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Abstract. When performs numerical simulations for laminar internal flow with boundary conditions, given by more 

than one heat transfer mode, considerations for 1-D or 2-D conduction at the walls are evaluated. In this paper, air is 
considered as working fluid. The walls are considered as small thickness being the analyses done for carbon-steel 
material. The wall conduction is modeled for horizontal and lateral walls for 1-D analyzes, plus for longitudinal length 
for 2-D analyze cases. A numerical method of iterative solution is applicable for a system of algebraic equations 
obtained by finite difference discretization. These equations arises from the energy balance from conduction at the duct 
walls which is coupled to internal duct convection from the working fluid as well the external convection as boundary 
conditions. The developed methodology considers non-imposed (or free) wall temperatures in which the heat 
conduction-convection transfer modes are coupled. It means, the wall mean temperatures and energy balance 

generates an increasing of the bulk temperature in the working fluid inside of the duct. Even in the present case for 
non-imposed boundary conditions, fully hydrodynamic and thermal developed internal flows are presents: the 
temperature field changing in the profiles but keeping the relative shape. Results present the effects on 3-D heat 
transfer coupling (conduction-convection) in two proposed models for the bulk temperature, wall mean temperature as 

well as the longitudinal behavior heat rates and variations. These parameters are evaluated in numerical and physical 
aspects in rectangular duct internal flows. 
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1. INTRODUCTION 
 

Modeling of 3-D thermal conditions for coupling of multi-mode heat transfers (conduction-convection) in ducts of 
rectangular cross section is being considered in the present work. That corresponds to a heat exchanger, which is a 
device widely considered in thermal engineering applications. In these occurs heat exchange between two working 
fluids, being each fluid in one side of a solid wall and with different temperatures. 

In heat exchangers simultaneously exists in time and space more than one heat transfer mode. When these are 
analyzed, the researcher has motivation to look for numerical solutions for the 3-D temperature field and all others 
parameters based on energy, for example, heat rate, heat transfer convection coefficient, Nusselt number and entropy 
generation. 

Good predictions of heating and/or cooling capacity of those devices are desirable, once these predictions are 
parameters of major importance in the product developments, to achieve an optimized equipment designs. A structured 
mesh over the 3-D domain along the three axes is created to implement the computational model of the heat exchanger. 

When performs numerical simulations for laminar internal flow, where the boundary conditions are given by more 
than one heat transfer mode, considerations for 1-D or 2-D conduction at the walls are evaluated. In this paper, air is 
considered as working fluid. The walls are considered as small thickness being the analyses done for carbon-steel 
material. The wall conduction is modeled for horizontal and lateral walls for 1-D analyzes, and additionally for the 
longitudinal length for 2-D analyze case. 

Studies of laminar heat transfer in internal flow are widely spreads in available literature. These, for particular cases 
of analysis for rectangular ducts, are much based on considerations taken in to account done in works of Clark and Kays 
(1953), Shah and London (1978), and others after them. Constant boundary conditions are usually analyzed, once they 
represent real situations that occurs for Tw = constant (constant wall temperature in the external fluid phase changing, 
for example) and for qw" = constant (constant wall heat flux as happens if we consider external solar radiation in a 
sunny day, for example). In that line of research, relevant works have also been developed for circular ducts and 
constant wall temperature or heat flux, as for example by Barozzi and Pagliarini (1985), Faghiri and Sparrow (1980), 
among others authors in a rather large number of publications available on that subject. 

