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Abstract. Vortex shedding over two oscillating square cylinders in a tandem arrangement is modeled using a 
lagrangian mesh-free vortex method. Lamb vortices are generated along the cylinders surface, whose strengths are 
determined to ensure that the no-slip condition is satisfied and that circulation is conserved. The impermeability 
condition is imposed through the application of a source panels method. The amplitude of the oscillatory motion is 
considered to be small compared to the square cylinder length, therefore, to the first approximation, one is allowed to 
transfer the body boundary condition from the actual position to the mean position of the body surface. The changes in 
the aerodynamics loads due the oscillatory motion are analyzed using an integral formulation derived from the 
pressure Poisson equation. 
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1. Introduction  

 
The investigation of flow around bluff bodies is a complex problem of great practical importance because of the 

high aerodynamics loads, which can result on neighbouring structures (Hussain and Lee, 1980). Investigation of the 
characteristics of flow around simple configurations of objects is helpful for understanding the flow around more 
complex and larger-scale structures. In many cases of engineering practices, objects often appear in the form of groups, 
e.g. groups of buildings, chimneys, stacks, chemical reaction-towers, supports of off-shore platform, etc.  

In the literature buffeting refers to the unsteady aerodynamics forces that result from the interference of a second 
body situated in the wake of the first (Havel et al., 2001). A two-dimensional obstacle is one of sufficient span to allow 
neglect of ends. Traditionally they are modeled as prisms or cylinders immersed in a uniform oncoming stream. The 
main characteristic of these flows is due the fact that the large-scale vortical structures rotate about a spanwise axis. 

Most of the previous research on 2D geometries has concentrated on circular cylinders. Zdravkovich (1977) and 
Ohya et al. (1989) presented an extensive review of the state of knowledge of flow across two cylinders in various 
arrangements. Previous investigations of tandem configurations by Biermann and Herrnstein (1933), Kostic and Oka 
(1972), Novak (1974), Zdravkovich and Pridden (1975, 1977), Okajima (1979), Igarashi (1981, 1984), Hiwada et al. 
(1982), Arie et al. (1983), Jendrzejczyk and Chen (1986) have revealed considerable complexity in fluid dynamics as 
the spacing or gap between the cylinders is changed. 

The interference phenomena are highly non-linear and there are many discrepant points in previous works. Arie et 
al. (1983) pointed out that fluctuation in drag force acting both cylinders is weakly dependent on spacing. On the other 
hand, Igarashi (1981) reported that the fluctuation in pressure associated with fluctuation in aerodynamics forces (lift 
and drag) acting on a downstream cylinder is strongly dependent on gap between the cylinders. Alam et al. (2003) 
presented an experimental study in which fluctuating lift and drag forces acting on the cylinders was measured. In their 
work they elucidated the discrepant points and clarified the flow patterns over the cylinders. 

Based on surface pressure measurements and flow visualizations, Hangan and Vickery (1999) identify five general 
buffeting regimes for various upstream to downstream body dimensions: (1) close spacing with insignificant gap flow, 
(2) intermittent reattachment of upstream shear layer on the downstream cylinder, (3) a synchronized shedding regime, 
(4) quasi-isolated regime with two vortex shedding frequencies corresponding the two wake flows with a little 
interferences, (5) isolated without interference. These regimes are qualitatively similar to those found by Zhang and 
Melbourne (1992) for circular cylinders. 

The Vortex Method have been developed and applied for analysis of complex, unsteady and vortical flows in 
relation to problems in a wide range of industries, because they consist of simple algorithm based on physics of flow 
(Kamemoto, 2004). 

Vortex cloud modeling offers great potential for numerical analysis of important problems in fluid mechanics. A 
cloud of free vortices is used in order to simulate the vorticity, which is generated on the body surface and develops into 
the boundary layer and the viscous wake. Each individual free vortex of the cloud is followed during the numerical 
simulation in a typical Lagrangian scheme. This is in essence the foundations of the Vortex Method (Chorin, 1973; 
Sarpakaya, 1989; Sethian, 1991; Lewis, 1999, Ogami, 2001; Alcântara Pereira et al., 2002 and Kamemoto, 2004). 
Vortex Method offers a number of advantages over the more traditional Eulerian schemes: (a) the absence of a mesh 
avoids stability problems of explicit schemes and mesh refinement problems in regions of high rates of strain; (b) the 
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Lagrangian description eliminates the need to explicitly treat convective derivatives; (c) all the calculation is restricted 
to the rotational flow regions and no explicit choice of the outer boundaries is needed a priori; (d) no boundary 
condition is required at the downstream end of the flow domain. 

