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Abstract. The aim of the present work is to develop a code to investigate numerically the aeroacoustic phenomena in
a mixing layer under temporal development. Direct numerical simulation with high accuracy finite difference scheme
was chosen. The mesh employed in the present work was stretched iny-direction to provide a better resolution in the
vortical region of the mixing layer. The stretching influence on the accuracy has been also investigated. A filtering
scheme was tested and later used to produce the final results of the present work. A characteristic-type formulation of
the compressible 2D Navier Stokes equations was used. For time development of the mixing layer it is necessary to adopt
periodic boundary condition inx-direction, what makes it more difficult to reproduce a single vortex pairing inside a
wide domain. The chosen domain was large enough to provide a clear observation of the acoustic field produced by the
pairing. The Mach number has been varied to observe it’s influence on the acoustic field.
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1. Introduction

The aim of the present work is to develop a code to investigate the acoustic phenomena in a 2D mixing layer by Direct
Numerical Simulation of the compressible Navier-Stokes equations. Flow generated sound is a serious problem in many
engineering applications. It can cause human discomfort; it affects the stealth operation of military vehicles; etc. Due
to the current aircraft traffic, community noise concerns at busy airports constraint the operation of noisy aircraft. In
response to this fact, FAA also included stringent regulations to the aircraft noise level operation and certification [Want
et al. (2006); Colonius and Lele (2004)]. Airframe noise is the major responsible for the sound level of landing aircraft,
since the propulsion system is near to the lowest power level. The impact of those mentioned facts on the worldwide
aircraft industry is the greater attention paid to noise in the design stage, leading to the needs of efficient noise level
prediction methods.

Flow instability phenomena are determinant to a wide range of aerodynamically generated sound. This strong link is
due to the transient and periodic nature of both the flow instability and the aerodynamic sound generation phenomena.
Two classical cases of aerodynamic sound generation are the vortex-shedding and vortex pairing [Want et al. (2006);
Colonius and Lele (2004)]. The vortex pairing phenomenon has been mostly observed in the mixing layer flow case.
The vortex pairing phenomenon follows a chain of events starting with the primary disturbance amplification leading to
the production of vortex structures, which is the classical Kelvin Helmholtz instability mechanism. Those small primary
disturbances exponentially grow in time or space and reach the saturation point, when the vortex structures are formed.
Thus, when the vortex distribution geometry is already established, the secondary instability takes place leading to the
pairing of the primary vortices.

In numerical simulations of sound generation, Colonius et al. (1997); Colonius and Lele (2004); showed typical
discrepancies between the disturbances near the vortical region and the acoustic disturbances at the far field region. The
acoustic disturbances were 4 or even 5 orders of magnitude lower. This shows that the code accuracy is strongly relevant
for aeroacoustic study purposes. A code developed by Germanos and Medeiros (2005) was used to investigate the flow
instability of a compressible shear layer. The code accuracy was an important concern in their work. They used a high
order compact finite difference scheme to compute the spatial derivatives and a4th order Runge-Kutta scheme for the
time integration. Germanos and Medeiros (2005) verified the code against the Linear Stability Theory (LST).

A double spiral pattern of the far-field pressure was observed by Mitchell et al. (1995) by Direct Numerical Simulation
(DNS) of the compressible Navier Stokes equations of a co-rotating vortex pairing. The formulation considered an
isentropic process and the results were compared with acoustic analogies proposed by [Powell (1964), Möhring (1978,
1979) and Lighthill (1952)]. The same double spiral structure, corresponding to the rotation of a quadrupole source type
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was obtained by Large Eddy Simulations (LES) of a free shear layer under spatial development in Bogey et al. (2000).
Colaciti et al. (2006) shows by DNS of a mixing layer under temporal development similar acoustic behavior caused by
the vortex pairing. Bogey, et. al. attributed this rotation of the quadrupoles sources to the rollup of the two co-rotative
vortices, i.e., the rotation of the vortex structures during the pairing.

For a lowMa number regime, there is a great discrepancy between the characteristic lengths of acoustic and vortex
scales [Colonius et al. (1997), Bogey et al. (2000) and Colaciti et al. (2006)]. Likewise, to combine a high resolution both
in the vortical region, the acoustic region (far-field) and a simulation at affordable computational cost, a stretched mesh
was used. To verify the use and implementation of such a technique, the accuracy of the spatial derivative computation in
a stretched mesh was investigated and the order of the scheme was found to be constant.

