
Proceedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

MODELING OF A SANDWICH BEAM WITH THICKNESS-SHEAR
ACTIVE-PASSIVE PIEZOELECTRIC NETWORKS

Heinsten Frederich Leal dos Santos, hfleal@sc.usp.br
Marcelo Areias Trindade, trindade@sc.usp.br
Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense,
400, São Carlos, SP, 13566-590, Brazil.

Abstract. Piezoelectric materials have been widely used as sensors and actuators for structural vibration control. Re-
cently an active-passive damping technique, so-called Active Passive Piezoelectric Networks (APPN), was proposed by
integrating an active voltage source with a passive resistance-inductance shunt circuit to a piezoeletric sensor/actuator.
This technique allows to simultaneously dissipate passively vibratory energy through the shunt circuit and actively con-
trol the structural vibrations. This work presents the modeling of sandwich structures with extension and thickness-shear
piezoelectric sensors/actuators connected to APPN. The model is based on a stress-voltage electromechanical model for
the piezoelectric materials fully coupled to the APPN active-passive circuit. To this end, the APPN circuit equations
are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are
guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical
(electrodes charges) degrees of freedom. An analysis of the resulting equations of motion is performed to identify the
damping mechanisms provided by an active-passive piezoelectric network. A preliminary numerical analysis has shown
that both extension and shear APPN configurations can be very interesting since the passive damping can be combined
with the increase of active control authority.

Keywords: Vibration Control, Piezoelectric Materials, Active-Passive Piezoelectric Networks, Shear Piezoelectric Actu-
ators, Sandwich Structures

1. INTRODUCTION

Due to their strong electromechanical coupling, piezoelectric materials have been widely used as sensors and actu-
ators for structural vibration control. They can be used either as actuators connected to an appropriate control law to
provide active vibration control or as sensors connected to shunt circuits to provide passive damping. In the last decade,
research was redirected to combined active and passive vibration control techniques. One of these techniques, so-called
Active-Passive Piezoelectric Networks (APPN), integrates an active voltage source with a passive resistance-inductance
shunt circuit to a piezoelectric sensor/actuator (Tsai and Wang, 1999). In this case, the piezoelectric material serves two
purposes. First, the vibration strain energy of the structure can be transferred to the shunt circuit, through the difference of
electric potential induced in the piezoelectric material electrodes, and then passively dissipated in the electric components
of the shunt circuit (Forward, 1979; Hagood and von Flotow, 1991). On the other hand, the piezoelectric material may
also serve as an actuator for which a control voltage can be applied to actively control the structural vibrations. This active
mechanism combined to a velocity feedback, for instance, may then induce an additional active damping in the structure.

There are still some unresolved issues concerning this active-passive damping mechanism such as for which conditions
simultaneous active-passive damping outperforms separate active and passive mechanisms, that is, whether the control
voltage should be part of the shunt circuit or not (Thornburgh and Chattopadhyay, 2003). It has been shown that combined
active-passive vibration control allows better performance with smaller cost than separate active and passive control, pro-
vided the simultaneous action is optimized (Tsai and Wang, 1999). On the other hand, like for purely passive passive
shunted piezoelectric damping, most of the studies concerning APPN focus on the optimization of the electric circuit
architecture and components. It is well-known however that the performance of both active and passive damping mech-
anisms is highly dependent on the effective electromechanical coupling provided by the piezoelectric actuators/sensors.
Nevertheless, few studies focus on the optimization of this coupling for given structure and piezoelectric material. In
particular, it has been shown that piezoelectric actuators using their thickness-shear mode can be more effective than
surface-mounted extension piezoelectric actuators for both active (Trindade, Benjeddou and Ohayon, 1999; Raja, Prathap
and Sinha, 2002; Baillargeon and Vel, 2005) and passive (Benjeddou and Ranger-Vieillard, 2004; Benjeddou, 2006;
Trindade and Maio, 2006) vibration damping. One of the reasons for that is the thickness-shear electromechanical cou-
pling coefficient k15 is normally twice the value of the extension one k31. The thickness-shear mode, originally proposed
by Sun and Zhang (1995), can be obtained using longitudinally-poled piezoelectric patches that couple through-thickness
electric fields/displacements and shear strains/stresses.

