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Abstract.

The Karhunen-Loéve (KL) theory establishes that a secoderoandom field can be expanded as a series involving a
sequence of deterministic orthogonal functions with agthwl random coefficients. The KL theory can be applied to the
responses of randomly excited vibrating systems with a toeperforming a decomposition in separate variable (time
and space) form giving a modal analysis tool. In this paperageraging operator involving time and ensemble averages
is used to draw up the KL theory. This averaging operator campplied in stationary cases as well as non-stationary
(transient) ones. The KL modes obtained from the displanefigdd, velocity field, and acceleration field are compared.
Stationary as well as transient (non stationary) caseshdglbonsidered. The physical interpretation of the KL mod#s w
be also investigated.
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1. INTRODUCTION

The Karhunen-Loéve (KL) decomposition establishes thatcarsd-order random field can be expanded as a series
involving a sequence of deterministic orthogonal functianith orthogonal random coefficients. The deterministiocfu
tions, which are also called Karhunen-Loéve modes, areégiemfinction solutions of the Fredholm integral equattbe,
kernel of which is the autocorrelation (or autocovariarfaegtion of the random field under study. This expansion was
developed in the forties by several authors (Loéve (194&jhknen (1947), and others). It was subsequently invéstiga
and used in many branches of engineering science. Depeaditige properties of the random field under study, the use
of the expansion, and/or the field of application, this exgi@mhas been given under different names such as Principal
Component Analysis (PCA), and Proper Orthogonal DecontipogiPOD).

When the term POD is used to denote an expansion, it geneeddlysrto a characterization of the signal based on
experimental data. The POD also involves detecting spataherent modes in the dynamics of a spatio-temporally
varying system by diagonalizing the spatial covariancetion of data with respect to an averaging operation (Lumley
1971) (Sirovich, 1987). In the case of random fields, theagieg operation is taken to be the ensemble average and
the POD expansion is called the KL expansion. In the caseatfespemporal data (not necessarily random ones), the
averaging operation is focused typically on the time averas illustrated in (Graham and Kevrekides, 1996) (Atwell
and King, 2001), this is not the only possibility and, whettedzaorrespond to a random-response process, the statyonari
in time and the ergodicity are required to relate the timeaye to the ensemble average, or mean operator.

The KL expansion is one of the main tools used to develop thahssstic finite elements method (Ghanem end Spanos,
2003). Itis also one of the techniques used to simulate rarfaldds when they are specified by their covariance function
and their marginal density probability (Poirion and Soi2899) (Ghanem and Spanos, 2003). In vibration analysis
the KL modes, or Proper Orthogonal Modes (POMs), advantaigoeplace the Linear Normal Modes (LNMs) of the
underlying linear system (see for example (Steindl et 89,7} (Ma and Vakakis, 1999) (Trindade et al., 2005)).

The physical interpretation of POMs has also been investijaThese modes have been related to the LNMs of
multi-modal free responses of discrete symmetrical systéffeeny and Kappagantu, 1998), (Kerschen and Golinval,
2002). In these cases, time averaging has been used as thgiageoperation in the POD method. Conservative linear
systems (discrete and continuous) under random excithiea been studied in (Feeny and Liang, 2003). Linear discret
mechanical systems subjected to Gaussian white-noistati@ni have also been addressed in (Kerschen and Golinval,
2002) (Kerschen and Golinval, 2004). In (Bellizzi and Saiopa006), discrete and continuous mechanical systems are
studied in the context of stationary as well as transient @tationary) responses. An averaging operator invohimg t
and ensemble averaging was introduced to obtain the KL esipaiin separate variable form from the associated KL
expansion.

