the Panel and 

Boundary Element Methods with straight panels applied to a bi-dimensional body immersed in a fluid flow. First, a 

geometric pre-processor is developed to minimize the discretization errors. In addition, the fluid flow is solved using a 

Panel Method for potential problems which calculates the velocity and pressure over the body surface. Finally an 

Elastic Boundary Formulation is applied for computing the stresses and the corresponding displacements on the 

element surface. These displacements cause an alteration of the body geometry so the flow has to be recalculated. This 

generates another field of pressure that makes for more changes on the surface. After a few iterations convergence is 

reached, when the displacements are nearly zero. If the solid is supported by elastic springs, the flow pressure can 

cause a vibration which is calculated by rigid body movement. The main advantage of this fluid-structure technique is 

that it needs only a refinement of the boundary, and the meshes for both fluid and elastic problems can be the same. 

This substantially reduces the dimensions of the problem, and simplifies the treatment of data interchange between the 

two problems. Two examples show the applicability of this method. 
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1. INTRODUCTION  
 

Fluid-structure interaction has been developed for studying structures submitted to the action of water or wind, such 

as oil platforms, risers, wings and airplanes. In these situations, different variable forces appear, inducing deformations 

and vibrations. The fluid-structure analysis can be used to evaluate the stresses and displacements at different situations, 

preventing eventual further problems.  

The solution of this kind of problems depends on the efficiency of the techniques applied for solving the flow and 

the structure, separately. It also depends on the manipulation of sub domains at the interface between fluid and 

structure. In the last years, numerical and experimental techniques have been developed for this analysis, using Finite 

Element Method (FEM) (Liu, 1980). This technique presents some difficulties, mainly on the interface between the 

meshes of the structure and the fluid, that have to interchange values of displacements and pressures. 

On the other hand, the Boundary Element Method (BEM), that began in the 70’s with Lachat and Watson (1975) 

and Brebbia (1978), has the appeal of needing discretization only of the boundary, substantially reducing system 

dimension and complications due to mesh coupling on the interface. The BEM is specially indicated for infinite 

domains, like acoustic and flow problems. Also, it has a very low number of elements and unknowns compared to FEM. 

However, there are few publications on the application of BEM applied to fluid-structure interaction. 

The main objective of this paper is the implementing of a procedure for fluid-structure interaction, using the BEM. 

The flow is solved by a Panel Method with Sources and Vortices applied to an inviscid and incompressible flow, while 

the structure analysis is performed by a 2D Elasticity formulation of the BEM.  

Straight elements are used. To minimize errors caused by the discretization of curved boundaries, a geometric 

adaptive procedure is applied. It generates new points along the contour, smoothing the angle between two panels. 

The flow analysis calculates the velocities on the surface, and then the pressures needed to perform the elastic 

analysis, which computes the node displacements and redefines the airfoil geometry. Given a new geometry, the process 

restarts computing the new distribution of pressure and loads, resulting on increments of displacement. The process is 

repeated until the displacement increments are smaller than a pre-fixed tolerance. 

Another case presented in this paper is the vibration of the structure due to flow pressures. In this case the structure 

is treated as a rigid body while the supports are elastic. 

The elastic and the dynamic fluid-structure interactions are tested in two separated examples. 

 

2. THE PANEL METHOD 

 

According to Anderson (2001), the equation that describes the problem of an incompressible, inviscid and 

irrotational steady flow around a physical body is the Laplace’s equation:  

 

0or0
2

2

2

2
2 =

∂

∂
+

∂

∂
=∇

y

Φ

x

Φ
    Φ                (1) 



Where Φ is the potential function at the point (x, y). 

One way to solve this equation is using the Panel Method described by Katz and Plotkin (2002). This method 

consists in dividing the surface of the body into panels containing singularities. The value of these singularities are 

calculated applying boundary conditions, which may be Neumann’s or Dirichlet’s, at each panel. 

Figure 1 shows a discretized airfoil, where V∞ is the free stream velocity, α is the angle of attack and n
r

 is the vector 

normal to the surface. 

                                                        

 
 

Figure 1. Panels on the surface of an airfoil. 

 

The method uses analytical solutions of the Laplace’s equation combining elementary flows (sources, doublets and 

vortices) at each panel. There are various formulations depending on the type of singularities, the functions of 

distribution order and the boundary conditions. The potential at a point P of the flow is given by Eq. (2). 
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SB and SW are respectively the body and wake surfaces, r is the distance between P and the surface, µ and σ the 

strength of the doublet and source singularities respectively. 

 

2.1 GEOMETRIC PRE-PROCESSOR 
 

As with any other discrete method, the Panel Method’s results are affected by the discretization of the geometry. In 

order to improve the quality of the solution, a geometrical pre-processor was developed, subdividing the panels and 

generating new points at positions that reduce the sharp corners. 

The sharp corners are identified by the angle between two adjacent panels. A tolerance is set and all the panels that 

don’t fit the conditions are divided. The new points are generated with operations involving the tangent vectors of the 

panels and their bisectors, as shown in Fig. 2.  

