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Abstract. In this work Direct Numerical Simulation of compressible, subsonic mixing layers with heat source is performed
in a two-dimensional temporal analysis. The heat source is asimplified model of a reacting flow. The simulation considers
the temporal evolution of an initial laminar shear layer, where disturbances are amplified forming the characteristic
vortices of a Kelvin-Helmholtz instability. The Navier-Stokes are solved numerically using compact, high-order finite
differences for the spatial derivatives and a4th Runge-Kutta scheme for the temporal terms. The results showthat the
combination of heat addition and compressibility reduces significantly the amplification of disturbances and the rangeof
wavenumbers that are unstable, delaying the transition to aturbulent regime and contributing negatively for the process
of mixture of fluids in the mixing layer.
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1. INTRODUCTION

In propulsive systems, combustion efficiency and the exhaust of pollutants to the atmosphere are directly related to the
quality of the air-fuel mixing. Fuel consumption and the exhaust of carbon monoxide, unburned hydrocarbons and nitric
oxides have to be minimized. Usually in diffusive flames turbulence is a desired characteristic of the flow due to its higher
diffusive proprieties, which allows a better mixing between the reactants. Nevertheless, in supersonic combustion, which
is sought for hypersonic flight, turbulence is stabilized and laminar flows are much more stable due to compressibility
effects. The end result is that diffusion flames, that dependstrongly on turbulence for the effective mixing of fuel and
oxidizer may not be an effective process in the compressibleregime. A mixing layer or shear layer is the simples model
for the interface in a binary fuel-oxidizer system as shown in Fig. 1.. The predominant instability in the shear layer is
inviscid according to Rayleigh’s and Fjortoft inflection point theorem.

Figure 1. Fuel-oxidizer interface in a shear layer.

The process by which fuel and oxidizer are mixed in a shear layer was identified by Brown and Roshko, 1974. The
typical Kelvin-Helmholtz instability structures providetwo mixing mechanisms, one due to entrainment on the large scale
structures and the other by vortex pairing. the second is themost important, since the large scale vortical structures may
move large quantities of reactants without mixing. Ho and Huerre, 1984 present a detailed review of experimental and
numerical references on shear layer stability. For incompressible and moderately compressible flows a single vortical
structures is formed as shown in Fig. 1.. Increasing compressibility has a stabilizing effect on the shear layer and the
amplification rates are reduced with increasing convectiveMach number as reported by Lessen et al., 1965; Lessen et al.,
1966; Groppengiesser, 1970; Chinzei et al., 1986; Papamoschou and Roshko, 1988 and Clemens and Mungal, 1995.
These previous works also identified that increased compressibility results in three-dimensional modes that have a higher
amplification rate than two-dimensional modes.

Compressibility has also a third effect, that results in thedevelopment of two unstable modes, called external modes,
as identified by Jackson and Grosch, 1989 and Jackson and Grosch, 1990. These modes have amplitude peaks out of the
shear layer centre line, resulting in the structure shown inFig. 2. High convective Mach number shear layers in reacting
systems have higher instability amplification rates for theexternal modes compared to the central mode. The mixing
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process becomes a two step process in this case. Further investigations confirmed the existence and higher growth rate
of the external modes when combustion is considered as reported by Planché, 1993; Shin and Ferziger, 1991; Shin and
Ferziger, 1993 and Planché, 1993.

As a result of these investigations important conclusions were drawn. First the laminar velocity profile used in stability
analysis has a large influence on the results, as well as the consideration of variable gas properties such as viscosity
and density, according to Shin and Ferziger, 1991 and Shin and Ferziger, 1993. Second incompressible flows with
combustion reaction also result in large amplification rates for the external modes, but a predominance of two-dimensional
disturbances, unlike compressible flows with high Mach number, for which three-dimensional disturbances have a higher
growth rate.

Figure 2. Development of external modes in compressible andreacting shear layers.

Based on these previous conclusions Day et al., 1998 and Day et al., 2001 presented numerical results with a broader
range of parameters, including nonlinear effects up to the secondary instability regions. These works considered linear
stability analysis, parabolized stability equations and direct numerical simulations. Other direct numerical simulations
were performed by Sauvage and Kourta, 1999; Sandham and Reynolds, 1991 and Germanos and Medeiros, 2005. The
last two without chemical reaction.

In this work the compressible Navier-Stokes equations are solved numerically including an internal heat source in
the energy equation. This heat source simulates the effect of a combustion reaction. Only the initial linear stages of
Kelvin-Helmholtz instability are simulated. Therefore, the two-dimensional Navier-Stokes suffice to capture the variation
of amplification rate with heat source strength and compressibility.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

The governing equations are the two-dimensional compressible Navier-Stokes equations in a Cartesian coordinate
system given in non-dimensional form by:

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0, (1)

∂ρu

∂t
+

∂

∂x
(ρu2 + p − τxx) +

∂

∂y
(ρuv − τxy) = 0, (2)

∂ρv

∂t
+

∂

∂y
(ρv2 + p − τyy) +

∂

∂x
(ρuv − τxy) = 0, (3)

∂Et

∂t
+

∂

∂x
[(Et + p)u + qx − uτxx − vτxy] +

∂

∂y
[(Et + p)v + qy − uτxy − vτyy] + Q = 0. (4)

Whereρ is the fluid density,u andv are the velocities in the streamwisex and normaly directions,t is the time andp
the static pressure andQ a heat source. The components of the stress tensorτ and heat fluxesq are given by:
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WhereM, Pr andRe are the Mach, Prandtl and Reynolds numbers.
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The total energyEt and the perfect gas relations are:
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The dynamic viscosity variation with temperature follows apower lawµ = µoT
0.65.