This work presents the modeling of sandwich structures with extension and thickness-shear piezoelectric sensors/actuators
connected to APPN. The model is based on a stress-voltage electromechanical model for the piezoelectric materials fully
coupled to the APPN active-passive circuit. To this end, the APPN circuit equations are also included in the variational
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formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results
in a coupled finite element model with mechanical (displacements) and electrical (electrodes charges) degrees of free-
dom. An analysis of the resulting equations of motion is performed to identify the damping mechanisms provided by an
active-passive piezoelectric network.

2. THEORETICAL FORMULATION

Consider a sandwich beam made of piezoelectric layers and modeled using a classical sandwich theory. Surface layers
are made of transversely poled piezoelectric materials, whereas the core layer is considered to be made of longitudinally
poled piezoelectric materials. Electrodes fully cover the top and bottom skins of all layers so that only through-thickness
electric field and displacement are considered. For simplicity, all layers are assumed to be made of orthotropic piezoelec-
tric materials, perfectly bonded and in plane stress state. Bernoulli-Euler theory is retained for the sandwich beam surface
layers, while the core is assumed to behave as a Timoshenko beam. The length, width and thickness of the beam are
denoted by L, b and h, respectively. In addition, it is supposed that each piezoelectric actuator/sensor can be connected
to an electric circuit composed of an inductance Lc j, a resistance Rc j and a voltage source ϕc j in series, with j = 1, ...,n
where n is the number of piezoelectric transducer - circuit pairs.

2.1 Displacements and strains

The axial and transverse displacement fields of faces and core may be written in the following general form,

ūi(x,y,z) = ui(x)+(z− zi)βi(x) ; i = 1,2,3
v̄i(x,y,z) = 0
w̄i(x,y,z) = w(x)

(1)

where ui is the mid-plane axial displacement of the i-th layer (i = 1 for the top layer, i = 2 for the core layer and i = 3
for the bottom layer). βi is the cross-section rotation angle and from Bernoulli-Euler assumptions β1 = β3 =−w′, where
w′ states for ∂w/∂x. zi states for the position of the i-th layer mid-plane in the global transversal z direction. Using the
displacement continuity conditions between layers, the displacement fields may be written in terms of only three main
variables, u1, u3 and w, so that u2 and β2 are written as

u2 =
u1 +u3

2
+

hd

4
w′ and β2 =

u1−u3

h2
+

hm

h2
w′ (2)

with hm and hd being the mean and difference of the surface layers thicknesses, h1 and h3,

hm =
h1 +h3

2
and hd = h1−h3 (3)

The usual strain-displacement relations for each layer yield the following axial and shear strains for the i-th layer

ε1i =
∂ ūi

∂x
= ε

m
i +(z− zi)ε

f
i and ε5i =

∂ ūi

∂ z
+

∂ w̄i

∂x
= ε

c
i (4)

while the remaining strains ε2i, ε3i, ε4i and ε6i vanish. The membrane, bending and shear generalized strains, εm
i , ε

f
i and

εc
i , can be written as

ε
m
k = u′k ; ε

f
k =−w′′ ; ε

c
k = 0 ; for surface layers (k = 1,3) (5)

ε
m
2 =

u′1 +u′3
2

+
hd

4
w′′ ; ε

f
2 =

u′1−u′3
h2

+
hm

h2
w′′ ; ε

c
2 =

u1−u3

h2
+
(

hm

h2
+1
)

w′ (6)

2.2 Piezoelectric constitutive equations

Linear orthotropic piezoelectric materials with material symmetry axes parallel to the beam ones are considered here,
where cD

i j, hl j and β ε
l (i, j = 1, ...,6; l = 1,2,3) denote their elastic (for constant electric displacement), piezoelectric and

dielectric (for constant strain) material constants, respectively. For both extension and shear mode piezoelectric layers,
only transverse electric field and displacements are considered (D1 = D2 = 0) since the layers have electrodes on top
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and bottom skins. However, faces and core layers are treated separately, since they have different poling directions. An
additional assumption of plane stress state (σ3 = 0) allows to write the following reduced constitutive equations for the
faces and the core

{
σ1k
E3k

}
=
[

c̄Dk
11 −h̄k

31
−h̄k

31 β̄ εk
33

]{
ε1k
D3k

}
(7)