For the grid methods, such as finite difference method and finite element method, the governing Navier-Stokes 
equations are solved directly. However, the flow around cylinder arrays is usually computed at Reynolds number (Re) 
up to a few hundred (Fornberg, 1985 and Jackson, 1987) while the Re for flows around cylinders in many engineering 
applications is of much higher order O (106). In such circumstance, the traditional Eulerian schemes will not give a 
satisfactory prediction within a reasonable computational cost. Also, the pre-processing and mesh-generation are time-
consuming for the grid method in numerical simulations. 

Alcântara Pereira and Hirata (2006) employed the Vortex Method to simulate the interference effects for a group of 
finite cylinders at Re=1.3x104. The interference phenomena are highly non-linear and at present beyond a reliable 
theoretical or numerical analysis. The main feature of their vortex code is to simulate numerically the two-dimensional, 
incompressible, unsteady flow around of pipe clusters: (a) two pipes, three-pipes clusters, (c) regular square multiple 
clusters, (d) and irregular multi-pipe clusters. The Vortex Method was used to simulate the macro scale phenomena, 
however, the effect of small scale was not considered. 

Oscillatory motions of small amplitude are important in the analysis of immersed vibrating bodies and special care 
should be taken in the lock-in condition. Large amplitude motions, on the other hand, are of relevance in the analysis of 
bodies located in waves and currents such as the ones found in the offshore structures (Williamson and Roshko, 1988). 

The oscillatory motion of small amplitude mainly modifies the near field changing the boundary layer flow and, as 
a consequence, having an important effect on the aerodynamic forces and the pressure distribution. If the amplitude of 
the oscillatory motion is large one observes, additionally, substantial changes in the far field wake which can be of 
importance in the presence of other bodies or near by surfaces.  

In the present paper, the Vortex Method is employed to simulate the vortex-shedding flow from two oscillating 
square cylinders in a tandem arrangement. The amplitude of the oscillatory motion is considered to be small compared 
to the body length; therefore, to the first approximation one is allowed to transfer the body boundary condition from the 
actual position to a mean position of the body surface (Moura et al., 2006). 

The present Vortex Method has been used to simulate the macro scale phenomena, therefore the smaller scale ones 
are taken into account through the use of a second order velocity function (Alcântara Pereira et al., 2002). In this 
present approach, the effect of small scale is not considered. 
 
2. Formulation of the physical problem 
 

Consider the incompressible fluid flow of a Newtonian fluid around two oscillating square cylinders in a tandem 
arrangement an unbounded two-dimensional region. Figure 1 shows the incident flow, defined by free stream speed 
U and the domain Ω  with boundary ∞∪∪= S2S1SS ; being 1S and 2S the cylinders surface and ∞S  the far away 
boundary. 

 

 
 
 
 
 
 
 

Figure 1. Flow around two square cylinders in a tandem arrangement. 
 

The viscous and incompressible fluid flow is governed by the continuity and the Navier-Stokes equations, which 
can be written in the form 

 
0=⋅∇ u                                                                                                                                                                       (1) 
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In the equations above u  is the velocity vector field and p  is the pressure. As can be seen the equations are non-

dimensionalized in terms of U and b  (cylinder diameter). The Reynolds number is defined by 
 

υ
=

bURe ,                                                                                                                                                                  (2a) 

 
where υ  is the fluid kinematics viscosity coefficient; the dimensionless time is b / U . 