Methodology in the present work considers non-imposed (or free) boundary conditions (wall temperatures or heat 
flux) in which there is coupling of heat transfer modes. Then, wall mean temperatures are obtained as function of the 3-
D temperature field that comes from solving the energy balance at the walls. As consequence, we have increasing 
values for the bulk temperatures, once the walls together with outside temperatures impose a heating in the internal 
fluid. 
 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 
 

2. GOVERNING EQUATIONS 
 

Considering the flow as laminar, under steady state conditions and neglecting the field forces (ρ.g), equations 
derived from fluid mechanics and heat transfer can represent the proposed model in this work, as indicated by the 
following: Eq. (1) describes the continuity equation (i.e., mass conservation), Eq. (2) corresponds to the momentum 
equation and Eq. (3) represents the energy equation. 
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Where u is the velocity, Tf is the fluid temperature; p is the duct internal pressure; dp/dz is a constant value for the 

pressure gradient at the z direction (axial/longitudinal); ρ is the fluid specific mass (or density); kf is the fluid thermal 
conductivity; cp is the specific heat at constant pressure; µ is the dynamic viscosity; and α is the thermal diffusivity [α = 
kf / (ρ. cp)]. 

Considering small values for the dynamic viscosity µ, as occurs for fluids as air, we can assume negligible viscous 
friction due to the work generated from viscous stress. The internal flow is assumed to be in a region of completed 
development of the velocity distributions (hydrodynamic boundary layer) and temperature distributions (thermal 
boundary layer). In this situation, although we have a 2-D velocity profile, there exists only the u component at z-axis 
(unidirectional). 

Figure 1 indicates the adopted axes and reference system, as well a considered rectangular duct sketch to apply the 
governing equations that represent the physical properties of the flow under analysis, at the modeled heat transfer. Also 
indicated, there are the velocity components w, v and u respectively at axes x, y and z. 
 

 

Figure 1. 3-D Rectangular duct flow sketch for conduction-convection coupling. 

 
Formulation originally developed by Clark e Kays (1953) are applicable to rectangular cross section ducts, which 

considers boundary conditions at the walls with imposed constant temperatures at the cross section under analysis and 
along the duct length (flow direction). According to developments performed by Garcia (1996), it is possible to define a 

value that represents the mean wall temperatures in a given cross section WmT , Eq. (4). Then, it is possible to develop 

similarly to the original formulation, resulting in a new expression for the energy equation, as show in Eq. (5). 
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In the present work, 3-D results are obtained by solving the system of equations for a given cross section (z = n) and 

then solved to forward cross sections (z= n+1), in which TWm  is still considered of constant value at each cross section, 

but with different values in each one. 
The following considerations are applicable to previous formulation, in the transformation of main parameters (or 

variables) to their dimensionless forms: 
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After some mathematical developments (replacing and rearranging of governing equations), in which are available 

in recent works from Silva and Garcia (2006a and 2006b), equations for the dimensionless energy equation and 
dimensionless bulk temperature are obtained as indicated, respectively, by Eq. (10) and (11). 
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It is possible to compute the heat transfer rate per length unit, Eq. (12). It depends on values for Twm and average 

heat convection coefficient, or from fluid enthalpy derivative [dhb = cp.dTb], given from the temperature bulk gradient 
dTb/dz, as presented in the Eq. (13). 
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When makes equal Eq. (12) and (13), it is possible to unfold the resulting expression, in which is applied integration 

between two cross sections: inlet (namely z1) and outlet (namely z2), resulting in Eq. (14). 
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From Eq. (14), we obtain the bulk temperature longitudinal (z-axis) variation ∆Tb when cutting the duct in a lot of 
segments and applying the numerical method to solve the properties in each finite cross section. For a given bulk 
temperature value at the duct inlet section (Tb1), after solving the system of equations, bulk temperature at the duct 
outlet (Tb2) is computed from that expression. Then, making Tb1=Tb2; there is a new Tb1 (as initial condition) applicable 
to the next segment/cross section, and there is an update on boundary conditions, dimensionless temperature field 

distribution (φ) and dimensionless bulk temperature (φb), as indicated in Eq. (10) and (11). 
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2.1. Boundary and Inlet Conditions 
 

Non-dimensional boundary conditions are given by the following equations: 
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If we consider constant temperatures at the walls, Eq. (15) and (16) being equal to zero, for these particular 

conditions it is possible to notice that boundary conditions are not function of dzdTb . That simplification becomes 

equal to the one studied by Patankar (1991). Equation (11) and its derivations for dimensional values of Tb and Tf  (Silva 
and Garcia, 2006a), as well as boundary conditions from Eq. (15) and (16), make together a set of differential equations 

in which φ and dTb/dz parameters are unknown. When solving that equation system it is possible to obtain the 
temperature field distributions, Tf. 

