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Abstract. This work presents the continuity of the studies of an  experimental geometric optimization to maximize the 
total heat transfer rate between a bundle of finned tubes in a given volume and a given external flow both for circular 
and elliptic arrangements, for general staggered configurations. The optimization procedure started by establishing a 
fixed volume constraint to account for the design limited space availability. The experimental results were obtained for 
circular and elliptic configurations with a fixed number of twelve tubes, starting with an equilateral triangle 
configuration, which fitted uniformly into the fixed volume. A number of experimental configurations were built by 
reducing the tube-to-tube spacings, identifying the optimal spacing for maximum heat transfer. Similarly, it was 
possible to investigate the existence of optima with respect to other two geometric degrees of freedom, i.e., tube 
eccentricity and fin-to-fin spacing. The results are reported for air as the external fluid, in the range 

10600Re2650 2b ≤≤ , where 2b is the smaller ellipse axis. Circular and elliptic arrangements with the same air input 
velocity and flow obstruction cross-sectional area were compared on the basis of maximum total heat transfer. For low 
values of the free stream velocity, pressure drops are expected to be nearly equivalent with such criterion, but for 
higher velocities in the turbulent regime pressure drops are expected to vary with cross section shape, therefore the 
minimization of pumping power was not within the scope of the present study. Experimental optimization results for 
finned circular and elliptic tubes arrangements are presented. A relative heat transfer gain of up to 23 %               
(Re2b = 10600) is observed in the elliptic arrangement optimized with respect to tube-to-tube spacings, as compared to 
the optimal circular one. Such findings motivated the search for optima with respect to two additional degrees of 
freedom, i. e., eccentricity and fin-to-fin spacing.  It is proposed a correlation for estimating the 3-way maximized total 
overall thermal conductance expected for any arrangement of the types studied in this paper. 
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1. INTRODUCTION  
 

With the human societies in development, all the needs are increased. Food, water, shelter, energy are common 
necessities whatever the people or country throughout the world. Focusing in energy, its availability requires continuous 
investments by the governments to satisfy both industry and consumers needs. Besides generating more power and 
researching new sources of energy, many efforts have been directed to save energy through optimization of its use, 
mainly in industrial processes. Finned cross-flow heat exchangers are part of numerous engineering processes in 
industry and are unquestionably responsible for a large share of the total energy consumption wherever they are present. 

The optimization of flow-system architecture is a widespread occurrence in engineering and nature.  Many examples 
have been brought together under the title of constructal theory  (Bejan, 2000), which is the thought that geometry (flow 
architecture) is generated by the pursuit of global performance subject to global constraints, in flow systems the 
geometry of which is free to change. According to constructal theory, the optimization of flow architecture starts at the 
smallest (elemental) scale, i.e., in this study, the shape of the heat exchanger flow channel. In principle, this procedure 
can be extended on a hierarchical ladder to larger and more complex systems, to explore multi-scale packings that use 
the available volume to the maximum.  

Finned cross-flow heat exchangers are part of numerous engineering processes in industry and are unquestionably 
responsible for a large share of the total energy consumption wherever they are present in Bordalo and Saboya (1999), 
Saboya and Saboya (2001), Rosman et al. (1984), Khan et al. (2004), Elshazly et al. (2005), Elsayed et al. (2003), Min 
and Webb (2004), Kundu et al. (2006), O’Brien and Sohal (2005), O’Brien et al. (2004), Gao et al. (2003) and Kim et 
al. (1999). 

In this work, the geometric optimization of design parameters for maximum heat transfer is pursued experimentally. 
The objective is to provide scientific information for the possible utilization of elliptical tubes instead of circular ones in 
the heat exchangers of practical applications and industrial processes (e.g., air conditioning and refrigeration, HVAC-R, 
systems, heaters, radiators) in the future. Therefore, it is necessary the investigation to be conducted for the turbulent 
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flow regime. The basic idea is to analyze the heat transfer gain using elliptic tubes heat exchangers as compared to the 
traditional circular ones when varying the following design parameters: =δ  fin-to-fin spacing; e = ellipses eccentricity 
(e = b/a), and S = spacing between rows of tubes. Hence, the problem consists of identifying a configuration (internal 
architecture, shape) that provides maximum heat transfer for a given space (Bejan, 2000). 