The impermeability and no-slip conditions on the two square cylinders surface are written as 
 

0u nn =⋅= eu                                                                                                                                                          (3a) 
 

0u =⋅= ττ eu                                                                                                                                                           (3b) 
 

ne  and τe  being, respectively, the unit normal and tangential vectors. One assumes that, far away, the perturbation 
caused by the bodies fades as 

 
 1→u  at ∞S .                                                                                                                                                          (3c) 

 
An oscillatory moving with finite amplitude A and constant angular velocity ϕ is added to bodies motion. This is 

represented in Fig. 2, for example, by a heaving square cylinder immersed in a uniform incoming flow with velocity U. 
In this figure the (x,o,y) is the inertial frame of reference and the (X,O,Y) is the coordinate system fixed to the cylinder; 
this coordinate system oscillates around the x-axis as y0=Acos(ϕt). 

In the body fixed coordinate system, the surface bS1S ≡ is defined by the function 
 

0η(X)bYY)(X,bF =−=                                                                                                                                         (4) 
 
Thus, in the inertial frame of reference  
 

0η(x)]  (t)0[y byt)y,(x,bF :bS =+−= ,                                                               (5) 
 

and, for a symmetrical body 
 

0η(x)(t)0ybyt)y,(x,bF =−= m .                                       (6) 
 

Is considered an small amplitude around the axis x, therefore 
 

)(O
A

b
ε= , where ε → 0 and ϕ = O (1).                                                                                                                   (7) 

 
Thus, the boundary conditions on 1S and 2S are written directly in the inertial frame of reference as 

 
[ ]t)y,(x,nvt)y,(x,nu ≡  on 1S and 2S , the impenetrability condition                                                                  (8a) 

 
[ ]t)y,(x,τvt)y,(x,τu ≡  on 1S and 2S , the no-slip condition.                                                                               (8b) 

 
The transference of the boundary conditions on 1S and 2S from actual position to the mean position is defined as 
 

η(x)0ycy +=  → )0O(yη(x)cy +=                                                                                                                    (9a) 

 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM          November 5-9, 2007, Brasília, DF 

 

( ) ( )
( )

⋅⋅⋅+
∂

∂
+=+=

y

t),cη(x,cxnu
0yt),cη(x,cxnutη,0y,cxnut),cy,c(xnu                                                 (9b) 

 

( ) ( )
( )

⋅⋅⋅+
∂

∂
+=+=

y

t),cη(x,cxτu
0yt),cη(x,cxτutη,0y,cxτut),cy,c(xτu                                                   (9c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Definitions 
 
3. Vortex method algorithm  
 

The dynamics of the fluid motion, governed by the boundary-value problem (1), (2) and (9), can be  studied in a 
more convenient way when is taked the curl of the Navier-Stokes equations to obtain the vorticity equation. For a 2-D 
flow this equation is scalar, and it can be written as 

 

ω∇=ω∇⋅+
∂
ω∂ 2

Re
1

t
u                                                                                                                                              (10) 

 
in which ω  is the only non-zero component of the vorticity vector (in a direction normal to the plane of the flow). One 
of the advantages of working with the Eq. (10) is the elimination of the pressure term, which always requires special 
treatment in most numerical experiments. 

The left hand side of the above equation carries all the information needed for the convection of vorticity while the 
right hand side governs the diffusion. Following Chorin (1973) we use the viscous splitting algorithm, which, for the 
same time step of the numerical simulation, says that 
 

Convection of vorticity is governed by 
 

0
t

=ω∇⋅+
∂
ω∂ u .                                                                                                                                                        (11) 

 
Diffusion of vorticity is governed by   
 

ω∇=
∂
ω∂ 2

Re
1

t
.                                                                                                                                                         (12) 

 
Convection is governed by Eq. (11) and the velocity field is given by  
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cloudvortex cylindersstreammain ivu uuu ++=− .                                                                                             (13) 

 
Here, u and v are the x and y components of the velocity vector u  and 1-i = . The first term in the right hand sides is 
the contribution of the incident flow; the second term in the right hand sides is the summation of integral terms comes 
from the source panels distributed on each cylinder surface. The third term is associated to the velocity induced by the 
cloud of N  free vortices; it represents the vortex-vortex interactions. 