σ1
σ5
E3

=

c̄D2
33 0 0
0 cD2

55 −h2
15

0 −h2
15 β ε2

11

 ε12
ε52
D32

 (8)

where,

c̄Dk
11 = cDk

11 − cDk
13

cDk
13

cDk
33

; h̄k
31 = hk

31−hk
33

cDk
13

cDk
33

; β̄
εk
33 = β

εk
33 +

hk
33

2

cDk
33

; c̄D2
33 = cD2

33 − cD2
13

cD2
13

cD2
11

2.3 Variational formulation

The equation of motions can be written using the variational principle of d’Alembert extended to piezoelectric media

δT −δH +δW = 0 (9)

where δT , δH and δW are the virtual work done by inertial, internal and external forces. These are composed of
contributions from the three piezoelectric layers and the n electric circuits connected to the structure, such that

δT =
3

∑
i=1

δTmi +
n

∑
j=1

δTc j ; δH =
3

∑
i=1

(δHmi +δHmei +δHei) ; δW =
3

∑
i=1

Wmi +
n

∑
j=1

(δWr j +δWe j) (10)

Each of these virtual work contributions are detailed in the following subsections.

2.3.1 Virtual work done by inertial forces

The virtual work done by inertial forces for the i-th layer of the sandwich beam can be written as

δTmi =−
∫

V
(δ ūiρi ¨̄ui +δ w̄iρi ¨̄wi)dV (11)

where ρi is the mass density of the i-th layer and the dot stands for time derivation. Using the displacements fields defined
in (1), this expression can be rewritten as

δTmi =−
∫

V

[
ρi(δuiüi +δwẅ)+ρi(z− zi)(δuiβ̈i +δβiüi)+ρi(z− zi)2

δβiβ̈i

]
dV (12)

Then, supposing that all layers are symmetric with respect to their neutral lines, z = zi, and integrating in cross-section
area leads to

δTmi =−
∫ L

0

[
ρiAi (δuiüi +δwẅ)+ρiIiδβiβ̈i

]
dx (13)

where Ai and Ii are the area and second moment of area of the cross-section, respectively.

2.3.2 Virtual work done by internal (electromechanical) forces

To obtain the virtual work done by internal electromechanical forces, the electromechanical entropy of a piezoelectric
layer is written as
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H(ε,D) =
1
2

ε
t cD

ε− ε
t hD+

1
2

Dt
β

ε D (14)

where ε and D are the mechanical strains and electric displacements vectors, and cD, h and β ε are the elastic, piezoelectric
and dielectric constants matrices. The virtual work done by internal electromechanical forces can be written from the
virtual variation of the entropy H and will be composed of mechanical δHm, electromechanical (piezoelectric) δHme, and
dielectric δHe contributions. In what follows, these are detailed for the faces k = 1,3 and core i = 2 layer. Hence, for the
faces,

δHmk =
∫

V
δε1kc̄Dk

11 ε1kdV (15)

Using the normal strain expression for the faces, from (4), leads to

δHmk =
∫

V

[
δε

m
k c̄Dk

11 ε
m
k +(z− zk)(δε

m
k c̄Dk

11 ε
f

k +δε
f

k c̄Dk
11 ε

m
k )+(z− zk)2

δε
f

k c̄Dk
11 ε

f
k

]
dV (16)

which, supposing symmetric layers and integrating in the cross-section, can be reduced to

δHmk =
∫ L

0

(
δε

m
k c̄Dk

11 Akε
m
k +δε

f
k c̄Dk

11 Ikε
f

k

)
dx (17)

For the core layer (i = 2), both normal and shear strains contribute to the virtual work of mechanical internal forces,
such that

δHm2 =
∫

V

(
δε12c̄D2

33 ε12 +δε52cD2
55 ε52

)
dV (18)

Using the normal and shear strain expression for the core, from (4), and, supposing a symmetric core layer and
integrating in the cross-section, leads to

δHm2 =
∫ L

0

(
δε

m
2 c̄D2

33 A2ε
m
2 +δε

f
2 c̄D2

33 I2ε
f

2 +δε
c
2k2cD2

55 A2ε
c
2

)
dx (19)

where k2 is the shear correction factor.
The piezoelectric contributions to the virtual work of internal forces can be written, for the faces,

δHmek =−
∫

V

(
δε1kh̄k

31D3k +δD3kh̄k
31ε1k

)
dV (20)

and, for the core,

δHme2 =−
∫

V
(δε52h15D32 +δD32h15ε52)dV (21)

Notice that the piezoelectric effect couples the transversal electric displacement D3i with normal strain ε1k, for the
faces, and with shear strain ε52, for the core. Supposing symmetric layers and integrating in the cross-section, these can
be written as