In a fully developed flow, velocity distributions reach maximum values at the central section and zero values at the 
walls, due to non-slipping conditions. Pressure gradient between inlet and outlet duct cross sections, dp/dz at Eq. (2), is 
an imposed value that is in accordance to laminar flow conditions (low Reynolds number). Fluid bulk temperature Tb is 
defined for inlet air flow in ambient conditions at 300K, being the changes along the duct length obtained by energy 
balance that considers heat transfer rates due to conduction and convection in each wall finite element (Fig. 2). 

Table 1 indicates the initial set-up variables/parameters for internal and external conditions, including geometry 
dimensions and pressure gradient considered to obtain laminar fluid flow (Re < 2100). 

 

Table 1. Fluid flow parameters and rectangular duct geometry. 

 

Tb_inlet (K), entrance  300 

Te (K), external temperature for case 1 300 

Te (K), external temperature for case 2 350 

he (W/ m².K), external convection heat transfer coefficient 12 

α*, aspect ratio 1 

D (m), duct high 0.01 

L (m), duct width 0.01 

Z*, non-dimensional duct length 1.00 

dp/dz (Pa/m) (1) 16.00 
                                                              (1)  Pressure gradient to keep laminar fluid flow, considering air and α* = 1. 
 

2.2. Thermo-physical properties 
 

The heat exchanger shown in Fig. 1 is built in four solid walls (rectangular duct geometry) according to material 
properties in Tab. 2, and the internal fluid (in this case, air) flow in conditions pointed out in Tab. 3. In this work, all 
results refer to carbon steel building, and future work will look into the behavior for the three others. 

 

Table 2: Wall material thermo-physical properties (1)  (Incropera and De Witt, 1998). 

 

 k (W / m.K) 

Stainless Steel 13.4 

Carbon Steel (Mn≤1%; Si≤0.1%) 60.5 

Pure Aluminum 237.0 

Pure Copper 401.0 
                                                           (1)  material at 300K. 
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When computing internal convection (to any fluid as air, water or oil), it is necessary to obtain local coefficients at 
the walls, h=f(x,y). For external convection (air) it is considered global coefficients (h_external, Tab. 1), according to 
the working fluid outside the duct walls, to obtain representative results in a heat exchanger, according to the inside 
working fluid properties pointed out in Tab. 3. 
 

Table 3. Fluid Properties for internal flow (1)  (Moran et al, 2005) 

 

Parameter description S.I. Symbols and Units Numerical Value 

Specific heat cp (kJ/kg.K) 1005.7 

Specific mass ρ  (kg/m3) 1,1614 

Thermal conductivity kf  (W/m.K) 2.63 x 10-2 

Thermal diffusivity α  (m²/s) 225 x 10-7 

Dynamic viscosity µ   (N.s/m²) 1.846 x 10-5 
                                                           (1)  air at 300K. 
 

2.3. Energy balance at the walls for 1-D and 2-D conduction models 
 

An analysis of one infinitesimal element located at the duct walls, according to Fig. 2, allows performing an energy 
balance that will provide the relations between the heat fluxes from all the heat transfer modes existing in the model, 
that is, conduction-convection coupling as a function of non-imposed temperature distributions on the walls. 
 

(a) (b) 
 

Figure 2. Energy balance for 1-D (a, left) and 2-D (right, b) conduction and convection at wall surface 1 (bottom-T1). 

 
Thus, from energy conservation principle, for steady state conditions, the heat rate quantities that get into the finite 

element must be equal to the quantities that get out, that is, for a given wall (number 1 corresponds to the bottom in Fig. 
1), we have the resulting balance described in Eq. (17). Similar equations and energy balance can be obtained when 
applying to walls 2, 3 and 4 considering that external convection occurs in walls 1 and 3, under symmetry conditions 
considered on the walls 2 and 4 (at all duct, side by side). 
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Unfolding Eq. (17), the following relation appears: 
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Finally, we have: 
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Equations (17) up to (19) correspond to energy balance in the 2-D conduction model, Fig. 2(b), were conduction 

heat transfer is considered in two directions (x and z-axes). Equations for 1-D conduction model, where only conduction 
heat transfer in one direction (x-axis) is considered, is obtained if we consider dT/dz equal to zero, that is no conduction 
in z-axis direction. 
 

