
Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

VALIDATION OF A MATHEMATICAL MODEL OF STOCKBRIDGE 
DAMPER  

 
Renato Barbieri, e-mail: renato.barbieri@pucpr.br 
Pontifícia Universidade Católica do Paraná – PUCPR  - Curitiba – Brasil 

 

Nilson Barbieri, e-mail: nilson.barbieri@pucpr.br  
Pontifícia Universidade Católica do Paraná – PUCPR  - Curitiba – Brasil 

Universidade Tecnológica Federal do Paraná – UTFPR – Curitiba - Brasil 

 

Oswaldo Honorato de Souza Júnior, e-mail: oswaldo@lactec.org.br 
Universidade Tecnológica Federal do Paraná – UTFPR – Curitiba – Brasil 

LACTEC- Instituto de Tecnologia para o Desenvolvimento 

 
Vinícius Pereira Silva, e-mail: vinicius@lactec.org.br 
LACTEC- Instituto de Tecnologia para o Desenvolvimento 

 
Abstract. In this work the authors try to establish a procedure to adjust the bending stiffness and the loss factor  of the 

numeric stockbridge damper model using as reference data the experimental FRF (Frequency Response Function)  

curve. To validate the mathematical model the Genetic Algorithm (GA) method was used to approximate the 

experimental and numeric FRF curves. To obtain the experimental data were used seven accelerometers displaced 

along the sample. The experimental and simulated results present good approximations.  
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1. INTRODUCTION  
 

Wind-excited vibrations generated by vortex shedding are very common in high-voltage overhead transmission 

lines. Although such vibrations are rarely perceptible due to their low amplitudes (less than a conductor diameter), they 

are, however, extremely important since they may lead to conductor fatigue (Hagedorn et al., 2002). These vibrations 

are usually caused by winds ranging in velocity from 1 to 10 m/s and can occur at frequencies from 3 to 150 Hz. In 

conventional transmission line systems, one or more dampers may be attached to a conductor in an effort to suppress 

aeolian vibrations (Hagedorn et al., 2002). 

The Stockbridge damper is presently the most common type of transmission-line damper. In general, a Stockbridge-

type damper consists of two weights attached to the end of stranded cables, which are known as messenger wires. In 

this work the behavior of an asymmetric Stockbridge damper with four resonant response frequencies in the range 10 ≤ 

f ≤ 60 Hz is analyzed. 

Vecchiarelli, Currie and Havard (2000) introduced an iterative finite-difference scheme to predict the vertical, 

steady-state, monofrequent, aeolian vibration of a single conductor span with a Stockbridge-type damper attached. This 

numerical scheme is based on empirical models developed to represent the vortex-induced lift force from the wind as 

well as the forces of dissipation associated with the conductor self-damping and the damper. The scheme has the 

capability to account for more than one spatial mode of conductor vibration, travelling-wave effects, conductor flexural 

rigidity, and damper mass. A two-part numerical analysis is performed in which the "finite-difference scheme is applied 

to simulate aeolian vibrations of a typical conductor with and without a Stockbridge-type damper. 

A detailed mathematical description of conductor motion is difficult due to the stranded construction of a conductor 

(Vecchiarelli et al., 2000). An example of this problem is the study realized by Nawrocki and Labrosse (2000) where 

the cable is modeled using each individual wire model and all possible contacts are investigated. Although to get good 

results for static analysis this model was not applied for dynamic problems and the dynamic friction between the 

individual wires of the cable was also not studied. 

In Stockbridge dampers, mechanical energy is dissipated in wire cables (“damper or messenger cables”). The 

damping mechanism is due to statical hysteresis resulting from Coulomb (dry) friction between the individual wires of 

the cable undergoing bending deformation. Systems with statical hysteresis can be modeled by means of Jenkin 

elements arranged in parallel, consisting of linear springs and Coulomb friction elements. The damper cable is a 

continuous system and damping takes place throughout the whole length of the cable, so that distributed Jenkin 

elements are used. Using such a model for the damper cables, the equations of motion can be formulated for a 

Stockbridge damper, and discretization of the damper cable leads to a system of nonlinear ordinary differential 

equations. In order to test this dynamical model of a Stockbridge the experimental impedance curves are compared with 

numeric results (Sauter and Hagedorn, 2002). 

Verma (2002) uses masing model for modeling the nonlinear damping behavior of the damper cable of Stockbridge 

damper. Quasi-static behavior of cable was approximated by considering it as a linearly elastic Euler-Bernoulli beam. 

Model of damper cable was, then, transferred to the half of the Stockbridge damper body, considering it as symmetric, 



for getting the dynamic behavior of damper by determining its impedance. The impedance for different vibrational 

frequencies were computed. Results for model were then, verified by comparing them with the impedance obtained 

from experiments on real Stockbridge damper. It was found that the behavior of a damper cable could be reasonably 

described by using the masing model. 