Three adjacent panels are used to divide the center one. Bisectors of the angles between them are calculated (Fig. 

2a).  The angles formed between these bisectors and the center panel has new bisectors (Fig. 2b), which are straight 

lines that will create a new point at their intersection (Fig. 2c). It is important to calculate the position of all new points 

before adding them to the contour, as this avoids loosing the body’s symmetry, were there any. 

 

 
 

Figure 2. (a) Bisectors of the angles between panels. (b) More bisectors. (c) New point. 
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When applied to a square, such operations result in a circle as shown in Fig. 3, as was the expected result. This pre-

processing is not done at the trailing edge, where the sharpness of the airfoil must be preserved. 

 

 
 

Figure 3. Pre-processing a square turns it into a circle. 

 

2.1.1 Particular case – Collinear panels 

 
When it occurs that two adjacent panels are in the same straight line, the new point will be generated at the same 

coordinates of an old one. This causes errors in the panel method. Because of that, collinear panels can not be divided 

by this pre-processor. If necessary, they are divided by simply adding points over their line. 

One advantage is that the straightness of part of the contour can be forced by placing two collinear panels. 

 

2.1.2 Particular case – Panels on curvature inflection 
 

When dividing a panel that is at the inflection of the surface’s curvature, the new point is generated far away from 

the body.  To solve this problem, a method shown in Fig. 4 is used. 

 A new vector 
mrt

r
 is placed at the middle of the center panel (Fig. 4a). Where 

mrt
r

 is a bisector between 
irt

r
 and 

1+irt
r

, which are the directions of the lines that would generate the new point in an ordinary case. 
mrt

r
 is then mirrored 

across the panel (Fig. 4b). Two new points are generated at the intersections of the straight lines orientated by 
mrt

r
, 

irt
r

 

and 
1+irt

r
 (Fig. 4c). 

 

 
                 

Figure 4. Panel on curvature inflection. (a) Middle vector 
mrt

r
. (b) Mirrored 

mrt
r

. (c) New points. 

 

3. THE BOUNDARY ELEMENT METHOD FOR ELASTIC PROBLEMS 
 

The direct BEM formulation (Brebbia, 1978) for linear bi-dimensional elasticity problems is given by: 

 

∫∫
ΓΓ

Γ=Γ+

t

jij

u

jijiij dTUdUTU )().().,()().().,()()(C
 * * χχχξχχχξξξ            (3) 



With the boundary conditions: tin   , e uin   , Γ=Γ= jtjTjujU .  Where Γ  is the boundary divided into Γu and Γt. 

Subscripts i an j represents one of the three orthogonal directions, ξ and χ are respectively the source and field points, U 

is the displacement of the point, T is the stress and C is a coefficient which depends on body geometry and is equal to ½ 

for smooth surfaces. U
*
 and T

*
 are the fundamental solutions of the Laplace’s equation, given by: 
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Where ν  is the Poisson Coefficient, G is the shear modulus, ri e rj are the unitary components of vector position r 

defined in Fig. 5, ni and nj are the normal components at the field point on the boundary Γ. 

 The numerical solution is obtained by subdividing the boundary Γ  into Ne elements. The integrals are usually 

solved by the Gauss Quadrature procedure. When the collocation point is integrated within the element, it is necessary 

to use expressions developed to calculate the singular integral such as those given by Guiggiani and Lombardi (1992).  

 

 
 

Figure 5. Basic definitions. 

 

 

Applying the boundary conditions, Uj = ju  in Γu and Tj = jt  in Γt, and rearranging the equation, a linear system of 

equations with dimensions 2Nex2Ne is set. The system is solved by Gauss elimination or by iterative solvers, especially 

when there is a larger number of degrees of freedom (Pessolani, 1999). 

 

4 THE FLUID STRUCTURE INTERACTION SCHEME 

 
 The Fluid Structure Interaction Scheme is shown in Fig. 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Diagram of blocks of the Fluid Structure Interaction Scheme 
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Initially the program reads the input data, which contains the body geometry and the flow and material properties. 

Then the program verifies the presence of sharp corners generating new points to smooth them, according to a given 

tolerance. After that, the Panel Method routine analyzes the flow and computes the velocities and pressures over each 

panel on the body surface. With the pressures, the elastic analysis is performed computing the displacement of each 

node, modifying the geometry and returning to the flow analysis. The process is repeated until the increments of force 

or displacements are nearly zero. 

 

5. DYNAMIC FLUID-STRUCTURE INTERACTION 
 

For the dynamic analysis, a separated model was developed. This model takes the airfoil as a rigid body supported 

by beams, which are treated like springs with spring constant components kx and ky, as shown in Fig, 7. 

 

 
 

Figure 7. Model for the dynamic analysis. (a) Springs replacing the beams. (b) Spring and pressure forces. 

  

The movement of the wing is then calculated in function of the acting forces F, the mass m, the moment of the 

forces around the center of mass MCM and the moment of inertia at the center of mass JCM. 