Non reflecting boundary conditions is one of the hardest challenge in the development of a CFD code, in particular,
for investigative aeroacoustic purposes, in which one is usually interested in the behavior of acoustic waves propagating
in an infinite domain. A commonly used strategy to prevent spurious acoustic wave reflections consists in increasing the
domain size with a sponge zone near the boundaries. Such technique has been proved to be inefficient, as incrementing
the domain size rapidly increases the computational cost. A characteristic-type formulation of the compressible Navier-
Stokes equation (Sesterhenn (2001)) has been successfully adopted in Colaciti et al. (2006). It has been shown, in Colaciti
et al. (2006), for a 1D domain, to have a reflection rate below0.08%. In the current work the same characteristic-type
formulation and anechoic boundary mimicking technique was adopted.

The use of filtering schemes is very common in direct numerical simulations. The fact is that, in some cases, the
influence of very small scales (dissipative scales) are of no interest, and, a grosser mesh can be used. Filtering schemes are
necessary in such situations to prevent aliasing problems. In the present work different variables were filtered, analyzed,
and a set of variables was proposed to be filtered on the simulation of shear flows. This set appears to exhibit a better
performance than other more commonly used sets. The reason for the choice of the filtered variables proposed on the
current work is strongly linked to the Gibbs phenomenon and is better explained on the following sections.

2. Methodology

In the present section it is given a brief explanation of the techniques used in the current work.

2.1 Formulation

The formulation adopted in the present work consists in the same formulation proposed in Sesterhenn (2001). The set
of variables used in this formulation are:p (pressure),u (x-direction velocity),v (y-direction velocity),w (z-direction
velocity), s (entropy). One of the advantages of using the characteristics-type formulation of the compressible Navier-
Stokes equations is an easier implementation of the non reflecting boundary conditions. With the aid of the present
formulation the useful domain is identical to the computational domain and no sponge zone is necessary to provide
simulations without significant spurious reflections on the boundaries. An full description of the variables used on the
characteristic-type formulation can be seen in Sesterhenn (2001) and Colaciti et al. (2006). For brevity, the 3D set of
equations will be only shown below:
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With the wave terms, heat transfer term, viscous term and viscous dissipation term defined as follows:
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2.2 Numerical scheme

The numerical scheme adopted performs time-integration with a4th order Runge-Kutta scheme. Computation of the
spatial derivatives were done in each pseudo time step of the Runge-Kutta scheme. To prevent aliasing problems some
of the state variables (p andw) are filtered in the last pseudo time step of the Runge-Kutta scheme and the remaining
ones (∂u

∂t , ∂v
∂t and ∂s

∂t ) are filtered in each pseudo time step of the Runge-Kutta scheme. The reason for the choice of each
variable to be directly filtered or to be filtered by filtering it’s temporal derivative is shown in sec. (2.2.2).

2.2.1 Spatial derivatives

Spatial derivatives were calculated with a high order compact finite difference scheme, as proposed by Lele (1992).
For the first and second derivatives a centered scheme with 3 points on the left-hand-side stencil and 5 points on the
right-hand-side were adopted for the medium points. The set of difference equations were solved by a tri-diagonal matrix
solver. The numerical scheme adopted for the first derivative was, in matrix form:

1 7 0
1 10 10 0 0
0 1 3 1 0

0 1 3 1 0
...

...
...

0 1 3 1 0
0 1 3 1 0

0 0 10 10 1
0 7 1


·



f ′1
f ′2
f ′3
f ′4
...

f ′n−3

f ′n−2

f ′n−1

f ′n


=



b1

b2

b3

b4

...
bn−3

bn−2

bn−1

bn


where:

b1 =
−3.5929f1 − 3.15f2 + 10.5f3 − 5.8333f4 + 2.9167f5 − 1.05f6 + 0.2333f7 − 0.0238f8

δx
;

b2 =
−3.7833f1 − 10.8333f2 + 11.6667f3 + 3.3333f4 − 0.4167f5 + 0.0333f6

δx
;

for the medium points (3 < i < n− 2):

bi =
−0.0833fi−2 − 2.3333fi−1 + 2.3333fi+1 + 0.0833fi+2

δx

bn−1 =
+3.7833fn + 10.8333fn−1 − 11.66667fn−2 − 3.3333fn−3 + 0.4167fn−4 − 0.0333fn−5

δx
;

bn =
+3.5929fn + 3.15fn−1 − 10.5fn−2 + 5.8333fn−3 − 2.9167fn−4 + 1.05fn−5 − 0.2333fn−6 + 0.0238fn−7

δx
.
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The numerical scheme adopted for the second derivative was:

1 13.6502 0
1 122.4 610.2 0 0
0 1 5.5 1 0

0 1 5.5 1 0
...