The main focus of the present study is on the experimental geometric optimization of staggered finned circular and 
elliptic tubes in a fixed volume. The paper describes a series of experiments conducted in the laboratory in the search 
for optimal geometric parameters in general staggered finned circular and elliptic configurations for maximum heat 
transfer in turbulent flow. Circular and elliptic arrangements, with the same flow obstruction cross-sectional area, are 
then compared on the basis of maximum total heat transfer and total mass of manufacturing material. Appropriate non-
dimensional groups are defined and the optimization results reported in dimensionless charts. 
  
2. THEORY 
 

A typical four-row tube and plate fin heat exchanger with a general staggered configuration is shown in Fig. 1. 
Fowler and Bejan (1994) showed that in the laminar regime, the flow through a large bank of cylinders could be 
simulated accurately by calculating the flow through a single channel, such as that illustrated by the unit cell seen in 
Fig. 1. Because of the geometric symmetries, there is no fluid exchange or heat transfer between adjacent channels, or 
at the top and side surfaces. At the bottom of each unit cell, no heat transfer is expected across the plate fin midplane. In 
Fig. 1, L, H and W are the length, height and width (tube length) of the array, respectively. The fins are identical, where 
tf is the thickness and δ is the fin-to-fin spacing.  ,
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Figure 1. General configuration of the arrangement of finned elliptic tubes 
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Dimensionless variables have been defined based on appropriate physical scales as follows:  
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where (x, y, z)  are the Cartesian coordinates, m; p the pressure, N m-2; ρ the fluid density, kg m-3;   the free stream 
velocity, m s

∞u
-1; (u, v, w)  the fluid velocities, m s-1; T  the temperature, K;   the free stream temperature, K;   the 

tubes surface temperature, K; L  the array length in the flow direction, m, H  the array height, m, W  the array width, m, 
and  the fluid kinematic viscosity, m

∞T wT

ν 2s-1. The objective is to find the optimal geometry, such that the volumetric heat 
transfer density is maximized, subject to a volume constraint. The engineering design problem starts by rec   ognizing 
the finite availability of space, i.e., an available space WHL ××  as a given volume that is to be filled with a heat 
exchanger. To maximize the volumetric heat transfer density means that the overall heat transfer rate between the fluid 
inside the tubes and the fluid outside the tubes will be maximized. 

The dimensionless overall thermal conductance q~ , or volumetric heat transfer density is defined as follows (Matos 
et al., 2001, Matos et al., 2004a and Matos et al., 2004b):  

 

( )  2bLHW/k 

)T-(T / Q
  q~

2
w ∞=                (3) 

 
where the overall heat transfer rate between the finned tubes and the free stream, Q, has been divided by the constrained 
volume, LHW; k is the fluid thermal conductivity, W m-1 K-1, and 2b = D the ellipse smaller axis or tube diameter. 

A balance of energy in one elemental channel states that: 
 

 )T -T( c m NQ N  Q outpecececec ∞== &             (4) 
 
where ecN  is the number of elemental channels. The elemental channel is defined as the sum of all unit cells in 
direction z. Therefore, the mass flow rate (kg s-1) entering one elemental channel is 
 

( )[ ]( ffec tn-W /22bSum + ρ= ∞& )             (5) 
 
and  is the fin thickness, m, c  is the fluid specific heat at constant pressure [J kgft p

-1 K-1], and outT  is the average 
fluid temperature at the elemental channel outlet (K). 