Markiewicz [6] analyzed the optimum dynamic characteristics of Stockbridge dampers for dead-end spans.  The 

analysis showed that the optimum damper impedance required for such spans (called dead-end spans) differs 

significantly from the optimum impedance of the standard damper and also showed how the efficiency of a standard 

damper used in such spans may be improved by its proper location on a cable. 

Wang et al. (1995) analyzed the free vibration of a transmission line conductor equipped with a number of 

Stockbridge dampers modeled by a differential equation of motion of a tensioned beam acted on by concentrated 

frequency dependent forces and an exact solution is obtained using integral transformation. 

Espíndola and Silva Neto (2001) using a three-degree of freedom model to modeling the Stockbridge damper, 

showed the viscoelastic behavior of the flexural stiffness. This model is similar to model used by Sauter and Hagedorn 

(2002) and Verma (2002). 

In contrast of the Sauter and Hagedorn (2002) approach the main idea of this work is to obtain a simple and 

computational efficient model for the dynamical behavior of Stockbridge damper. The messenger wire is modeled with 

a simple finite element and the physical parameters (hysteretic damper and the flexural stiffness) are estimated using 

comparisons with the experimental FRF. 

The present study is organized as follows: (i) develop a simple and comprehensive finite element for the messenger 

wire and the damper weight; (ii) perform a numerical harmonic analysis of the Stockbridge damper; (iii) obtain 

experimental data using harmonic base excitation; (iv) obtain the error between experimental and numerical results; (v) 

the complex stiffness parameter is estimated minimizing the error with Genetic Algorithms (Wang et al., 1997) and (vi) 

the same procedure is repeated for modal approach. 

 

2. MATHEMATICAL MODELS AND RESULTS 
 

In this section are shown the mathematical models of the Stockbridge damper system for two different approaches 

and the respective results. 

 

2.1. Messenger Wire Model 
 

The messenger wire is modeled using the Euler-Bernoulli beam finite element. In this element the transversal 

displacement is interpolated using the well-known Hermitian interpolation polynomials with C
1
 continuity and the 

degrees of freedom (d.o.f) in each node are the transversal displacement and the rotation, {v,θ}. The dynamic equation 

for this element can be written in the following form: 
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where ρA is the linear density of cable, L is the finite element length,  EI is a cable flexural (bending) stiffness and 0y&&  

is the base acceleration excitation (shaker). 

To take in consideration the cable hysteretic damping in equation (1) it is sufficient to consider the flexural stiffness 

as 

 

)1(EIEI io β+=              (2) 

 

where  β is the hysteretic damping constant and 1i −= . 

The same theory of Euler-Bernoulli and the hysteretic damping had been also used by several authors (Espindola 

and Silva Neto, 2001; Sauter and Hagedorn, 2002; Verma, 2002; López and Venegas, 2001; Almeida et al, 1992) to 

modeling this problem. The majority of these authors use only one element of beam to obtain the stiffness matrix. 

 

 

2.2. Damper Mass Model  
 

The suspended masses of the shock absorber (Stockbridge) are modeled with rigid body plane motion hypothesis 

and the admissible displacements are shown in the Fig. 1. 
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After the assembly of all the elements of the messenger wire, each one of the Stockbridge damper weights 

contributes with two terms for the dynamical equilibrium. The first contribution is in the mass matrix (inertia force)  
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and another parcel is in the vector force due to base acceleration   
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where m is the mass of Stockbridge damper weight, x  is the center of mass  coordinate and  In is the inertia moment 

with reference fixed in node n. 

These two terms are obtained using the first variation of the kinetic energy (Hamilton Principles) and the rigid body 

plane motion hypothesis for suspended Stockbridge damper weight modeling. With the convention defined in the Fig.1, 

the kinetic energy of each one of the Stockbridge damper weights can be written taking as reference the node n (the 

node of the finite element mesh connected to the messenger wire). This expression is:  
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where nr&  is the velocity of node n, ωωωω is the damper weight angular velocity and ρρρρn is the particle position of dm mass 

with origin fixed in node n. 

Taking in consideration the hypotheses of rigid body plane motion, knθ= &ωωωω ,  and symmetry in y, ( y =0), the 

expression for kinetic energy of damper weight can be rewrite after integration as:  
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Figure 1 – References and admissible displacements. 

2.3. Finite Element System of Equations  
 

The Stockbridge discretized dynamical equilibrium equations is obtained after assembling all finite elements and 

can be written in the conventional way as 
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where [M] and [K] are the mass and stiffness matrices and { f0} is the force vector. The components of vector {q} are 

the finite element node displacements and rotations, v and θ; and 0y&&  is the acceleration in node 1 (base shaker 

acceleration). 