δHmek =−
∫ L

0

(
δε

m
k h̄k

31AkD3k +δD3kh̄k
31Akε

m
k

)
dx (22)

δHme2 =−
∫ L

0
(δε

c
2h15A2D32 +δD32h15A2ε

c
2)dx (23)

The dielectric contribution to the virtual work of internal forces can be written as



Proceedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

δHek =
∫

V

(
δD3kβ̄

εk
33 D3k

)
dV and δHe2 =

∫
V

(
δD32β

ε2
11 D32

)
dV (24)

which, through integration in the cross-section, read

δHek =
∫ L

0

(
δD3kβ̄

εk
33 AkD3k

)
dx and δHe2 =

∫ L

0

(
δD32β

ε2
11 A2D32

)
dx (25)

2.3.3 Virtual work done by external mechanical forces

Each layer of the sandwich beam is also supposed to be subjected to axial and transversal body forces, applied at their
neutral lines. The virtual work due to these forces can be written as

δWmi =
∫

V
(δui fxi +δw fyi)dV (26)

Integration in the cross-section leads to

δWmi =
∫ L

0
(δui fxiAi +δw fyiAi)dx (27)

2.3.4 Virtual work done by electric circuit components

The virtual work done by the inductances, δTc j, resistances, δWr j, and voltage sources, δWe j, of the j-th electric
circuit can be written as

δTc j =−δqc jLc jq̈c j ; δWr j =−δqc jRc jq̇c j ; δWe j = δqc jϕc j (28)

where Lc j, Rc j and ϕc j are the inductance, resistance and applied voltage connected in series for the j-th electric circuit.
qc j is the electric charge entering the j-th electric circuit.

3. FINITE ELEMENT FORMULATION

Using the virtual work expressions presented previously, a finite element model for the piezoelectric sandwich beam is
developed. Lagrange linear shape functions are assumed for the axial displacements, u1 and u3, and electric displacements
in each layer, D31, D32 and D33. For the transverse deflection w, Hermite cubic shape functions are assumed.

3.1 Discretization of generalized displacements and strains

The elementary mechanical degrees of freedom (dof) column vector un is defined as

un =
[
u1

1 u1
3 w1 w′1 u2

1 u2
3 w2 w′2

]t (29)

The axial displacements of each layer can be written in terms of the elementary dofs as

ui = Nxiun (30)

where

Nx1 =
[
N1 0 0 0 N2 0 0 0

]
Nx2 =

[
N1
2

N1
2

hd
4 N′3

hd
4 N′4

N2
2

N2
2

hd
4 N′5

hd
4 N′6

]
Nx3 =

[
0 N1 0 0 0 N2 0 0

] (31)

and

N1 = 1− x
L

; N2 =
x
L

;N3 = 1− 3x2

L2 +
2x3

L3 ; N4 = x
(

1− x
L

)2
; N5 =

x2

L2

(
3− 2x

L

)
; N6 =

x2

L

( x
L
−1
)
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The transverse displacement w is written as

w = Nzun (32)

where

Nz =
[
0 0 N3 N4 0 0 N5 N6

]
(33)

The cross-section rotations βi are written as

βi = Nriun (34)

where

Nr1 =
[
0 0 −N′3 −N′4 0 0 −N′5 −N′6

]
Nr2 =

[
N1
h2

−N1
h2

hmN′3
h2

hmN′4
h2

N2
h2

−N2
h2

hmN′5
h2

hmN′6
h2

]
Nr3 =

[
0 0 −N′3 −N′4 0 0 −N′5 −N′6

] (35)

According to the expressions (5) and (6) for the generalized strains, εm
i , ε

f
i , and εc

i , they can be written in terms of the
elementary dofs as

ε
m
i = Bmiun ; ε

f
i = B f iun ; ε

c
2 = Bc2un (36)

The membrane, bending and shear strain operators Bmi, B f i and Bc2 are defined as

Bm1 =
[
N′1 0 0 0 N′2 0 0 0

]
Bm2 =

[
N′1
2

N′1
2

hdN′′3
4

hdN′′4
4

N′2
2

N′2
2

hdN′′5
4

hdN′′6
4

]
Bm3 =

[
0 N′1 0 0 0 N′2 0 0

] (37)