These governing equations in non-dimensional form have reference values given by the fast stream, such that the
reference velocity and temperature areU1 andT1, the reference density and viscosity areρ1 andµ1 and the length scale
is the vorticity thickness based on the velocityUci at the point of inflection:

δω =
(U1 − U2)
(

dUci

dy

)

max

, (9)

2.1 Initial and Boundary Conditions

Initial conditions are given based on a periodic disturbance added to a laminar hyperbolic tangent profile for the
streamwise velocity such that:
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Where the subscriptL stands for the laminar base flow and
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The Crocco-Bussemann relation was used to specify the initial temperature distribution
The initial disturbances are given by a periodic variation in the streamwise direction and an exponential decay in the

normal direction:

u′ = 2σye−(σy2)

[

A1 cos(α1x)

α1
+

A2 cos(α2x)
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]

, v′ = e−(σy2) [A1 sin(α1x) + A2 sin(α2x)] . (13)

Whereσ adjusts the disturbances thickness,A1 eA2 are amplitude related to the wavenumbersα1 eα2. The wavelength
areλ1 = 2π/α1 andλ2 = 2π/α2. The disturbance velocitiesu′ andv′ are related by the incompressible continuity
equation.

Far from the shear layer the flow is considered laminar and in the streamwise direction the disturbances are periodic
with wavelengthLx = λ. For a variableφ:

φ(y → +∞) = φ1, φ(y → −∞) = φ2. φ(x, y) = φ(x + Lx, y). (14)

Where the normal velocity components at±∞ is zero and the initial pressure is uniform across the shear layer.

2.2 Numerical Method

The governing equations are solved numerically. By now, it is well known the advantages of high order compact
schemes due to their higher performance regarding dissipation and dispersion errors according to Lele, 1992; Mahesh,
1998 and Souza, 2003. The equations are discretized using a 4th order Runge-Kutta for the temporal terms. The time
step is limited in this explicit method and the following criterion was used, limiting the Courant numberC to less then or
equal to 1, Sandham, 1990:
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Wheredt is the time step,M1 is the Mach number of the fast stream,Prr1 andRe1 are the reference Prandtl and Reynolds
numbers,γ is the ratio of specific heats,dx anddy are the spacing in the streamwise and normal directions.

The spatial derivatives are discretized with 6th and 5th order compact finite differences. Interior points are discretized
with the usual compact differences presented by Lele, 1992.Points at the upper and lower boundaries are discretized with
an asymmetric 5th order stencil. Points neighboring the boundaries are discretized with a 6th order asymmetric stencil.
These boundary and near boundary schemes are presented below and additional information can be found in Souza, 2003.
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Figure 3. Domain

Second order derivatives are approximated by two consecutive first order stencils. Detail representation of the finite
differences resulting matrices can be found in Quirino, 2006 due to size limitations in this article. The computational
domain is represented in Fig. 3 containing a shear layer withvorticity thicknessδω defined in Eq. 9.

The computational grid in the normal direction has 10 to 18 times more grid points than the number of grid points in
the streamwise direction, that has weaker gradients. No special consideration were given to avoid the reflexion of noiseat
the boundaries. In other words, non-reflexive boundary conditions were not implemented. In order to avoid the destruction
of the numerical solution by noise reflection, the boundaries at the upper and lower boundaries had to be distanced from
the shear layer. In certain cases the domain was more than onehundred times the shear layer vorticity thickness. Extensive
numerical tests were performed for each test case presentedin order to establish the adequate domain size and number of
grid points.

2.3 Code Verification

Figure 4 presents comparisons between amplification rates versus wavenumber obtained with the present model against
the numerical results from Sandham, 1990 for two compressibility levels M = 0.4 andM = 0.8. In the low wavenumber
limit the code predicts amplification rates that are not in agreement with other results available in the literature. The
reason for that is the inadequate choice of initial condition that are not based on linear stability analysis results. The initial
conditions defined in 13 results in the growth of higher harmonics that prevails due to their higher amplification rates. The
resulting vortex topology, given by vorticity iso-lines are in good agreement with results presented by Sandham, 1990
(not shown).
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Figure 4. Amplification rate versus wavenumber for compressible shear layer without heat source. Comparison with
numerical results from Sandham, 1990.
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Amplification ratesω were measured based on the growth of the maximum normal velocity component:

ω =
v(t + dt) − v(t)

dt v(t)
, (18)

3. RESULTS

3.1 Compressibility Effects

According to previous studies discussed in the literature review presented above, compressibility is stabilizing and,
therefore, has a negative effect on the mixing process in a binary fuel-oxidizer shear layer. Figure 5 shows the amplification
rate versus wavenumber for three different values of Mach number. This figure shows not only that the amplification rates
are reduced with increasing Mach number, but the range of wavenumbers that are amplified is reduced.
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Figure 5. Amplification rate versus wavenumber for three
different Mach numbers,Ma = 0.4, 0.6 and 0.8.
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Figure 6. Vorticity iso-lines forM = 0.4 andα = 0.8 at
t = 31.80.