 

5.1 Spring and pressure forces 

 
The spring forces Fk depend on the airfoil position at each time step and are given by Eq. (6).  
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Where x is the horizontal component of the point respective to the spring and x0 is the relaxed position of the spring. 

The same equation is valid for the vertical component y. 

The pressure forces are calculated by the panel method and must consider the translation and rotation velocities of 

the airfoil at each time step.  In a panel, the pressure force Fp is calculated as follows: 

   

∫ ⋅= dLpFp                (7) 

 

Where p is the pressure distribution over the panel and L its length. 

 

5.2 Moments of the forces 

 

The moments are calculated using all the forces in their respective locations. 
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Fx and Fy are the horizontal and vertical components of each force, x and y are the coordinates of their respective 

points of application, xCM and yCM are the coordinates of the center of mass. 

 

5.5 Accelerations  

 

The center of mass has three acceleration components: the linear components CMCM yx &&&& ,  and the angular component 

θ&& . They are obtained using Newton’s second law: 
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Equation (9) is also valid for the y component. 

 

5.6 Movement and positioning 
 

The airfoil’s movement is obtained by integrating the accelerations using a step of time ∆t. At each step the 

acceleration is constant, therefore the displacement ∆x is: 
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The velocities are incremented as follows: 

 

ttxtxttx CMCMCM ∆⋅+=∆+ )()()( &&&&              (12) 

 

Equation (11) and Eq. (12) are the same for the vertical ∆y and angular ∆θ displacements. 

With the displacements and increases or decreases of velocity, a new position is calculated for all points. This new 

position and velocity relative to the free stream will cause a change of the flow, so a new pressure distribution is 

calculated with the panel method and the process is repeated, showing a vibrating movement. 

 

6. RESULTS  

 

For test comparison, a Van de Vooren airfoil with 1m chord, 15% thickness, having 20 boundary nodes and an 

angle of attack equal to 20º was immersed in a fluid with velocity equal to 1m/s.  

The original mesh refinement at the leading edge and the resulting one after applying the pre-processor are shown 

in Fig. 8. A tolerance of 30° was used for the angle between adjacent panels. It can be seen how the sharp corners are 

modified by adding a number of new nodes, converting them into smooth boundaries. Notice that the new discretization 

is closer to the real form.  

 

 
                                                                 

Figure 8. Discretization of a Van de Vooren airfoil at the leading edge. 
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Figure 9 presents a comparison between Cp coefficients of three solutions: analytical, panel method using 20 

nodes (original panels) and 26 nodes (with smoothed leading edge). Notice the increment of accuracy for the smooth 

discretization. 

 

 
 

Figure 9. Cp graphics at the leading edge. 

 

6.1 Example 1 – Airfoil supported by two rigid beams. 
 

In this example, the airfoil is supported by two rigid beams, one at the leading edge and another at the trailing 

edge. The fluid-structure interaction scheme for static problems was applied. Figure 10 shows the deformed shape after  

8 iterations, when convergence was reached. As expected, the airfoil deforms upwards and more intensely near the 

trailing edge, where it gets thinner. 

 

 
 

Figure 10. Comparison between the initial and final geometry of the airfoil. 

 
Figure 11 shows the surface forces due to the pressure at the first and final iterations. It can be seen how the 

pressure is modified with airfoil deformation. At the 8th iteration, the pressure is lower at the front and higher at the 

back, compared to the first iteration. 

 



 
 

Figure 11. Evolution of the load applied on surface panels at the 1
st
 and 8

th
 iterations (10

-2
 N/m). 

 

 

6.2 Example 2 – Airfoil supported by elastic beams. 

 

To see how the airfoil can vibrate under pressure, this second example solves the dynamic model showed on Fig. 

12, with two elastic beams supporting it.  

 

 
 

Figure 12. Vibration model with two elastic beams represented by springs. 

 

A time step of 0,001s was taken and the final results are shown in Fig. 13. The vibration amplitude of the wing can 

be seen, of nearly 7 cm. The frequency is about 0,25 Hz. 
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Figure 13. Wing vibration under wind pressure. 

 

7. CONCLUSIONS 

 

A scheme for a fluid-structure interaction using boundary formulation has been proposed. The fluid problem was 

solved using Panel Methods while the structure was solved with the Boundary Element Method for Elasticity. Both 

problems have the same mesh. This simplifies and avoids coupling problems on the interface when using domain 

methods. 

The formulation was applied to two examples using the same airfoil with different supports: a rigid support for static 

analysis and an elastic one for dynamic analysis. The results show the applicability and the precision that can be 

obtained with few elements. Also, for the dynamic problem, the vibration frequency was obtained with a simple 

method. 

As a conclusion, Boundary formulations can be further explored in order to solve fluid structure interaction 

problems on account of data entry simplicity, considerable reduction of the system dimension, and the easy way to treat 

the two problems using the same mesh. This procedure can also be applied to maritime structures, such as oil ducts and 

platforms. The dynamic analysis performed has to be improved and the formulation needs to be tested for more bodies 

and extended to 3D problems. 
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