The purpose of this paper is to compare the KL modes obtaired the displacement field, velocity field, and
acceleration field. The displacement, the velocity and theelaration fields are directly measurable Using the avegag
operator involving time and ensemble averaging, statioaamwell as transient (non stationary) cases will be consitle
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2. KARHUNEN-LOEVE EXPANSION FOR RANDOM VIBRATIONS

In vibration problems, it is often necessary to expand theatory field as a series in separate variables (time and
space)

u(t,x) =Y ax(t)dr(x) )
k=1

whereg;, are vector functions, ang, are scalar functions. This expansion, which includes thssital modal expansion,

can be used, for example, to analyse the behaviour of theraystto reduce the order of the model of dynamical systems.
In case of random vibrations, that is when the vibratory fieldssumed to be a stochastic figld(z) }.cp in which

the domairD = D, x Dy, C R x RP (withp = 1,2, or 3) andz = (¢, x), the objective is to expand the vibratory field as

a series in separate variables

u(t,x) =Y ar(t)dr(x) @)
k=1

whereg,, are deterministic vector functions, afid (¢) }:cp, are scalar random processes. Usudllydefines the time
interval of interest and, without loss of generality, weuase in the sequel tha?, = [0, 7] whereT € R™.

The KL theory as described in (Bellizzi and Sampaio, 2006) loa used to build series expansions (2) from the
correlation functiorR., (¢, ¢, x, x’) of the random fieldu(t, )} ¢ )ep, xp, - TWO cases can be considered depending on
the time stationary properties of the random field.

The notations used in this work is the same as in (Bellizzi@achpaio, 2006). The main points are as follows.

Let D be a compact subset & and {X(z)}.cp a second order stochastic field defined on a probability space
(2, F, P) with values inR<. This random field is &parameter family on real valued vectdf{ z, §) for (z,6) € D x Q.

Let L%(Q, R?) be the Hilbert space of the second-order random vectorhlagalefined on the probability spage, 7, P)
with the inner product

<Y.Z >q= / <Y (0),Z(0) >dP(0)=E(<Y,Z>) (3)
Q
where< .,. > denotes the Euclidian inner producti, dP(0) is the probability measure, ard(.) denotes the mean, or
ensemble average, with respect to the probability meaufiéne stochastic field can be regarded as a curdé& e, R?).

2.1 KL expansion based on ensemble averaging

If the covariance functio®R,, (¢, ¢, x,x’) does not depend on the KL expansion given by the classical KL theory
takes the form (the equality is achievedlif(Q2, R?))

u(t,x) = ng(t)qpk(t,x) where the functiong, solve/ R, (t,t,x, x" ) p(t,x")dx" = Ngtop(t, x). (4)
k=1 Dy

The functionsy;, do not depend on the time variable and hence expansion (d)tieiseparate variable form and it is
optimal to represent the random figld(¢, x) } xep, for fixedt¢ € D, in the sense that the error term

P

E(lu(t,-) = > &®n()%s) ®)

k=1

is minimum for each fixed integer. This case corresponds to the well known time stationarg easl the function),
are called KL modes..

2.2 KL Expansion Based on Time and Ensemble Averaging

If {u(2)}.ep is Not time stationary, a different averaging operator canded to developp the KL theory.
First, we consider the Hilbert spagg.(D; x Q, RY) with the inner product given by

1 T
<Y, Z-=E(<Y,Z>)with&(.) = T/ E(.)dt. (6)
0

We can next define the correlation function of the random field, x) }.<p, as
Ru(x,x) = &((u(-,x)(u(.,x)7") )
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which are only spatial variable dependant. Finally, thedoam field {u(., x)}xep. Can be expanded (using the same
arguments as in (Bellizzi and Sampaio, 2006)) as (the dguslachieved inC2(D; x 2, R%))

Va € Dy, u(t,x) ng )¢ (x)where the functiongy, solve/ Ru(x, x )b (x")dx = A\pthr (x) (8)

k=1

and{&,(t) }tep,, {&}temys -+ s {&m }tep,, - - - are scalar random processes givelghy) = fDm < u(t,x)—my (x), ¥r(x) >
dx with the following orthogonal propertie$(&x, &k,) = 0 if k1 # ke and £(£3) = M. As in the classical case, the
eigenvalues), are related to the mean “energy” of the random field accgrttirthe following relation

||UH<<>> Z)‘k (9)

The functions)y, will be called7T-mean KL modes.