The incident flow and the vortex-vortex interactions calculations present no problems and they follow the usual 
Vortex Method procedures; to the first approximation the same happens with the summation of 2 M integral terms when 
the bodies oscillation amplitude is small; see Moura et al. (2006). For large amplitude body oscillations, however, the 
bodies’ boundary conditions can not be transferred from the actual position to the mean position; see Recicar et al. 
(2006). 

The fluid velocity on the square cylinder surfaces is written as 
 

jiu (t)0yUt)Y;(X,
⋅

−= ; with [ ]t)Acos(
dt

d
(t)0y ϕ=

⋅
                                                                                             (14) 

 
As a consequence of the j component of the right hand side of the fluid velocity (in the above expression) one gets 

an additional singularities distribution on the bodies’ surface. Of course, the induced velocity due to this additional 
singularities distribution fades away from the bodies. 

The velocity induced by the bodies, according to the Panels Method calculations, is indicated by [uc(X,Y), 
vc(X,Y)]; this is the velocity induced at the vortex (i), located at the point [x(t), y(t)]; thus 

 

t)Y;uc(X,t)y;(x,(i)uc =                                                                                                                                        (15a) 
 

t)Y;vc(X,t)y;(x,(i)vc =                                                                                                                                        (15b) 
 

where the following relations remains 
 

X(t)(i)x =                                                                                                                                                              (16a) 
 

Y(t)0y(t)(i)y +=                                                                                                                                                 (16b) 
 
The process of vorticity generation is carried out from Eq. (9c), so as to satisfy the no-slip condition. According to 

the discussion above the Panels Method guaranties that the impermeability condition is satisfied in each straight-line 
element, or panel, at pivotal point. At each instant of the time news vortices are created a small distance ε of the 
cylinders surface, whose strengths are determined from Eq. (9c) applied at 2M point’s right below the newly created 
vortices, along the radial direction. This procedure yields an algebraic system of 2M equations and 2M unknowns (the 
strengths of the vortices). 

The vorticity is simulated by cloud of Lamb vortices, whose mathematical expression for the induced velocity of 
the kth vortex with strength kΔΓ in the circumferential direction kuθ , is (Mustto et al., 1998) 
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where 0σ  is core radius of the Lamb vortex. 

In this particular equation r  is the radial distance between the vortex center and the point in the flow field where 
the induced velocity is calculated. 

Each vortex particle distributed in the flow field is followed during numerical simulation according to the Adams-
Bashforth second-order formula (Ferziger, 1981) 

 
( ) ( ) ( ) ( )[ ] ξ+ΔΔ−−+=Δ+ ttt0.5ut1.5utzttz                                                                                                             (18) 
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in which z is the position of a particle, tΔ  is the time increment and ξ  is the random walk displacement. According to 
Lewis (1999), the random walk displacement is given by 

 

( ) ( )[ ]Q2isinQ2cos
P
1tln4β π+π⎟
⎠
⎞

⎜
⎝
⎛Δ=ξ                                                                                                                    (19) 

 
where 1Reβ −= ; P and Q are random numbers between 0.0 and 1.0. 

Having determined the vorticity field the pressure calculation starts with the Bernoulli function, defined by Uhlman 
(1992) as 

 

u=+= u  ,
2

upY
2

                                                                                                                                                  (20) 

 
Following Shintani and Akamatsu (1994) this function is then obtained using the following integral formulation 
 

( ) ( )∫∫ ∫∫ ⋅×∇Ω×⋅∇⋅∇Η −=−
Ω 1,21,2 SS

dSniG
Re

1
diGdSniGYiY eωωue .                                                       (21) 

 
Here Η is 1.0 inside the flow (at domainΩ ) and is 0.5 on the boundaries 1S  and 2S . ( ) 1

i Rlog21G −π= is the 
fundamental solution of Laplace equation, R being the distance from ith vortex element to the field point. 

It is worth to observe that this formulation is specially suited for a Lagrangian scheme because it utilizes the 
velocity and vorticity field defined at the position of the vortices in the cloud. Therefore it does not require any 
additional calculation at mesh points. Numerically, Eq. (21) is solved by mean of a set of simultaneous equations for 
pressure iY . The pressure coefficient on a panel control point i is calculated according to iY1ipC += . 