The number of fins in the arrangement is given by: 
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The dimensionless overall thermal conductance is rewritten utilizing Eqs. (3)-(6) as follows: 
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, is the dimensionless fin density in direction z  W)tn (0 ff ≤≤ , and Pr the fluid Prandtl 

number, ν/α. 
For the sake of generalizing the results for all configurations of the type studied in this work, the dimensionless 

overall thermal conductance is alternatively defined as follows: 
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The volume fraction occupied by solid material in the arrangement is given by 

[  ab)n(LH  ))t)(bt(a - (ab n  
L

W
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π−φ+−−π= ]           (9) 

 
where  is the thickness of the tube wall, m, and n is the total number tubes of the arrangement.   t t  t

 
3. EXPERIMENTS 
  

The same experimental rig that was utilized in previous studies for the laminar regime (Matos et al., 2001, Matos et 
al., 2004a and Matos et al., 2004b) was re-utilized in the laboratory to produce the necessary experimental data to 
perform the experimental optimization of finned arrangements. Figure 2 shows the experimental apparatus utilized in 
this study. The forced air flow was induced by suction with an axial electric fan, with a nominal power of 1 HP, and 
was capable of providing air free stream velocities, , up to 20 ms∞u -1. 

 
 

 
 

Figure 2. Experimental apparatus 
 
The objective of the experimental work was to evaluate the volumetric heat transfer density (or overall thermal 

conductance) of each tested arrangement by computing 
*

q~  with Eq. (8) through direct measurements of , 

and 

)(Re u 2b∞

outT , wT  and ( outT θ ∞ ) . The volume fraction occupied by solid material in the arrangement, V~ , was also 
evaluated according to Eq. (9), in order to compare the resulting total volume of solid material of the elliptic and 
circular arrangements. 

Five runs were conducted for each experiment. Steady-state conditions were reached after 3 hours in all the 
experiments. The precision limit for each temperature point was computed as two times the standard deviation of the 5 
runs (Editorial, 1992). It was verified that the precision limits of all variables involved in the calculation of 

*
q~  were 

negligible in comparison to the precision limit of outθ , therefore 
out*

q~ PP θ≅ . The thermistors, anemometer, properties, 
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and lengths bias limits were found negligible in comparison with the precision limit of 

*
q~ . As a result, the uncertainty 

of 
*

q~  was calculated by: 
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where 

out
Pθ  is the precision limit of outθ . 

The tested arrangements had a total of twelve tubes placed inside the fixed volume L , with four tubes in 
each unit cell (four rows). For a particular tube and plate fin geometry, the tests started with an equilateral triangle 
configuration, which filled uniformly the fixed volume, with a resulting maximum dimensionless tube-to-tube spacing 
S/2b = 1.5. The spacing between tubes was then progressively reduced, i.e., S/2b = 1.5, 0.5, 0.25 and 0.1, and in this 
interval an optimal spacing was found such that 

WH ××

*
q~  was maximum. All the tested arrangements had the aspect ratio 

L/2b = 8.52. 
Several free stream velocities set points were tested, such that = 2.5, 5.0, 7.5 e 10.0 ms∞u

.18≤

-1, corresponding to 
= 2650, 5300, 7950, and 10600, respectively, which covered a significant portion of the air velocity range of 

interest for typical air conditioning applications, i.e., 1 , Bordalo and Saboya (1999). For those 
values of , the turbulent flow regime is observed. The largest uncertainty calculated according to Eq. (10) in all 
tests was 

Re
-1-1 ms 2ums 8. ∞≤

2bRe
075.0q~/ U

*
q~ *

= . 

 
3. RESULTS AND DISCUSSION 
  

For each tested Reynolds number, , the 3-way optimization procedure was performed according to the 
following steps: i) for a given eccentricity, the dimensionless overall thermal conductance, 

2bRe

*
q~ , was computed with Eq. 

(8), for the range of tube-to-tube spacings 0 1.5S/2b1. ≤≤ ; ii) the same procedure was repeated for several 
eccentricities, i.e., e = 0.4, 0.5, 0.6 and 1, and iii) steps i) and ii) were repeated for different fin-to-fin spacings 
configurations, i.e., fφ = 0.006, 0.094, and 0.26. 