Note that if the random fieldu(t,x)} x)ep, xp, 1S Weakly stationary with respect to the time variable (iie.
R,(t,t',x,x") = R, (t — ', x,x")) then theT-mean KL modes does not depend on the paranfétand coincide with
the KL modes.

2.3 T-mean KL modes in practice

The estimation of th&-mean KL modes can be obtained from a time and spatial sagpfirthe random field
{u(t, x)} (¢, x)eDr xD, - LEL CONSIdEL |, 22, - - - , 2N, N Spatial points¢ Dy) where the random field is sampled in time
M times on[0, T att,, = mAtwithm = 1,--- , M (At is the sampling period) and fd® independant random events
f.forr=1,--- R.

Introducing the centered discret fie\dy (¢,,,, 0,-) = Un (tm, 05) — ZS 1 Un(tm, bs), inwhichUy(t,,,0,) is a
dN-vector line defined bW y (t,,, 0,) = (u(tm,xl,e )r.. u(tm,XN,9 ) ) the spatial covariance matrix having the
dimensionsiN x dN can be written as

Vi m(61) v (t1,6r)
R Vi a(62) , v (t2,0y)
R=-—V"V whereV = . with Vi (0,) = . . (20)
MR : ’ :
Vi m(0r) v (tar,6r)

The dimensions of the resulting matik depend neither on the number of realizatidghaor on the number of samples
M.

The T-mean KL modes are then approximated at Mespatial pointsx,,, by the eigenvectors dR (which are
orthogonal due to the symmetry B). The quality of the approximation with respect to the contius formulation (8)
depends on the number of spatial poiftsthe sampling period\¢, and the number of independant eveRtsised. The
influence of the parameters will not be discussed here.

From the theoretical point of view, this approach does nmqire any assumption of stationarity nor ergodicity preper
ties, butin pratice it is not generally possible to measiieevibration for different random events. So without timgastic
assumption, the procedure can only be reasonable implechéwm a numerical model and Monte Carlo method.

In case of time ergodic assumption, only a long time trajgct® enough to do the calculation& (= 1) and the
T-mean KL modes, which are independenflgfcan be approximated as the eigenvectors of

Vi (t1)
1 N Vi (ts2) 1 U
R = MVTV in whichV = 5 andV v (t) = Un (tm, 01) — 3 ;UN(% 01). (11)
Vi (tar)

The expressions (11) is usually used to define the POM whetirtiee averaging is considered as the averaging
operator. In this case the KL expansion is optimal only fer dlata used, whereas in the stochastic time ergodic case the
KL expansion is valid for all the events.

3. T-MEAN KL MODES OF VIBRATORY RANDOM FIELDS

Vibration analysis usin@-mean KL theory can be independently developed from thdatispment field, the velocity
field, the acceleration field, and also from displacemetdeity field, as done in (Bellizzi and Sampaio 2007). It is
essential then to understand the relationship amond 'theean KL modes obtained using displacement, velocity, or
acceleration fields, as well as the relation betweeri#tmeean KL modes and the Linear Normal Modes (LNM).
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3.1 Linear case

The linear case has been considered from the point of vieWdidplacement fields in many papers in particular for
the KL modes (stationary case). Consideringfhmean modes, the main result, see (Bellizzi and Sampai®)2i3that
for a discret damped mechanical system under white noiseagga, theT-mean KL modes obtained from the random
displacement field coincide with the linear normal modes& mmodal matrix diagonalizes the damping matrix and the
covariance matrix of the excitation. In (Bellizzi and Sarap2007), this result is extendedTémean KL modes obtained
from the random displacement-velocity field.

3.2 Nonlinear case

One rather interesting known result is the relation betwiéermodes defined from the response of the nonlinear
system and tke KL modes defined from the response of the dguflmear system obtained using the method of statistical
linearization as described in (Roberts and Spanos, 1990).