...
...

0 1 5.5 1 0
0 1 5.5 1 0

0 0 610.2 122.4 1
0 13.6502 1


·



f ′′1
f ′′2
f ′′3
f ′′4
...

f ′′n−3

f ′′n−2

f ′′n−1

f ′′n


=



b1

b2

b3

b4

...
bn−3

bn−2

bn−1

bn


where:

b1 =
14.708f1 − 27.139f2 + 5.452f3 + 15.40f4 − 13.916f5 + 7.756f6 − 2.807f7 + 0.604f8 − 0.059f9

δx
;

b2 =
53.6011f1 + 655.56f2 − 1567.95f3 + 969.3778f4 − 126.45f5 + 17.16f6 − 1.2989f7

δx
;

for the medium points (3 < i < n− 2):

bi =
0.375fi−2 + 6fi−1 − 12.75fi + 6fi+1 + 0.375fi+2

δx

bn−1 =
53.6011fn + 655.56fn−1 − 1567.95fn−2 + 969.3778fn−3 − 126.45fn−4 + 17.16fn−5 − 1.2989fn−6

δx
;

bn =
14.708fn − 27.139fn−1 + 5.452fn−2 + 15.40fn−3 − 13.916fn−4 + 7.756fn−5 − 2.807fn−6 + 0.604fn−7 − 0.059fn−8

δx
.

A mesh stretched in they-direction was used in the present work. The computation of spatial derivatives by compact
schemes were carried out in an uniform grid. A coordinate transformation was then used to obtain the derivatives in the
stretched mesh. The transformation used is given by Anderson (1990):

yp = B +
1
τ

sinh−1

[(
yc

ycenter
− 1
)

sinh (τB)
]

, (2)

B =
1
2τ

ln

[
1 + (eτ − 1)

(
ycenter

h

)
1 + (e−τ − 1)

(
ycenter

h

)] ,

whereyp is the physicaly-coordinate,yc is the computationaly-coordinate (0 < yc < 1), ycenter is they-coordinate in
the physical domain where the mesh points are agglomerated,h is the height of they-range in the physical domain andτ
is the stretching parameter. An example of a typical stretched mesh can be seen in Fig.1.

Figure 1. Stretched mesh withτ = 3, h = 34 andycenter = 0.

Actually, for they-direction, the spatial derivative scheme firstly computes the derivative of a function with respect
to the computational frame, i.e., in a mesh with constantδyc = 1

n−1 wheren is the number of points andδyc the mesh
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spacing in the computational domain. A metric multiplication must then be done to get the derivatives in the physical
domain.

∂u

∂yp
=

∂u

∂yc

∂yc

∂yp︸︷︷︸
metric

; (3)
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;

Once it is not possible to display the derivatives∂yc

∂yp
and ∂2yc

∂y2
p

and it is possible to find∂yp

∂yc
and ∂2yp

∂y2
c

, then eqs. (3)

must be expressed as functions of∂yp

∂yc
and ∂2yp

∂y2
c

. In the current work, the values of such derivatives were obtained by
the numerical scheme presented at the begin of this section. Defining the following functions and assuming that both are
bijective:

yc = f (yp) , (4)

yp = f−1 (yc) = g (yc) , (5)

therefore:

g (f (yp)) = yp. (6)

Now taking the derivative of eq. (6) with respect toyp and recalling eqs. (4) and (5) and using the chain rule:

∂ [g]
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1
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Now deriving eq. (7) with respect toyp:
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Now, with eqs. (7) and (8) it is possible to perform the full transformation:

∂u

∂yp
=

∂u

∂yc

1
∂yc

∂yp︸︷︷︸
metric

, (9)

∂2u

∂y2
p

=
∂2u

∂y2
c

(
1

∂yp

∂yc

)2
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metric

+
∂u
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∂2yp

∂y2
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∂yc

)3

︸ ︷︷ ︸
metric

.