3. COMPUTATIONAL AND NUMERICAL SOLUTION ALGORITHM 

 
After applying the method of finite differences on the algebraic equations obtained for velocity and temperature 

fields, they are solved using Gauss-Seidel methodology. Discretized equations, obtained from energy balance that 
represents the conduction and convection heat transfer coupling at the walls (Fig. 2), are solved by using an adapted 
TDMA method (Patankar,1991 and Garcia, 1996). 

After a first evaluation of the properties at initial cross section (z=0), the entire computational domain (up to z=H) is 
submitted to cyclic evaluation until obtain convergence for the dimensionless temperature distributions, Ø. 

The following seven steps indicate the developed and applied methodology in the numerical solution: 

Step1: Obtain velocity field and set up of initial estimated values for WmT  and dTb/dz; 

Step 2: Equations for the thermal boundary conditions are evaluated (Eq. 15 and 16); 
Step 3: Dimensionless energy equation (Temperature field, Ø) at Eq. (10) is solved and Øb is computed according to 

Eq. (11), until convergence is obtained (Øb < tolerance), what ends the first iterative loop; 
Step 4: A value for dTb/dz is computed by putting that parameter in evidence at Eq. (11) and then returns to step 2 

where boundary conditions are updated to obtain a new solution for the temperature field (step 3), until convergence is 
obtained (dTb/dz< tolerance), what ends the second iterative loop; 

Step 5: Ø(n) obtained is then used as assumption values for Ø(n+1) = Ø(n), which is required for iterative solution 
of the 2-D conduction in the energy balance at the walls, and also required if values for Ø(n-1), that is acquired from 
step 3 in the first calculation loop; 

Step 6: A new value for Tf is computed, according to Eq. (10) rearranged to its dimensional form (Silva and Garcia, 
2006a), what provides all information that is required to compute the temperature gradient between two duct cross 
sections and also the bulk temperature in next section, Tb(n+1). That continues until z=H; 

Step 7: Computation of updated values for Ø (n=2 up to the end) and comparison to previous values until 
convergence is obtained, i.e., (Ø_updated - Ø_previous) < tolerance, what finishes the third and last iterative loop 
otherwise the solution algorithm returns to step 2. 

At the steps, tolerance of 10-5 is the value to be accomplished by the convergence criteria applicable to Øb (fluid 
flow dimensionless bulk temperature), dTb /dz (dimensional bulk temperature gradient between two cross sections) and 
Ø_updated (dimensionless temperature field in all points of the computational model). 

 

4. RESULTS 

 
Two kinds of external conditions (outside boundary) were taken into account in the conduction model analysis and 

its corresponding results: a) Te = 300K, and constant heat flux from outside the walls (qe" = 1100 W / m²); b) Te = 

350K and no heat flux considered (qe” = 0), what corresponds conduction - internal convection effects, only. In both 
cases, we have boundary conditions at the walls with free values i.e., non-imposed temperature or heat flux, which will 
converge to temperature distributions values according to the energy balance (conduction-convection) iterative solution 
at the rectangular duct perimeter. Temperature distributions in the entire field (inside duct walls) are also available, as 
consequence of numerical convergence of the energy conservation equation. 

Obtained results are then compared to each other in a quantitative and qualitative analysis. This allows a good 
prediction of how much is the increase in terms of degree for the temperature distributions and the necessary length for 
the fluid flow reach a given temperature value for the geometric parameters in a certain heat exchanger. 

 

4.1. Heat rate analysis 
 

Figure 3 presents the heat rate (q’) received by the internal flow (that is different of the outside heat flux, qe") along 
the rectangular duct length (z-axis, longitudinal direction) for the two outside conditions mentioned previously. 