Let us consider the nonlinear system

Z(t) = G(Z(1)) + F(t) (12)

with external random excitation. A suitable equivalenetn system relationship betweiit) andF(¢) can be written
as follow

Z(t) = Lo Z(t) + F(t) (13)
where the matrix constait,, is determined by
min E(|| G(Z(1)) - LZ(1) |*). (14)

For the non-linear system (12), when there exists a statipasgodic probability measure, it can be shown (Kozin,7)98
that the stationary covariance matrix of the nonlinearoasp (12) is identical to the stationary covariance matrihe
equivalent linear response (13).

Assuming the existence of stationary response to (12), thenkdes obtained from the stationary response of the
non-linear system agree with the KL modes obtained fromtidigomary response of the equivalent linear system.

We will now consider the case of transient (or non-statighegsponses. Let consider the non-linear system

MU(t) + CU(t) + G(U(t)) = F(t), t € [0,T] (15)

U(0) = Uy, U(0) = U,. (16)
A suitable equivalent linear system relationship betw®ét) andF(¢) can be written as follows:

MU(t) + CU(t) + K., U(t) = F(t), t € [0, 7] (17)

where the constant matriK., is determined by

minE(|| G(U(.)) - KU() ||*) (18)

with E(.) = %fOT E(.)dt. This criterion differs from the stationary one given by )14t can be used to obtain an
equivalent linear system with a constant matrix. This lifedion method differs from that described in [16] in thesea
of non-stationary responses where the equivalent linesiesyis a time-varying linear system.

As in (Roberts and Spanos, 1990), the condition requiredbtailm optimum can be written as follows

E(U()UT ()KL, = [E(G1(U()TU()) - E(Ga(U(.)"U())] (19)

whereG(U) = (G1(U)G5(U) - - - G4(U))T.
It is then interesting to ask when tlieKL modes obtained from the non-linear transient respohSgdgree with the
T-KL modes obtained from the transient response of the etanivéinear system (17).

4. APPLICATION TO CONTINUOUS SYSTEMS

As an example we will discuss a continuous beam, with two sygfeboundary conditions, with a pure nonlinear
restoring force F'(t, z) = Dul(t, z;)36(z — z¢), with D a material constant(t, zy)the displacement at = z¢, and a
localized excitation forcé(z — z.) f(t). The beam model is is reduced to a truncated series

d

u(t,z) = pi(2)mi(t) (20)

i=1
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where ¢, (z) denote the modal functions (Witﬁ)L ©i(2)pj(z)dz = ¢;; with L denotes the length of the beam) and
x;(t) denote the modal components. We assume that the modal cents@olve the following second order differential
equations

d 2
X(t) + OX(t) + Q*X () + A (Z gDi(Zf)a?i(t)> HX(t)) = G(t), te0,T] (21)

whereQ? = diagw?), ©® = diag(2m,w;) (w; denote the modal frequencies andhe associated modal damping ratios),
H is ad x d matrix with general ternp; (2 )¢, (25) and the component of the modal excitation ve€gt) are related to
the physical excitation by; () = ;(z.)f(t). We will assume that{ f(¢) } p is a white-noise random process. Note that
the covariance matrix of the modal exciation being not di@doeven in the linear case, the KL expansion could differ
from the modal expansion.

The displacement, velocity and acceleration fields werainbtl from (20) solving, from given excitation histories
f(t), equation (21) numerically (using the Newmark method). &katation histories were simulated using the procedure
described in (Poirion and Soize, 1988).

Given a spatial discretisation, = kAz fork =1,--- , N with Az = L/N, the objective is to compare the

e theT-mean KL modes obtained from the transient displacemert éetr[0, T');
e theT-mean KL modes obtained from the transient velocity fieldrd0€T;

e theT-mean KL modes obtained from the transient acceleratiod ¢ieér|[0, T;
e theT-mean KL mode obtained from the equivalent linear system;

¢ the modes obtained from POM analysis of some displacenegattories

TheT-mean KL modes of the transient non-linear response wer@uated using the method described section 2.3 The
simulated data were also used to estimilg solving Eq. (19) and-mean KL modes of the transient response of
the equivalent linear system (17) were computed from therdance matrix function obtained solving the associated
differential equations (Lyapounov equations) of (17).