 
4. Discussion and results 
 

Each cylinder surface was discretized into M small straight panels of equal lengths. In the calculations, each 
cylinder surface was represented by eighty (M=80) straight-line source panels with constant density. All runs were 
performed with 800 time steps of magnitude Δt=0.04. Here, only the case Re=105 was chosen. The time increment was 
evaluated according to Δt=2πk/M, 0<k≤1 (Mustto et al., 1998).  

The process of vorticity generation is carried out so as to satisfy the no-slip condition, Eq. 9c.  In each time step the 
nascent vortices were placed into the cloud through a displacement ε= 0σ =0.0009b normal to the panels. The 
aerodynamics loads starts at t=8. The aerodynamics forces are calculated through the integration of the pressure 
coefficient distribution on the each cylinders surface. 

Table 1 provides an easy way to compare the present results of the flow around a single square cylinder for the drag 
coefficient and Strouhal number to other experimental (with 10% uncertainty) and numerical results available in the 
literature.   

 
Table 1. Comparison of the mean drag coefficient and Strouhal number with experimental results. 

 
Results at Re=105 Aspect Ratio CD CL St 
Blevins (1985): Experimental 1.0 2.20 -- 0.120 
Vickery (1966) 1.0 2.05 -- 0.118 
Guedes et al. (2003)  1.0 1.88 -- 0.138 
Present simulation 1.0 2.13 0.02 0.153 

  
The present mean drag coefficient is 4% lower than the experimental obtained by Blevins (1985), whereas the 

Strouhal number is 20% higher. The discrepancy may be attributed to errors in the simulation of the vortex shedding 
mechanism near the corners of the cylinder that result from the panel distribution on the forward face. Also, because 
every vortex element has different strength of vorticity, it will diffuse to different location in the flow field. It seems 
impossible that every vortex element will move to same ε-layer normal to the solid surface. In the present method all 
nascent vortices were placed into the cloud through a same displacement normal to the panels. This kind of flow is 
relatively insensitive to the Reynolds number (Blevins, 1984) due the fact that separation is fixed at the cylinder 
corners, for high values of Re. Regardless of the overall good comparison, this present results indicate that the 
algorithm still needs investigations in order to yield more accurate results.  
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The flow around a square cylinder presents several interesting characteristics, which can be described starting with 

the occurrence of the separation phenomenon. Figure 3 shows the vortex positions in the wake, after 800 time steps of 
the simulation. This figure shows the formation of the Von Karman vortex street, which is comprised of large vortices 
generated and shed alternately from upper and lower surfaces of the cylinder. The vortices in the wake are connected in 
pairs by a vortex sheet.  
 

 
 

Figure 3. Positions of the wake vortices for Re=105 at t=32; M=80, Δt=0,04, A=0, ϕ=0, ε=σ0=0.0009. 
 

Recicar et al. (2006) identified three different types of flow regime as the circular cylinder oscillation frequency 
increases. The first type – Type I − is observed for low frequency range of the cylinder oscillation; in this situation the 
Strouhal number remains almost constant. Type I is followed by an intermediate range of frequency – Type II, the 
transition regime − where apparently the shedding frequency does not correlate to the frequency of the cylinder 
oscillation. Finally in Type III – high frequency of cylinder oscillation – the vortex shedding frequency is locked-in 
with the cylinder oscillation frequency.  

The graph for the variation with time of the lift and drag coefficients with oscillatory motion can be seen in Fig. 4 
for single square, with A=0.05 and ϕ=1.5. As can be observed the lift coefficient oscillates with the same frequency of 
the body oscillation and its amplitude can be reach values as high as 2.0 to 2.5. This phenomenon is the lock-in regime. 
This shows that the present vortex code is able to predict a very good estimate of the lock-in regime. The amplitude of 
oscillatory is considered to be small compared to the body length; therefore, to the first approximation one is allowed to 
transfer the body boundary condition from the actual position to a mean position of the body surface. 
 

 
Figure 4. Variation of CD and CL with time for single square cylinder, Re=105, M=80, Δt=0.05, A=0.05, ϕ=1.5. 