For both external conditions, it is possible to notice that the internal fluid flow receives an incoming heat flux higher 
for 1-D conduction modeling when compared to the values in 2-D conduction modeling. The reason becomes clear 
when comparing 1-D and 2-D results for outside qe"=constant (that is the closest approach to literature results for 
constant heat flux as boundary condition at the walls). For 1-D conduction model, the energy path goes from the 
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outside, crosses the walls in the thick direction and reaches the fluid flow, while in 2-D conduction part of the same 
amount of outside energy goes to the walls at the longitudinal direction. 

In 2-D model, energy conservation is also fulfilled and the heat transfer effects approach closer to real and practical 
conditions that occur in engineering applications, as indicated by next results. 
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Figure 3. Heat rate received by the working fluid along longitudinal direction – carbon steel walls. 
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Figure 4. Required heat rate to increase one Kelvin degree in the internal fluid temperature – carbon steel walls. 
 

Figure 4 shows the same parameter indicated in Fig. 3, i.e., heat rate (q) but here divided by fluid bulk temperature 
variations [Tb(n) – Tb(0)], resulting in a parameter that is given by (W / K) as indicated in the vertical axis of that figure. 

An interesting behavior is observed in Fig. 4, which allows a focus on the physical behavior of the heat transfer 
coupling phenomena under analysis. For 2-D conduction, there is an almost constant heat rate required to increase in 
one Kelvin degree the fluid temperature, while in the 1-D conduction, that same parameter shows an asymptotic 
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behavior (reaching infinity) at the beginning lengths and after that, it goes to almost constant values as in 2-D 
conduction. 

Discontinuities as the one observed for 1-D conduction modeling indicates a lack between numerical results and the 
real phenomena that is not being well represented. Otherwise, it would mean that to increase one Kelvin degree (a 
unitary value) in the fluid bulk temperature in the region from z = 0 m up to around z = 0.25 m requires an amount of 
energy/heat rate that approaches the infinity, and that does not make sense in the real word. That effect seems to 
correspond only to numerical response to the 1-D conduction and convection heat transfer coupling under analysis. 

In the other hand, 2-D conduction modeling shows a smooth behavior indicating that its results fit better to the real 
phenomena in the according of available experimental results. 

It is good to remember that equations for heat rate can be rearranged in the following form: q / ∆T = m& . cp, where 

m&  is the mass flow (kg/s), and once m&  and cp are assumed constants along the flow, it is reasonably to expect that the 

left hand side q / ∆T would also be constant. It is also known that heat transfer behavior occurs in smooth and not in 
rough ways, what also reinforces that 2-D is a better conduction model than 1-D. It gives importance for the research 
line pursued by authors, and stimulates to continue the studies in rectangular duct heat exchangers. 

Also, it is important to point out that case study 1 corresponds to qe" = constant, i.e., constant heat flux outside the 
whole duct length and that condition does not reflect the asymptotic behavior that happens in curves for 1-D model at 
Fig. 4 (heat rate q divided by [Tb(n) – Tb(0)], in W / K). 

In analogy to real conditions, 1-D model corresponds to a duct where each infinitesimal cross section is thermally 
isolated from its neighborhood, and then heat transfer by conduction does not reach front and rear sides. In 2-D 
modeling, there is communication among all infinitesimal elements of the rectangular duct in the longitudinal length 
and in width (left and right walls) or high (top and bottom walls), although it was neglected in the thin wall direction (if 
considered, that would corresponds to 3-D conduction modeling). 

 

4.2. Temperature analysis 
 

Next figures present non-dimensional temperature gradients in the fluid flow (ψb = Tb / Tb_inlet) and at the walls (ψW 

= Twm/ Tb_inlet) along the duct length. In addition, they present the temperature field (dimensional values) along the entire 
duct computational domain for 1-D and 2-D conduction models and each one of the cases considered, for the same 
external conditions. 
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Figure 5. Non-dimensional temperatures behavior for case study 1 – qe" = constant and Te = 300K. 
 