B f 1 =
[
0 0 −N′′3 −N′′4 0 0 −N′′5 −N′′6

]
B f 2 =

[
N′1
h2

−N′1
h2

hmN′′3
h2

hmN′′4
h2

N′2
h2

−N′2
h2

hmN′′5
h2

hmN′′6
h2

]
B f 3 =

[
0 0 −N′′3 −N′′4 0 0 −N′′5 −N′′6

] (38)

Bc2 =
[

N1
h2

−N1
h2

hm+h2
h2

N′′3
hm+h2

h2
N′′4

N2
h2

−N2
h2

hm+h2
h2

N′′5
hm+h2

h2
N′′6
]

(39)

3.2 Discretization of electric displacements

The elementary electric dofs column vector Dn is defined as

Dn =
[
D1

31 D1
32 D1

33 D2
31 D2

32 D2
33
]t (40)

Then, the electric displacement in the piezoelectric layers can be written in terms of the elementary dofs

D3i = NDiDn (41)

where,

ND1 =
[
N1 0 0 N2 0 0

]
ND2 =

[
0 N1 0 0 N2 0

]
ND3 =

[
0 0 N1 0 0 N2

] (42)
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3.3 Discretization of virtual work expressions

In this subsection, the discretized mechanical displacements and strains and electric displacements are substituted into
the virtual work expressions to obtain their discretized versions.

Hence, from (13) and (30), (32) and (34), the virtual work of inertial forces can be rewritten as

δTmi =−δut
nMiün (43)

where Mi is mass matrix of the i-th layer defined as

Mi =
∫ L

0

[
ρiAi(Nt

xiNxi +Nt
ziNzi)+ρiIiNt

riNri
]

dx (44)

The mechanical contribution to the virtual work of the internal electromechanical forces can be discretized from (17),
for the faces, and (19), for the core, combined to the discretization of the generalized strains (36), such as

δHmi = δut
nKmiun (45)

where, for the faces (k = 1,3),

Kmk =
∫ L

0

(
Bt

mkc̄Dk
11 AkBmk +Bt

f kc̄Dk
11 IkB f k

)
dx (46)

and, for the core layer,

Km2 =
∫ L

0

(
Bt

m2c̄D2
33 A2Bm2 +Bt

f 2c̄D2
33 I2B f 2 +Bt

c2k2cD2
55 A2Bc2

)
dx (47)

From (22), for the faces, and (23), for the core, and the discretized expression for the the generalized strains (36) and
electric displacements (41), the piezoelectric contributions to the virtual work of internal electromechanical forces can be
written as

δHmei =−δut
nKmeiDn−δDt

nKt
meiun (48)

where Kmei states for the electromechanical (piezoelectric) stiffness matrices, which are defined as, for the faces,

Kmek =
∫ L

0

(
Bt

mkh̄k
31AkNDk

)
dx (49)

and, for the core layer,

Kme2 =
∫ L

0

(
Bt

c2h15A2ND2
)

dx (50)

The dielectric contributions to the virtual work of internal forces may also be discretized from (25) and (41) such as

δHei = δDt
nKeiDn (51)

where Kei are the dielectric stiffness matrices written as, for the faces,

Kek =
∫ L

0

(
Nt

Dkβ̄
εk
33 AkNDk

)
dx (52)

and, for the core layer,

Ke2 =
∫ L

0

(
Nt

D2β
ε2
11 A2ND2

)
dx (53)
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The virtual work done by external mechanical forces can be discretized replacing (30) and (32) in (27), such that

δWmi = δut
nFi (54)

where Fi states for the vector of applied mechanical forces for the i-th layer,

Fi =
∫ L

0

(
Nt

xi fxiAi +Nt
z fyiAi

)
dx (55)

3.4 Equations of motion

The discretized virtual work expressions can now be replaced in the principle of d’Alembert (9) leading to

δut
n (Meün +Ke

mun−Ke
meDn−Fe)+δDt

n
(
−Ke t

meun +Ke
eDn
)
+δqt

c (−Lcq̈c−Rcq̇c +ϕc) = 0 (56)

where the elementary mass and stiffness matrices and mechanical forces vector are

Me =
3

∑
i=1

Mi ; Ke
me =

3

∑
i=1

Kmei ; Ke
e =

3

∑
i=1

Kei ; Fe =
3

∑
i=1

Fi

Therefore, the following equations of motion can be written

Me 0 0
0 0 0
0 0 Lc


ün
D̈n
q̈c

+

0 0 0
0 0 0
0 0 Rc


u̇n
Ḋn
q̇c

+

 Ke
m −Ke

me 0
−Ke t

me Ke
e 0

0 0 0

un
Dn
qc

=

Fe

0
ϕc

 (57)