The parameters values wete:= 0.6, EI = 1.4, pS = 0.1620, d = 12, 7; = 7 = 0.01 andd = 12 with

e in the clamped-clamped beam casg,= 0.6, D = 107, z. = 0.05 (all modes were excited and the correlation
coefficient between pairs of modal components were equigl to

e in the clamped-free beam casg, = 0.3, D = 108, z. = 0.05 (all modes were excited and the correlation
coefficient between pairs of modal components were equigl to

In both cases, the equation (21) was solved using the fregusmplef. = 8000Hz, zero initial values and with; = 1,
T = 1 (which correspond to approximately four fundamental pigiof the smaller resonance frequency),= 40,
M = 1000 (number of independent events or trajectories).

In Figs. 1-3, the twelvd-mean KL modes obtained from the transient displacemetucitg and acceleration field,
respectively, are plotted for the two boundary conditiol@®n the left is the clamped-clamped, and on the right the
clamped-free case. For eaZhKL mode, the repartition of the modal energy is also givanbdth cases, the shapes of
the firstT-mean modes obtained from the displacement field look likked_NMs of the underlying linear system. On
the contrary, the last-mean modes obtained from the acceleration field look likenéoLNMs of the underlying linear
system. In this case, the contribution of these modes toataé énergy is very small. This behaviour is related to the
frequency repartiton energy wich differ from the displaestnfield to the acceleration field. Hence the modal analysis
based on KL theory applied to the velocity field or to the aeion field has to be manipulated carefully.

In Figs. 4, the four first modes, respectively, of the undedyinear clamped-clamped beam, the corresponding modes

obtained using th&-mean KL expansions of the transient diplacement resparfsbe non-linear system and those of
the equivalent linear system are compared. First of all, aveabserve that the POMs obtained with the two systems (the
non-linear and the equivalent linear system) are very aimilhe result which holds true when we are looking for the
stationary responses using the averaging operafignY seems to be reasonably true in the case of transient respons
using the averaging operatioR((,)). Of course, the proof of this concordance still needs todtaldished theoretically.
As mentioned above, the non-linear effect appears to be sigméicant in the first two modes, and to be less pronounced
in the higher order modes. We have also plotted, in thesesfiggeveral eigenvectors obtained from single realizatibn
displacement history. These modes were computed usingréiet thethod described in section 2.3 with the parameter
valueR = 1. The eigenvectors obviously differ from the POMs as wellragifthe LNMs. Depending on the realization,
the difference with respect to the POMs can be significart ksg. 4).

The same comments can be made for the clamped-free casadség F
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Figure 3. T-mean KL modes
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Figure 4. The four first modal functions (solid line) of limegdamped-clamped beam, the correspondiiighnean KL

modes obtained from the transient displacement field @ueF| (o), the corresponding’-mean KL modes obtained

from the equivalent linear systenx) and the corresponding modes obtained from POM analysisroéglisplacement
trajectories (dotted lines).
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Figure 5. The four first modal functions (solid line) of limedamped-free beam, the correspondifignean KL modes

obtained from the transient displacement field olefl’] (o), the correspondin@’-mean KL modes obtained from the

equivalent linear systemx() and the corresponding modes obtained from POM analysizméslisplacement trajectories
(dotted lines).
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5. CONCLUSION

In this present study, the randomly excited vibrating systesponses have been analyzed using the KL theory based
on an averaging operator involving time and ensemble aesrakhis approach permits the analysis of stationary resgson
as well as non-stationary responses. In the stationary ttase@pproach coincides with the classical KL theory.

The vibration analysis using-mean KL theory has been independently developed from g@atiement field, the
velocity field and the acceleration field. THemean KL modes obtained using displacement, velocity, oelacation
fields have been compared, and the relations betweé€h-thean KL modes and the Linear Normal Modes (LNM) have
been analyzed. Moreover, in the non-linear caset#mean KL modes have been compared tothemean KL modes
of the equivalent linear system obtained using the stadiklinearization method.
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