One may point out a clear fact that as the grid is stretched the error at the center reduces and increases at the border.
Herein and after,y must be interpreted as they-coordinate in the physical domain (yp, previously). Tests were

performed to verify the spatial derivative scheme in a stretched mesh. In these tests ay-domain ranging from−1 < y < 1
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was used to compute the first and second derivatives of the functionu(y) = tanh (5y). This function is similar to the
velocity profile used to study mixing layers. The numerical scheme firstly computes∂u

∂yc
and ∂2u

∂y2
c

. Then metrics (∂yp

∂yc
and

∂2yp

∂y2
c

) are numerically computed and used in eqs. (9) to give∂u
∂y and ∂2u

∂y2 . Fig. 2 shows the maximum absolute error for

the first and second derivatives as a function of mesh refinement. For each mesh caseδy = 1
n−1 , wheren is the number of

points used in the computational mesh. One may observe that for the computation of the first derivative, by increasing the
stretching parameter from 1.5 to 5.0, for the same number of points, the maximum absolute error reduces about 1 decade.
For the second derivative an equal change in the stretching parameter could reduce almost 3 decades in the error.

(a) First derivative (b) Second derivative

Figure 2. Maximum of absolute error versus computational-grid spacing for different stretching parameter values.

2.2.2 Filter

The present work focus the instability of a parallel shear flow. Parallel shear flows have velocity profile (sayu(y))
generally represented by functions such as hyperbolic tangent, error profile or similar for mixing layers; Gaussian profile
or similar for jets and wakes; and so on. Like known, those listed pattern functions have a broad-band spectrum. It is
known that the filtering scheme works like a low-pass filter to damp the aliasing. Due to those mentioned facts, one might
relate the deforming influence of the filter onto those velocity profiles. Such influence is caused by a phenomenon similar
to the Gibbs’ phenomenon, where the cut-off frequency will cause an overshoot near to the high curvature regions. Tests
were done showing such behavior.

Fig. 3(a) shows the contourplot of functionu(y)i againsty and i axis, wherei is the number of iterations.u(y)i

was obtained by iterating the initialu(y)0 = tanh(2y) profile with a filtering scheme. Fig. 3(b) shows the functions
u(y)0 = tanh(2y) andu(y)45000. The distortion observed in fig. 3(b) varies with the mesh refinement and the number
of iterations. Asδy increases, the number of iterations necessary to achieve a given distortion will also augment. The
filtering schemes was based on the iteration of a 4-th order penta-diagonal scheme proposed by Lele (1992) (C.2.10.b).
For the tests performed in the present work a uniform mesh with 129 points was adopted in a domain:−5 < y < 5.

Deformations of the velocity profile caused by the filtering scheme may play a strong influence on studies of flow
instability. For example, the Kelvin-Helmholtz instability, mostly studied for mixing layers, is known to be strongly
influenced by the vorticity thickness. The vorticity thickness itself could be deformed by the filtering scheme during the
simulation. Due to those facts, in the current work a criterion was proposed to set the filtering scheme up. For those state
variables which have a broad-band spectrum at the initial condition, it should be better to filter it’s time-derivative. For
the remaining ones, the own variable could be filtered.

3. Code testing

In the present section, results of tests for the verification of the code developed in the current work are shown. The
code was used to reproduce the linear stability theory of the Kelvin-Helmholtz type. This is often considered an important
technique for code testing [Fortune (2000), Colaciti et al. (2006)]. Fig. 4 shows a sketch of the mixing layer problem.
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(a) (b)

Figure 3. The contourplot of the result obtained by filteringu(y) and the comparisons betweenu(y) obtained after
filtering 45000 times and the initialu(y) = tanh(2y) are shown respectively. In fig. 3(b) the red line represents the

functionu(y) = tanh(2y) and the green line representsu(y) obtained after filtering 45000 times

The non-dimensional scheme adopted in the present work usesU∗
max as the reference velocity,δ∗w as the reference length,

whereδ∗w is defined as the vorticity thickness,ρ∗∞ as the reference density,ρ∗∞U∗2
max as the reference pressure,T ∗∞

as the reference temperature andc∗p as the reference entropy. Time is non-dimensionalized byδ∗w
U∗max

. The simulation
adopted a periodic boundary conditions inx-direction and a free-slip anechoic boundary condition [Colaciti et al. (2006),
Sesterhenn (2001)].

Figure 4. Mixing layer setup.