Figure 6, 7 and 8 show iso-vorticity lines forM =0.4, 0.6 and 0.8 respectively. These plots corresponds to the time
close to the point where the vortices saturate. The wavenumber of each case corresponds to the one with the higher
amplification rate for the given Mach number. The noise closeto the boundaries are due to numerical reflection. The
cortices are more or less elongated for different Mach numbers. The time taken to rich saturation is higher with increasing
Mach number.
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Figure 7. Vorticity iso-lines forM = 0.6 andα = 0.7 at
t = 38.87.
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Figure 8. Vorticity iso-lines forM = 0.8 andα = 0.5 at
t = 62.48

3.2 Compressible Shear Layer With Heat Source

Adding a heat source to the energy equation, one can study theeffect of heat addition on the stability of the com-
pressible shear layer. The heat source has a Gaussian distributionQ(y) = c e−σy2

centered at the shear layer, with a
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thickness controlled byσ. Four different levels of heat were considered for each compressibility levels,c1 = 3, 0 · 10−3,
c2 = 5, 0 · 10−3, c3 = 7, 0 · 10−3, c4 = 9, 0 · 10−3. Wherec is the maximum amplitude of the source.

Figure 9 presents the amplification rate versus wavenumber for a shear layer withM = 0.4. The results show that the
amplification rate is reduced due to heat addition. The amplification rates are reduced with the increase in the heat source
strength. The wavenumber corresponding to the maximum amplification rate was not changed for the four heat source
levels considered. The heat source inhibit the developmentof the vortices, having a similar effect of compressibility.
The temporal evolution of the velocity normal componentv(t) is shown in Fig. 10 forMa = 0.4 and wavenumber
α = 0.8. A initial numerical transient region is observed due to thespecification of initial conditions. That is followed by
a exponential growth rate region and a saturation region.

Figures 11 and 12 show iso-vorticity lines close to the beginning of the saturation region forc = 0.003 andc = 0.009
For the heat strength considered no significant differenceswere observed on the thickness of the vortices. Iso-vorticity
lines for the other two Mach numbers considered are similar (not shown).

Increasing the Mach number toM = 0.6 results in additional reduction on the amplification rates as shown in Fig.
13. For this level of compressibility heat addition has a greater effect on disturbances with higher wavenumbers. The
time evolution ofv(t) is shown in figure 14 for different levels of heat addition, including the case of no heat addition.
compared to the caseM = 0.4 the curves are more spread apart, showing that a higher Mach number has a stronger
influence on the growth rate.

Iso-vorticity lines forc = 0.003 andc = 0.009 are shown in Figs. 15 and 16 forM = 0.6 andα = 0.7. Close to
the point where saturation takes place, the vortices are little more elongated than atM = 0.4, but does not seems to vary
much for the different levels of heat addition.

For a compressibility level ofM = 0.8, again the amplification rates are reduced, as shown in if Fig. 17. But
the effect on the higher wavenumber limit is stronger than the effect observed for the other compressibility levels. The
range of unstable wavelengths is reduced increasing the heat strength. The simultaneous effect of compressibility and
heat addition on the growth rate can be seen clearly on the temporal evolution ofv(t). The same levels of heat addition
promotes a stronger stabilization of the shear layer if the compressibility is higher. This effect is evident also on Fig.
18 for the evolution ofv(t). In other words, flows with higher compressibility are more sensitive to heat addition. The
iso-vorticity lines in Figs 19 and 20 show similar behaviouras forM = 0.6.

4. CONCLUSIONS

A higher order finite differences code was used in a direct numerical simulation of the Navier-Stokes equations to
study the development of instabilities in a shear layer withheat addition. The results show that compressibility has a
stabilizing effect and this effect is stronger on high wavenumber disturbances. When heat is added to the shear layer, asin
a combustion process, the shear layer is further stabilized. The effect of heat addition is also higher on high wavenumber
disturbances. When the combined effect of compressibilityand heat addition is considered it was observed that heat
addition has a stronger stabilizing effect with increasingcompressibility.
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Figure 9. Growth rates forM = 0.4 in a shear layer with
heat addition.
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Figure 14. Maximum vertical velocity disturbance versus
time forM = 0.6.
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Figure 17. Growth rates forM = 0.8 in a shear layer
with heat addition.
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Figure 18. Maximum vertical velocity disturbance versus
time forM = 0.8.
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Figure 19. Vorticity iso-lines forM = 0.8, α = 0.5 and
c = 0.003 at t = 50.33.
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Figure 20. Vorticity iso-lines forM = 0.8,α = 0.5 and
c = 0.009 at t = 58.34.