This study presents experimental optimization results for a higher range of Reynolds numbers than in previous 
optimization studies for finned elliptic tubes arrays (Matos et al., 2004a, Matos et al., 2004b and Matos et al., 2006), 
i.e., for Re = 2650, 5300, 7950 and 10600, therefore investigating the turbulent flow regime. The optima obtained in 
the experiments are sharp, stressing their importance in actual engineering design. The optimal tube-to-tube spacings 
found experimentally for = 2650, 5300, 7950 and 10600, were in the range 

2b

2bRe ( ) 6.05.0 opt ≤≤ , for 1e5.0 ≤≤ . 
The first step of the 3-way optimization procedure is documented by Matos et al. (2006), which show the 

experimental optimization of the tube-to-tube spacing and the tube eccentricity. 
The continuity of the studies show the experimental optimization of the fin-to-fin spacings. Figure 3 illustrates the 

existence of a local optimal fin-to-fin spacing, fφ , for ( ) 5.0S/2b opt =  and e = 1 (circular tubes). In this way, it is 
possible to investigate the effect of the variation of fin-to-fin spacing in isolation, on the heat transfer rate of the 
traditional circular arrangement. In all the experimental results shown so far, it was observed that as  increases 2bRe
q~  increases, with sharper maxima occurring at higher . 2bRe

Figure 4 reports the results of the 3-way global optimization with respect to the three degrees of freedom, S/2b, e 
and f , obtained after performing the three steps of the optimization procedure. An optimal set of geometric 
parameters was determined experimentally such that 

*
q~  was maximized three times, i.e.: (S/2b, e, fφ )opt  (0.5, 0.6, 

0.094), where the 3-way maximized dimensionless overall thermal conductance reads as 

≅

mmm,*
q~  at  for each 

tested , in Fig. 4. A closer inspection of the results presented in Fig. 4 shows that the 3-way optimized internal 
configuration is "robust" with respect to the variation of the Reynolds number for the entire tested range. Therefore, it is 
proposed a correlation for estimating the 3-way maximized total overall thermal conductance expected for any 
arrangement of the types studied in this paper for 2650

optf,φ

2bRe

10600Re2b ≤≤ , as follows: 
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0.99053R    ,   Re  000034064.0Re  47003.05.1299q~ 2
2b2bmmm,*

=++=           (11) 

where R is the statistics correlation coefficient. 

Figure 5 shows with square symbols, the experimentally determined points for mmm,*
q~ calculated with Eq. (8), and 

curve plotted with the correlation proposed by Eq. (11). The mmm,*
q~  trend with respect to the variation of  is well 

approximated.  
2bRe

From all experimental results obtained in this study, it is important to stress that a heat transfer gain of up to 23 % 
was observed in the 3-way optimized elliptic arrangement of Fig. 4, as compared to the 2-way optimized circular one 
(i.e., with respect to tube-to-tube and fin-to-fin spacings only, as shown in Fig. 3). This observation was made for the 
highest Reynolds number tested in the experiments, Re 106002b = , which corresponded to an air free stream velocity 

 in the experimental set-up. -1ms 10u =∞

Although the comparison of required pumping power between the elliptic and circular arrangements was not the 
objective of the present study, pressure drops were measured in all experimental runs. A pressure drop reduction of 
approximately 20 % was observed in the 3-way optimized elliptic arrangement in comparison with the 2-way optimized 
circular one (i.e., with respect to tube-to-tube and fin-to-fin spacings only) for the highest Reynolds number tested in 
this study, i.e., . The measurements are consistent with previously reported pressure drop results for 
similar elliptic arrangements, Bordalo and Saboya (1999). 