Figure 5 shows Tb and Twm when qe" = constant (1100 W / m²), and Te = 300K, where the differences between 1-D 
and 2-D conduction models begin visually to became noticeable around z = 3 m for Twm, and around z = 3.5 m for Tb. 
That behavior is enhanced up to the duct exit. 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Z*        

ψ
b

, 
ψ

w Tbulk, 1-D, Te=350K, qe"= 0, k=60.5W/m.K

Tw m, 1-D, Te=350K, qe"= 0, k=60.5W/m.K

Tbulk, 2-D, Te=350K, qe"= 0, k=60.5W/m.K

Tw m, 2-D, Te=350K, qe"= 0, k=60.5W/m.K

 
Figure 6. Non-dimensional temperature behavior for case study 2 – qe" = 0 and Te = 350K. 

 
Figure 6 shows the same parameters when qe" = 0 and Te = 350K, where the differences appear closer to the inlet 

(earlier in length space), indicating that these outside conditions provide higher energy than the previous one. In both 
figures, Twm does not change much at the beginning of the duct length, indicating that the energy balance into the walls 
keeps that parameter almost constant. 

That conclusion makes sense if we think that the walls are only necessary to serve as a physical mean path between 
heat energy and inside fluid, which is the one that needs to receive energy represented by temperature increases, what 
happens since the inlet. It is possible infer that for other materials, with higher thermal conductivity values (k), that 
behavior is altered, once the material at the walls will conduct as much energy as its thermal conductivity increasing. 

Now, with focus on the entire temperature field, Fig. 7 shows results for case study 1. Notice that values for 
temperature range are from 297K up to 306K. Conduction Model 1-D, at the left side, clearly shows a larger duct length 
(at the ending) with higher values for temperature distributions, while 2-D conduction model at the same region shows a 
smaller duct length for the equal temperature values (around 306K). That behavior occurs for all iso-surfaces of 
temperatures in the Fig. 7, but it intensifies after the middle length, what is consistent to the results indicated in Fig. 5. 

 

 

Figure 7. 1-D (left) and 2-D (right) heat conduction modeling case study 1 – qe" = constant and Te = 300K. 

 
Figure 8 presents the temperature field for case study 2. For this case, temperature range is from 285K up to 345K. 

The same behavior is observed when compares themselves, 1-D and 2-D conduction models for non-dimensional Tb and 
Twm along the z-axis in Fig. 6, with increased differences when compared to results in Fig. 7. That occurs due to the 
higher heat amounts that comes from outside conditions when qe"=0 and Te=350K. 
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Figure 8. 1-D (left) and 2-D (right) heat conduction modeling for case study 2 – qe" = 0 and Te = 350K. 

 

5. CONCLUSIONS 
 

Some achievements were obtained in this work when compared to previous ones by the same authors (Silva e 
Garcia, 2006a, 2006b and 2007), mainly represented by 2-D heat transfer conduction in 3-D rectangular ducts which 
wall temperatures are not imposed. That represents a development in the research line followed in the subject, in which 
corresponds to better modeling of practical conditions found in engineering equipment and real thermal conditions were 
multi-mode heat transfer occurs. It is not always that improves in the model (1-D to 2-D analysis) will represent an 
increase in exchanged heat. Notice that 1-D wall conduction is a simplified model that indicates a higher amount of heat 
reaching the fluid flow. These final notes are the main conclusions of numerical investigations conducted herein. 

Analysis of others results are going to be published, using the same behavior of the 1-D and 2-D models. In this 
future publication, others wall material analysis, as stainless steel, pure aluminum and pure cooper will be done to 
compare with carbon-steel, here considered. Next steps, in that line of work, are to consider viscous dissipation effects 
in the energy equation, what provides an additional amount of energy to the fluid flow (usually neglected), and to 
include radiation heat transfer as part of the heat transfer coupling at the walls. Previous, actual and future works and 
considerations related herein are going to be part of the first author thesis to obtain its doctors degree expected for 2007. 
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