 
As second case is considered two square cylinders in tandem with A=0, ϕ=0 and d/b=1. The time histories of the 

lift and drag coefficients are reveled in Fig. 5. Some discrepancies observed in the determination of the aerodynamics 
forces may be also attributed to errors in the treatment of vortex element moving away from a solid surface. Because 
every vortex element has different strength of vorticity, it will diffuse to different location in the flow field. It seems 
impossible that every vortex element will move to same ε-layer normal to the solid surface. In the present method all 
nascent vortices were placed into the cloud through a displacement ε= 0σ =0.0009b normal to the panels. 

No attempts to simulate the flow for M greater than 80 were made since the operation count of the algorithm is 
proportional to the square of N. As M increases N also tends to increase, and the computation becomes expensive. 

The use of a fast summation scheme to determine the vortex-induced velocity, such as the Multiple Expansion 
scheme, allows an increase in the number of vortices and a reduction of the time step, which increases the resolution of 
the simulation, in addition to a reduction of the CPU time, which allows a longer simulation time to be carried out. The 
present calculation required 21 h of CPU time in an Intel(R) Pentium(R) 4 CPU 1700 MHz. 
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Future work will investigate the variation in Strouhal number with increase in spacing d/b between two cylinders in 

a tandem arrangement. Also, use of the turbulence modeling (Alcântara Pereira et al., 2002) will produce a better 
numerical result. 

 

 
Figure 5. Variation of CD and CL with time for two cylinders in tandem (d/b=1.0), Re=105, M=80, A=0, ϕ=0, Δt=0.04. 

 
The influence on the aerodynamics forces of the oscillatory motion, with A=0.05 and ϕ=1.5, for both square 

cylinders, is preliminary presented in Fig. 6. News simulations will be carried out to investigate the present phenomena.  
 

 
Figure 6. Variation of CD and CL with time for two cylinders in tandem (d/b=1.0), Re=105, M=80, A=0.05, ϕ=1.5. 

 
Figure 7 shows the position of the wake vortices for the same case at last step of the computation (t=32), where we 

can clearly observe the formation and shedding of large eddies in the wakes.  
 
 

 
Figure 7. Positions of the wake vortices for Re=105 at t=32; d/b=1.0, M=80, Δt=0.04, A=0.05, ϕ=1.5, ε=σ0=0.0009. 

Upstream cylinder (A=0 and ϕ=0) 
 
Downstream cylinder (A=0 and ϕ=0)  

Upstream cylinder (A=0,05 and ϕ=1,5) 
 
Downstream cylinder (A=0,05 and ϕ=1,5)  
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Finally, despite the differences presented in this preliminary investigation, the results are promising, that 

encourages performing additional tests in order to explore the phenomena in more details. 
 
5. Conclusions 

 
The main objective of the work was to implement the algorithm and to get some insight into the potentialities of the 

model developed; this was accomplished since the results show that the behavior of the quantities of interest is the 
expected one.  

The results for drag and lift coefficients predicted by the simulation in Fig. 5 and Fig. 6 need further investigation. 
This seems to indicate that a higher value of M would improve the resolution and probably produce a better simulation 
with respect to the aerodynamics forces. More investigations are needed and one can imagine that with the use of more 
panels (and therefore more free vortices in the cloud) the results tend to be in closer agreement with the experiments. 

Some discrepancies observed in the determination of the aerodynamics forces may be also attributed to errors in the 
treatment of vortex element moving away from a solid surface. Because every vortex element has different strength of 
vorticity, it will diffuse to different location in the flow field. It seems impossible that every vortex element will move 
to same ε-layer normal to the solid surface. In the present method all nascent vortices were placed into the cloud 
through a displacement ε= 0σ =0.0009b normal to the panels. 

All the simulations were carried out with a high value of the Reynolds number; no attempted to use a turbulence 
modeling was made. The sub-grid turbulence modeling (Alcântara Pereira et al., 2002) is of significant importance for 
the numerical simulation. The results of this analysis, taking into account the sub-grid turbulence modeling, are also 
being generated and will be presented in due time, elsewhere. 
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