For the tests shown in the current work, the problem set-up was

δ∗w = 1; c∗∞ = 340.21; Ma = 0.4; U∗
max = c∗∞Ma; Re =

ρ∗U∗
maxδ∗w
µ∗

= 105;

u(x, y, t = 0) = U(y) + up(x, y); U(y) = tanh (2y) ; v(x, y, t = 0) = vp(x, y);

T (x, y, t = 0) = 1−Ma2 γ − 1
2

(
U(y)2 − 1

)
;

where the star indicate dimensional variables,U(y) is the base flow, andup(x, y) andvp(x, y) are disturbances of the
velocity components inx andy directions, respectively. The initial condition for the vertical velocity disturbances are
given by:

vp(x, y) = e−σ(y)2 [A0 cos (αx)] .

By assuming the disturbance field as incompressible, i.e.,∂up

∂x + ∂vp

∂y = 0, an appropriateup disturbance field could be
obtained.
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The linear stability theory gives the growth rate of an infinitesimal disturbance for a Reynolds number flow. Because
of the viscous thickening of the mixing layer base flow the Reynolds number normally varies during the simulation and
prevents proper amplification with the theory. However, source terms can be added to the equations in order to avoid this
effect, these terms were

• − 1
ρRe

∂2ū
∂y2 ;

• −γ−1
Re

(
∂ū
∂y

)2

on the computation of the viscous dissipationφ.

• −λ∂2T̄
∂y2 on the computation of the heat exchange∂qi

∂xi
.

For both cases, the bar superscript indicates the mean value of velocity (u) or temperature (T ) in x direction.
Fig. 8 shows the power spectrum evolution obtained by the first mode of the Fast Fourier Transform ofv(x, 0, t) in

x-direction. Three different wavenumbers,α = 0.4, α = 0.8 andα = 1.75 are shown. This figure shows the linear region
and the non-linear region of the disturbance growth. Theoretical results obtained by Sandham (1990) are also ploted
in fig.8 for each one of the wavenumbers. Fig.9 shows the disturbance amplification rate (ωi) for a given disturbance
wavenumber (α). Such amplification rate was obtained by performing an exponential fit curve to the evolution of the
curves presented in fig. 8. The results presented by Sandham (1990) were obtained by solving the Rayley equations
for Ma = 0.4. Sandham (1990) also shown that forRe ≥ 105 the amplification rate of the most amplified inviscid
eigenfunction matches the inviscid theory to within0.1%.

Observations of the time development of thev(x, 0, t) first mode inx-direction are not enough to perform such
analysis. This is necessary to ensure that the first mode will be the main growing mode. Likewise, a difference limit
of 2 orders of magnitude between the first mode and the harmonic modes was ensured to determine the measurement
of the growth-rate for thelinear region. Figs. 5, 6 and 7 show the time development of logarithm of the fundamental

and harmonics wavenumbers power spectrumlog
[(

AR
2
n + AI

2
n

)0.5
]

for the fundamental wavenumbersα = 0.4, α =
0.8 and α = 1.75 respectively, wheren represents then − 1-th harmonic coefficients,I is the imaginary part and
R the real part. One can establish a limit of the ratio between the fundamental and the first-harmonic power spectra(
AR

2
1 + AI

2
1

)0.5
/
(
AR

2
2 + AI

2
2

)0.5
> 10−2 to ensure that the simulation is still in the linear growth region. For the case

of fundamental wavenumberα = 0.4, fig. 5, the simulation can be considered in the linear region up tot = 60. For the
caseα = 0.8, fig. 6, such time limit ist = 50. For α = 1.75, fig. 7, the disturbance growth rate is so small that the
power spectrum of the first harmonic does not exceeded10−5 of the fundamental wavenumber power spectrum during the
simulation time.

Figure 5. Time development of the fundamental and harmonics wavenumbers power spectrum are shown for the funda-
mental wavenumberα = 0.4.

The mesh adopted here to solve all of the cases had 33 pointsx-wise and 129 pointsy-wise. Also the mesh was
stretched iny-direction following eqs. (2) withτ = 1.8. For all of the cases the domain was0 < x < 2π/α; −17 <
y < 17. Fig. 9 shows a good agreement between simulation and theory and the code was considered adequate for further
studies.
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Figure 6. Time development of the fundamental and harmonics wavenumbers power spectrum are shown for the funda-
mental wavenumberα = 0.8.

Figure 7. Time development of the fundamental and harmonics wavenumbers power spectrum are shown for the funda-
mental wavenumberα = 1.75.