Admitting the base excitation as harmonic, ti
00 e)t( ω= yy &&&& , the solution q(t) is of the form ti

0 e)t( ω= qq . 

Substitution this assumed form of solution into the equation of motion (7) yields: 
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The amplitude of the displacement vector is calculated solving the Equation (8) for each frequency ω and the 

amplitude of the acceleration vector is easily calculated with the product ω2 {qO}. In this work the value 2
0 s/m1=y&&  

was used in all the calculations. Thus, the numerical value of the normalized acceleration }{ O
0

2

q
y&&

ω
 is obtained directly 

from the finite element vector displacement solutions. 

 
2.4. Experimental set-up 

 

In order to measure the complex flexure stiffness, the asymmetric Stockbridge specimen is mounted to a support 

placed on an electrodynamics shaker. The scheme of the measurement system for the complex flexure stiffness is 

shown in Fig.2. However, before the Stockbridge is mounted your clamp is cut on the position indicated in Figure 3a 

with white line. The objective of this procedure is to eliminate possible measurement errors and to assure greater 

rigidity for the Stockbridge assembly, Fig. 3b. The characteristics of Stockbridge tested are shown in Table 1. 

 

Table 1 – Stockbridge characteristics. 

 

Damper mass  

Properties small large 

x  [mm] 13,8 27,5 

mass [kg] 0,735 0,833 

ICG [kg*m2] 1,8433E-3 1,1631E-3 

 Messenger cable 

mass/lenght [kg/m] 0,55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Schematic diagram of the measurement system for complex flexure stiffness, [mm].  

 

The sensors used in the experimental tests are two capacitance accelerometers KMT ACC B2; two piezoelectric 

charge accelerometer Bruel & Kjaer 4393 and two ICP PCB 353B33 accelerometers. One PC Spectrum/Network 

Analyzer Hewlett Packard 3566/67 is used for the experimental signals inputs and the base excitation was made by 

mean of electromechanical Shaker Gearing & Watson model V350. 
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(a) Cutting position (white line) 

 
(b) Assembly detail 

Figure 3 – Stockbridge assembly.  

 
2.5. GAs Optimization 

 

The complex dynamic flexural stiffness value has been estimated for the messenger wire using the procedure 

reported in the following. The procedure is based on the GAs minimization of the objective function 
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where the subscript n indicate the finite element node with coordinate equal to the  accelerometer position and the 

subscripts EXP and FEM indicate the experimental and numerical values of the normalized acceleration, respectively. 

The principal GAs parameters used in this work is show in Table 2. The pair (EI0,β) is considered one solution when 

the tolerance indicated in Table 2 is reached or when the limit of generations is exceeded. The excellent solution is 

when the objective function value is less than the convergence tolerance. 

 

Table 2 – GAs Parameters 

Parameter value 

Number of Bits 24 

Number of Family 20 

Maximum number of generations 2000 

Crossover Probability 1 

Mutation probability 0,02 

Convergence tolerance, ε 10-3 

  

2.6. Frequency domain results 
 
In the Fig. 4 we show the values for the complex flexural stiffness (real and imaginary part) and for the objective 

function obtained using de optimization process described previously. The necessary experimental data for the objective 

function definition are collected in accelerometer placed in position 2 indicated in Figure 2 and the numerical values are 

obtained using  homogeneous finite element mesh with 40 elements.   

It is observed that the variation of the EI(ω) imaginary part is greater than the variation of the EI(ω) real part. This 

behavior is due to the fact of that the excitation in frequencies near to the resonance produce great displacements and 

this can affect the hysteretic damping of the system.  
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Figure 4 – Optimum values estimated with experimental data collected in the position 2. 

 

Figure 5 shows the normalized acceleration for position 3 (small mass). The experimental results were obtained 

through the accelerometer 3 and the numeric results were obtained using the parameters estimated for the position 2. 

The error between these two curves is greater than the values of the objective function shown in Fig. 6. However, the 

two curves also are close and these results indicate that the adjustment for position 2 is sufficiently satisfactory. 

 

 
 

Figure 5 – Normalized acceleration comparison for the small mass in the position 3. 

 

Figure 7 shows the results for the flexural stiffness obtained with normalized acceleration error optimization for 

accelerometers 1 and 2. These results present good agreement with some small differences in low frequencies.  