Assembling for all finite elements of the structure, the equations of motion can be expressed as

M 0 0
0 0 0
0 0 Lc


ü
D̈
q̈c

+

0 0 0
0 0 0
0 0 Rc


u̇
Ḋ
q̇c

+

 Km −Kme 0
−Kt

me Ke 0
0 0 0

 u
D
qc

=

 F
0
ϕc

 (58)

where u and D are the global mechanical and electric dofs and the mass and stiffness matrices and mechanical force vector
were assembled for all finite elements.

To account for the electrodes fully covering the piezoelectric patches top and bottom skins, the electric displacements
of selected nodes and layers are set to be equal. This dof assignment can be represented by the following expression

D = LpDp (59)

where Lp is a binary matrix and Dp is a vector of the electric displacement for one piezoelectric patch (constant throughout
the electrode surface),

Dp =
[
Dp1 Dp2 · · · Dpn

]t (60)

Substituting (59) into (58), the equations of motion are reduced to

M 0 0
0 0 0
0 0 Lc


ü

D̈p
q̈c

+

0 0 0
0 0 0
0 0 Rc


u̇

Ḋp
q̇c

+

 Km −K̄me 0
−K̄t

me K̄e 0
0 0 0

 u
Dp
qc

=

 F
0
ϕc

 (61)

where

K̄me = KmeLp ; K̄e = Lt
pKeLp (62)
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4. CONNECTING PIEZOELECTRIC PATCHES TO ELECTRIC CIRCUITS

To account for the connection between piezoelectric patches and electric circuits, it is supposed that electric charges
entering a given electric circuit are equal to electric charges of a given piezoelectric patch. This relation can be written as

qc = Lqqp (63)

where Lq is an binary assignment matrix. Since, due to equipotentiality condition in the electrodes, the electric dis-
placement is constant throughout the electrode surface, the electric charges for a given piezoelectric patch is obtained by
multiplying the electric displacement by the electrode area. Thus, a diagonal matrix Aq which elements are the electrodes
areas of each piezoelectric patch is defined. Then, the vector of electric charges is written as

qp = AqDp (64)

Hence, the electric charges entering the n electric circuits can be written in terms of the piezoelectric patches electric
displacements as

qc = BqDp ; Bq = LqAq (65)

Therefore, the coupled equations of motion can be written as

[
M 0
0 Mq

]{
ü

D̈p

}
+
[

0 0
0 Cq

]{
u̇

Ḋp

}
+
[

Km −K̄me
−K̄t

me K̄e

]{
u

Dp

}
=
{

F
Fq

}
(66)

where

Mq = Bt
qLcBq ; Cq = Bt

qRcBq ; Fq = Bt
qϕc (67)

5. RESPONSE TO ELECTRIC HARMONIC EXCITATION

In this section, a harmonic analysis is performed to obtain a preliminary evaluation of the effects caused by the electric
circuit components on the structure. For that, an electric harmonic excitation is considered for a simple case with only one
piezoelectric patch connected to a RLV circuit (resistance - inductance - voltage source) and without applied mechanical
forces, such that

ϕc = ϕ̃ceiωt ; u = ũeiωt ; Dp = D̃peiωt (68)

Therefore, the equations of motion (66) can be rewritten as

(−ω
2M+Km)ũ− K̄meD̃p = 0

−K̄t
meũ+(−ω

2Mq + iωCq + K̄e)D̃p = Bt
qϕ̃c

(69)

Solving the second equation for D̃p and replacing in the first equation, leads to

{
−ω

2M+
[
Km− K̄me(−ω

2Mq + iωCq + K̄e)−1K̄t
me
]}

ũ = K̄me(−ω
2Mq + iωCq + K̄e)−1Bt

qϕ̃c (70)

Considering the measurement of the displacement in a selected point of the structure such that

ỹ = cpũ (71)

where ỹ is a scalar and cp is an output distribution vector. Then, the frequency response function of ỹ subjected to the
applied voltage ϕ̃c can be obtained from