4. Results

In this section results of the aeroacoustic phenomena are shown and briefly discussed. since the acoustic quantities
are very small when compared to the inertial quantities, to analyze such phenomena it is necessary to observe a physical
quantity with a resolution of 4 or 5 orders of magnitude [Colonius et al. (1997), Colonius and Lele (2004)]. Thereforelog
scale is necessary.

A mesh with 501 points inx-direction, 601 points iny-direction was stretched iny-direction withτ = 5, −100 <
y < 100, ycenter = 0, 0 < x < 300 and used to investigate the aeroacoustic phenomena in mixing layers under temporal
development. The investigations were done for three different flow conditions:Ma = 0.2, Ma = 0.4 andMa = 0.6.
The others parameters were kept constant, such as:δ∗w = 1; Re = 105; ∆t∗ = 0.02 δ∗w

U∗∞
. The free-slip anechoic boundary

condition [Colaciti et al. (2006), Sesterhenn (2001)] was adopted in they-direction and the periodic one inx-direction.
The flow disturbance was computed with wavepackets following Colaciti et al. (2006).

For different flow conditions a different type of vortex pairing geometry may occur in different non-dimensional time
instant values. To synchronize the different flow cases in a common phenomenon stages, a vortex pairing geometry
parameter which measures a shear thickness quantity (δw = 2/∂u

∂y ) was evaluated. The idea was to ensure that this
parameter was similar for the different simulations. Figs. (10), (11) and (12) were generated by compounding a shaded

view of thelog
(

P
P0

)
with a contour plot of the vorticity field. Through that figures it is possible to observe the far-field,

the near field and the vortices structures.
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Figure 8. The power spectrum of the given wavenumbers versus timet are shown forα = 0.4, α = 0.8 andα = 1.75 at
Ma = 0.4. The theoretical results obtained by Sandham (1990) are also shown for comparison purposes. It is possible to

observe a linear growth region before the disturbances reach the saturation (non-linear region).

Figure 9. Amplification rate of the disturbances (eigenfunctions) versus wavenumber atMa = 0.4. The green line
represents results obtained by Sandham (1990) by solving the Rayleigh equations. The red points represents results

obtained in the current work by DNS of the compressible Navier-Stokes equations.

The acoustic wave propagation in shear flows involves some known phenomena such as refraction. The refraction is
responsible for the changes in the sound-wave propagation. Through figs. (10), (11) and (12) it is possible to observe that
phenomenon. Observe that forMa = 0.6, in fig. (12), the flow reaches a condition in which refracted waves become
Mach waves. This is due to the relative speed between the opposite currents, which is 1.2 times the speed of sound. In
this case, the upper layer would observe a moving source with a relative speed of 1.2 times the sound speed, reproducing
the typical cases in which Mach waves are present. Figs. (10(a)), (11(a)) and (12(a)) show a dark structures similar to
that associated with quadrupole acoustic sources. Through the sequences of figs. (10(b)), (10(c)) and (10(d)); and (11(b)),
(11(c)) and (11(d)), one observe a rotating quadrupole source-type as reported by Boogey et al. (2000), Mitchell et al.
(1995) and Colaciti et al. (2006). For the case ofMa = 0.6 it is not possible to do such analysis. The refraction caused
by the velocity difference of the currents distort the typical rotating quadrupole structure.

In contrast to simulations which use sponge zones or buffer zones to inhibit spurious acoustic wave reflections, one
might observe that, using the characteristic-type formulation, the simulation domain is equal to the full observed domain.
Spurious reflections are not seen in Figs. (10), (11) and (12).
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(a) t = 32.8 (b) t = 44.4

(c) t = 50.8 (d) t = 57.2

(e) t = 62.0 (f) t = 66.0

Figure 10. Shaded view oflog
(

P
P0

)
field and contour plot of the vorticity field forMa = 0.2.
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(a) t = 37.6 (b) t = 50.0

(c) t = 56.8 (d) t = 64.4

(e) t = 68.8 (f) t = 73.6

Figure 11. Shaded view oflog
(

P
P0

)
field and contour plot of the vorticity field forMa = 0.4.
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(a) t = 49.6 (b) t = 58.4

(c) t = 66.8 (d) t = 76.0

(e) t = 81.6 (f) t = 88.0

Figure 12. Shaded view oflog
(

P
P0

)
field and contour plot of the vorticity field forMa = 0.6.