1 0 1 5 20 25 30 35 40 45 5 0 55 6 0

F r e q u e n c y ,  H z

- 3 .0 

- 2 .0 

- 1 .0 

0 .0 

1 .0 

2 .0 

3 .0 

4 .0 

5 .0 

6 .0 

7 .0 

n o r 
m al i 
ze
d   
ac
ce
l e
r a
t i 
o n   [ 
m / s
* * 2 / 
m / s
* * 2 ] 

E x per im ent 

N um e r ic 
im a g 

r ea l 

N
o
rm

al
iz

ed
 a

cc
el

er
at

io
n
 [

m
s-2

/m
s-2

] 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

 
Figure 6 – Optimum values estimated with experimental data collected in the  

positions 1 (continuous line) and 2 (dashed line). 

 

 

Figure 7 shows the values of complex flexural stiffness obtained with experimental data for the position 6. These 

results shows lower value fluctuations and good agreement with the results obtained for other positions illustrated in 

Figs. 4 to 6. 
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Figure 7 – Optimum values estimated with experimental data collected in the position 6. 

 

2.7. Modal Approach 
 

Let v1 and v2 two different eigenvector associated with ω1 and ω2 of the undamped system: 
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and 
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The matrix real[ K ] depends on the value of EI0, then the first stage of the modal analysis is to evaluate this value. 

In this work the GAs was used in these calculations. The experimental and numerical values of the two first natural 

frequencies of the system are used to define the objective function and its mathematical expression is: 
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where ωi exp and ωi MEF are the ωi  experimental and numeric values of ωi, respectively. The experimental FRF attains its 

maximum value at the resonant frequency (hysteretic damping) while the numeric values are obtained using the 

Subspace Iteration Method.  

Considering the coordinate transformation 
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and replacing now Equation (14) into (7) and pre-multiplying by [ ] t
21 vv  can be obtained:  
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Taking by hypothesis the approximation, 
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The equation (15) can be rewrite as 
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which is a set of independent equations and the parameter  βj may be understood as an modal hysteretic damping 

constant.  

If the base excitation is harmonic the equation relative to mode j is 
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Equation (18) is solved by assuming a solution of the form ti
jj eY)t(y ω= , where Yj is  constant. Substitution of this 

in equation (18) yields 
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and solving this expression for the amplitude Yj results: 
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where rj = ω/ωj. 

The physical node displacement, qn(t), and the acceleration, )t(qn&& , are calculated using the coordinate 

transformation, Equation (14), and can be obtained: 

 
ti

n
ti

22112211n eQe)YaYa()t(ya)t(ya)t(q ωω =+=+=        (21) 

 

and 

 
ti

n
2ti

2211
2

2211n eQe)YaYa()t(ya)t(ya)t(q ωω ω−=+ω−=+= &&&&&&       (22) 

 

where a1 and a2 are the v1 and v2 node displacement value, respectively.  

The experimental and the numerical values of the normalized acceleration, 0nq y&&&& , are used to obtain β1 and β2 

parameters.  The best values for β1 and β2 are obtained by GAs minimization of the objective function defined as 
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where np is the number of experimental points. 

 

2.8. Modal Analysis result 
 

Figure 8 shows the experimental normalized acceleration for the position 2 and the numeric values obtained with the 

modal analysis described previously. The frequency range 10≤ f ≤55 Hz is used in the objective function minimization 

and the parameters EIo, β1 and β2 were maintained constant. This fact justifies the high value of β1 visualized clearly in 

Fig. 8 near the first natural frequency. The optimal estimated parameters values are EIo = 4.4172 Nm
2
, β1=0.1554 and β2 

= 0.3259. These values are close to the values found by Espíndola e Silva Neto (2001). 

Although the numerical and experimental curves presents few differences the modal constant parameters estimation 

approach is worse than the frequency dependent parameters EI0 and β estimation.  In this work it was not carried out the 

modal analysis with frequency dependent parameters EIo, β1 and β2. 

 

 
Figure 8 – Normalized acceleration comparison for the position 2. 
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3. CONCLUSIONS 
 

In this work were used two different approaches to investigate the dynamical behavior of Stockbridge damper: 

frequency dependent parameters and modal analysis. The main conclusions obtained with the results are: 

- The proposed simple model was able to estimate with efficiency the dynamical response of studied Stockbridge. 

- The frequency domain analysis with EI0 and β variables produces good results. 

- The adjustment with modal analysis with constant parameters EIo, β1 and β2 also produced satisfactory results. 

- The small number of design variables and the simple mathematical model with lower band width obtained through 

finite elements for the messenger wire are essential for the GAs implementation with good computational efficiency and 

accuracy.  

- Although the shown results are very good, more studies are necessary to get robust models for the messenger wire 

with individual wire localized contact and for the damper mass nonlinear dynamics. 

According López and Venegas (2001), the experimental test showed that the dimensionless coefficient of damping 

decreases linearly respect to the amplitude of excitation and the values found by these authors for the hysteretic 

damping varies between to 0.1 and 0.678.  
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