ỹ = G(ω)ϕ̃c (72)
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where

G(ω) =
{
−ω

2M+
[
Km− K̄me(−ω

2Mq + iωCq + K̄e)−1K̄t
me
]}−1 K̄me(−ω

2Mq + iωCq + K̄e)−1Bt
q (73)

From the expression for G(ω), one may notice that the resistance and inductance components of the electric circuit
have two effects. First, they lead to a passive modification on the structure stiffness. This can be observed in the term
between braces of (73). In particular, it should be noticed that for a circuit without resistance and inductance, that is
Mq = Cq = 0, the stiffness modification reduces to the stiffness corresponding to short-circuit condition, while the open-
circuit condition can be obtained by setting Cq → ∞, that is a very large resistance. On the other hand, for the general
case, the presence of a resistance in the electric circuit leads to a complex valued stiffness matrix which can be interpreted
as a hysteretic damping matrix. The relative importance of the imaginary part of the stiffness matrix is clearly dependent
on the electromechanical coupling, via piezoelectric K̄me and dielectric K̄e matrices, and the resistance and inductance
values, via Mq and Cq.

The second effect of the resistance and inductance components on the frequency response function G(ω) is that
in addition to the structure resonances, the passive electric circuit components (RL) also affects the electric excitation
amplitude, via the term K̄me(−ω2Mq + iωCq + K̄e)−1Bt

q. This means that the RL components can amplify the excitation
amplitude for a given frequency range. Hence, with properly tuned RL components it could be possible to amplify an
active control action applied by the voltage source. This analysis is in accordance with the observations of Tsai and Wang
(1999). However, it should be noticed that the tuning of the active control amplification and the passive RL damping are
not independent and, thus, should be optimized simultaneously.

6. NUMERICAL RESULTS

This section presents some numerical results with shear and extension piezoceramics connected to APPN. In particular,
the passive damping capability and the control authority of both mechanisms are evaluated. To this end, the configurations
depicted in Figure 1 are considered. The extension and shear piezoceramic sensors/actuators are made of PZT-5H material
whose properties are: c̄D

11 = 97.767 GPa, c̄D
33 = 119.71 GPa, cD

55 = 42.217 GPa, ρ = 7500 kg m−3, piezoelectric coupling
constants h̄31 =−1.3520 109 N C−1 and h15 = 1.1288 109 N C−1, and dielectric constants β̄ ε

33 = 99.740 106 m F−1 and
β ε

11 = 66.267 106 m F−1. For the Aluminium beam, material properties are: Young’s modulus 70.3 GPa and density
2710 kg m−3 and, for the foam, Young’s modulus 35.3 MPa, shear modulus 12.7 MPa and density 32 kg m−3. An initial
viscous damping of 0.5% was considered.

25
220

3.0
0.5

Piezoceramic Aluminum

10

V

25
220

3.0
0.5

Piezoceramic Aluminum

Aluminum 3.0

Foam

10

V

Figure 1. Representation of cantilever beam with extension and shear piezoceramic sensors/actuators.

The frequency responses of both configurations were analyzed in order to evaluate first the passive damping capability
of the APPN circuit and then the effect of the APPN circuit on the control authority of the piezoceramic actuator. This was
done by evaluating the frequency response of the beam tip velocity when excited by a transversal mechanical force applied
at the beam tip and by a control voltage applied to the piezoceramic actuators. The optimal resistance and inductance
values for the resistive and resonant cases were evaluated using the formulas proposed by Tsai and Wang (1999) and
Trindade and Maio (2006). Figure 2 presents the frequency responses for the extension configuration. In Figure 2a, it
is possible to observe that proper tuning of the resistive and resonant circuits can yield considerable amplitude reduction
near the first resonance frequency. On the other hand, Figure 2b shows that the control authority near the first resonance
can be increased by the RL circuit, while it is decreased for higher frequencies.

The same analysis was performed for the shear configuration. Figure 3a shows the frequency response near the first
resonance. It can be observed that, as for the extension configuration, the vibration amplitude can also be reduced by
proper tuning of resistance and inductance values. Notice however that, in this case, the control authority near the first
resonance can be significantly increased by the RL circuit, while it is decreased for higher frequencies (Figure 3b).