10600Re2b =

Finally, Figure 6 shows the volume fraction of solid material computed with Eq. (9) for the tested arrangements. The 
objective was to evaluate how the same flow obstruction cross-sectional area comparison criterion between elliptic and 
circular arrangements adopted in this study, affected total volume of solid material. It is observed that when the 
dimensionless fin density is small (small number of fins), the volume fraction of solid material, V~ , increases as 
eccentricity decreases (from 0.033 at e=1 to 0.053 at e=0.4, for 006.0f =φ ). However, such trend is inverted as the 

number of fins (or dimensionless fin density) increases. For example, the volume fraction V 0.104~
≅  for

e = 0.5, 0.6 and 1, for , and 094.0f =φ =V~  0.215, 0.222 and 0.238 for e = 0.5, 0.6 and 1, respectively, for 26.0f =φ , 
as it is shown by Fig. 6. So, for the 3-way optimized elliptic configuration, with , the volume fraction of 
solid material of the elliptic arrangement is the same as the circular one. Therefore, the same amount of material is 
required for manufacturing both the 3-way optimized elliptic arrangement and the circular one with the same 
dimensionless fin density. 

094.0optf, =φ
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Figure 3. Two-way optimization of finned circular 
arrangements with respect to tube-to-tube and fin-to-fin 
spacing. 

 
 

 

0

2000

4000

6000

8000

10000

12000

0 0.1 0.2 0.3

10600 = Re
2b

 

7950

5300

2650

φf

mmm*,q~

Pr = 0.72
L/2b = 8.52

 
 
Figure 4.  three-way optimization of finned 
arrangements with respect to tube-to-tube spacing, 
eccentricity and fin-to-fin spacing. 
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Figure 5. The three-way maximized dimensionless heat 
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Figure 6. The total solid volume fraction of the 
arrangements with respect to eccentricity and fin-to-fin 
spacing. 

 
5. CONCLUSIONS 

 
A theoretical and experimental study was presented in this paper for staggered finned circular and elliptic tubes heat 

exchangers to demonstrate that optimal design configurations can be found so that maximum heat transfer is observed, 
for a given fixed volume. Several experimental arrangements were built in the laboratory and many test runs were 
conducted in a wind tunnel in turbulent forced convection. The internal geometric structure of the arrangements was 
optimized for maximum heat transfer. Better global performance is achieved when flow and heat transfer resistances are 
minimized together, i.e., when the imperfection is distributed optimally in the available space. Optimal distribution of 
imperfection represents flow architecture, or constructal design (Bejan, 2000). 

Appropriate dimensionless groups were identified to report the experimental results to allow for the general 
application to heat exchangers of the type treated in this study. A comparison criterion was adopted as in previous 
studies, Bordalo and Saboya (1999), Saboya and Saboya (2001), Rosman et al. (1984), Matos et al. (2004a), Matos et 
al. (2004b), i.e., establishing the same air input velocity and flow obstruction cross-sectional for the circular and elliptic 
arrangements, to compare the arrangements on the basis of maximum heat transfer in the most isolated way possible. 
Pressure drops for all arrangements were measured and the results agree with previously published results (Bordalo and 
Saboya, 1999). The arrangements were also compared in terms of total volume of solid material required for them to be 
manufactured. 

The key conclusions of this study are listed as follows: 
1. An optimal set of geometric parameters was determined experimentally such that 

*
q~  was maximized 

three times, i.e.: (S/2b, e, )fφ opt  (0.5, 0.6, 0.094), where the 3-way maximized dimensionless overall 
thermal conductance is achieved; 

≅

2. The 3-way optimized elliptic arrangement exhibits a heat transfer gain of up to 23 % relative to the 
optimal circular tube arrangement; 

3. A compact analytical correlation was proposed to estimate the actual 3-way maximized overall 
thermal conductance in the design of elliptic tubes heat exchangers of the type studied in this paper; 

4. For the 3-way optimized elliptic configuration, with , the volume fraction of solid 
material of the elliptic arrangement is the same as the circular one, and 

094.0optf, =φ

5. The heat transfer gain, pressure drop reduction, and a similar amount of material to manufacture both 
arrangements show that the elliptic tubes optimized arrangement has the potential to deliver significantly 
higher global performance than the circular arrangement, with a similar investment cost. 
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