7. CONCLUSIONS

This work has presented the modeling of sandwich structures with extension and thickness-shear piezoelectric sen-
sors/actuators connected to APPN. The proposed model is based on a stress-voltage electromechanical model for the
piezoelectric materials fully coupled to the APPN active-passive circuit and results in a coupled finite element model with
mechanical (displacements) and electrical (electrodes charges) degrees of freedom. A preliminary analysis of the resulting
equations of motion was performed and indicates that simultaneous active and passive damping using APPN is possible
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Figure 2. Beam tip velocity response (extension piezoceramic) induced by mechanical (a) and electrical (b) load. Electric
circuit configuration - - -: open circuit; — : resistive (R=92.233 kΩ); – – : resonant (R=27.614 kΩ, L=691.413 H); – . – :

resonant (R=41.422 kΩ, L=691.413 H); –o– : resonant (R=34.518 kΩ, L=691.413 H).
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Figure 3. Beam tip velocity response (shear piezoceramic) induced by mechanical (a) and electrical (b) load. Electric
circuit configuration - - -: open circuit; — : resistive (R=59.275 kΩ); – – : resonant (R=83.583 Ω, L=121.707 H); – . – :

resonant (R=835.834 Ω, L=121.707 H); –o– : resonant (R=208.959 Ω, L=121.707 H).

and could be optimized by properly tuning the passive circuit components and by maximizing the electromechanical
coupling. A preliminary numerical analysis has shown that both extension and shear APPN configurations can be very
interesting since the passive damping can be combined with the increase of active control authority. Future works will fo-
cus on the optimization of the active-passive damping performance using extension, shear and combined extension-shear
piezoelectric patches.

8. ACKNOWLEDGEMENTS

This research was supported by FAPESP and CNPq, through research grants 04/10255-7 and 473105/2004-7, which
the authors gratefully acknowledge. The first author also acknowledges CNPq for a graduate scholarship.

9. REFERENCES

Baillargeon, B.P. and Vel, S.S., 2005, “Active vibration suppression of sandwich beams using piezoelectric shear actuators:
experiments and numerical simulations,” Journal of Intelligent Materials Systems and Structures, Vol. 16, No. 6,
pp.517-530.

Benjeddou, A., 2006, “Shear-mode piezoceramic advanced materials and structures: a state of the art,” to appear in
Mechanics of Advanced Materials and Structures.

Benjeddou, A. and Ranger-Vieillard, J.-A., 2004, “Passive vibration damping using shunted shear-mode piezoceramics,”



Proceedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

In Topping, B.H.V. and Mota Soares, C.A., eds., Proceedings of the Seventh International Conference on Computa-
tional Structures Technology, Civil-Comp Press, Stirling, Scotland, p.4.

Benjeddou, A., Trindade, M.A., and Ohayon, R., 1999, “New shear actuated smart structure beam finite element,” AIAA
Journal, Vol. 37, No. 3, pp.378-383.

Forward, R.L., 1979, “Electronic damping of vibrations in optical structures,” Applied Optics, Vol. 18, No. 5, pp.690-697.
Hagood, N.W. and von Flotow, A., 1991, “Damping of structural vibrations with piezoelectric materials and passive

electrical networks,” Journal of Sound and Vibration, Vol. 146, No. 2, pp.243-268.
Raja, S., Prathap, G., and Sinha, P.K., 2002, “Active vibration control of composite sandwich beams with piezoelectric

extension-bending and shear actuators,” Smart Materials and Structures, Vol. 11, No. 1, pp.63-71.
Sun, C.T. and Zhang, X.D., 1995, “Use of thickness-shear mode in adaptive sandwich structures,” Smart Materials and

Structures, Vol. 4, No. 3, pp.202-206.
Thornburgh, R.P., and Chattopadhyay, A., 2003, “Modeling and optimization of passively damped adaptive composite

structures,” Journal of Intelligent Materials Systems and Structures, Vol. 14, No. 4-5, pp.247-256.
Trindade, M.A., Benjeddou, A., and Ohayon, R., 1999, “Parametric analysis of the vibration control of sandwich beams

through shear-based piezoelectric actuation,” Journal of Intelligent Materials Systems and Structures, Vol. 10, No. 5,
pp.377-385.

Trindade, M.A. and Maio, C.E.B., 2006, “Passive vibration control of sandwich beams using shunted shear piezoelectric
actuators,” in IV Congresso Nacional de Engenharia Mecânica, Recife, ABCM.

Tsai, M.S., and Wang, K.W., 1999, “On the structural damping characteristics of active piezoelectric actuators with passive
shunt,” Journal of Sound and Vibration, Vol. 221, No. 1, pp.1-22.

10. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.


