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Abstract. The aim of this work is to solve the quasi incompressible two-dimensional Navier-Stokes equations, by  
means of a stabilized Finite Element Method (FEM). The mass conservation equation is re-written in order to obtain  
a relationship between the pressure and velocity fields. This is carried out by taking into account the existing relation  
between the fluid bulk modulus, the density and the pressure field. The energy equation, in its turn, is decoupled from  
the complete set of conservation equations. The resulting system is discretized with the aid of a streamline-upwind-
Petrov-Galerkin Finite Element Method (SUPG). In this paper one makes use of a simple stabilization matrix. The  
numerical  results  obtained are  quite  consistent,  in  spite  of  the simplicity  of  the stabilization matrix   employed.  
Numerical examples are presented and comparisons are made for validation purposes.
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1. INTRODUCTION

The fully incompressible fluid does not exist in nature. Even if the specific volume variation of a fluid subjected to a 
hydrostatic stress field may be really tiny, such a variation must occur.

If the bulk modulus is considered, we will be able to re-write the continuity equation so that a relation between 
pressure and velocity may be obtained. This approach has already been done, amongst others, by Brooks and Hughes 
(1982). Turkel et al. (1994) employ preconditioning techniques towards reaching the steady state. In this work, the bulk 
modulus is introduced in a rather natural way. Such quasi incompressible approach makes it possible to deal with a 
complex  mathematical  problem without  losing  physical  significance  in  the  final  numerical  results.  This  modified 
continuity equation, together with the momentum equation, establish a possible mathematical model for treating quasi 
incompressible flows.

With  regard  to  the  stabilization  parameters,  it  is  employed  in  this  paper  a  quite  simple  form  for  them. 
Implementation of such simplified stabilizing terms avoids the use of numerical evaluation for them.

2. MATHEMATICAL BASIS

The incompressible Navier-Stokes equations in vector form are as follows:

  D u
Dt

=  f − ∇ p  ∇2u (1)

 ∇Tu = 0 (2)

where  is  density, D /Dt is the so-called material  derivative operator, f is  a  body force field,  ∇ is the 
gradient  operator, p is  pressure,  is  the  fluid  absolute  viscosity, u is  the  velocity  field, ∇T is  the 
divergence operator and ∇2 is the Laplacian operator.

The fluid bulk modulus, in its turn, may be defined as follows:
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k =
 p





  (3)

where p is pressure,  is density and  stands for variation.
If we take into consideration Eq. (3) and the fact that mass is conserved, we can re-write Eq. (2) as follows:

 
1
c2

∂ p
∂ t

 ∇T u = 0 (4)

where c is the speed of sound into the medium and t is time. 
Equations (1) and (4) constitute themselves into the momentum and mass conservation equations employed in this 

paper. Equations (1) and (4) can be re-written in the following advective-diffusive form:

 BU , t  ∂F k

∂ x k
− ∂D k

∂ x k
− Q = 0 (5)

with

 B = I nd×nd 0 nd×1

01×nd  1
c 2  (6)

where nd is the number of spatial dimensions;

 U = und×1

 p

  (7)

is the fluid state vector;
x k is the k−th component of the position vector x ;

 F k = AkU (8)

is the advective flux and A k is the k−th advective Jacobian, with A k = ∂F k /∂U and k = 1 to nd ;

 Dk = K U , xk
(9)

is the diffusive flux and K is the diffusive Jacobian:

 K =  I nd×nd 0nd×1

01×nd 0  (10)

where  is the kinematic viscosity of the fluid.
Vector Q is:

 Q =  f nd×1

0  (11)

In this work, it will be assumed that Q is negligible as compared  to the other terms in Eq. (5).
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In  addition  to  the  symbols  and  notation  introduced  by  Eqs.  (6)  through (11),  a  comma denotes  operation  of 
differentiation in Eq. (5). So, for instance, ,t denotes a derivative with respect to time.

Position vector x , with  components x k , k = 1 to nd , is defined in the spatial domain  , whereas 
time t is such that t ∈ ]0,T [ .

One must add the following initial and boundary conditions to Eq. (5):

 U t = 0  = U 0x  (12)

 U x , t  = U d , ∀  x , t  ∈ Gd (13)

where U d is a real vector such that U d ∈ ℝnd1×1 .
The last term in Eq. (13), namely Gd , stands for space-time boundary. The superscript d in Eq. (13) relates to 

the part of the boundary where the solution vector has been prescribed.
Consider now the following notations for the space-time domain R and its boundary G :

 R = ×]0,T [ (14)

 G = ×]0,T [ (15)

In Equation (15),  stands for spatial boundary.

3. FINITE ELEMENT FORMULATION

In this paper, the finite element notations and finite element methodology employed by Costa and Lyra (2005) will 
be adopted. 

Let the space-time domain R be partitioned, such that the following relation holds:

 Rn ≡ ∑
e=1

N e

 n
e × I n (16)

where  a  hat  on  top  of  a  letter  denotes  approximation, n stands  for  time  level  and N e stands  for  number  of 
elements. Furthermore, in Eq. (16)  n

e is an approximate partition of the spatial domain at time level n . In its 
turn, I n is a partition of the time sub-domain, as follows:

I n = ]tn ,t n1 [  (17)

We will  denote the spatial domain border and the element border as n and n
e ,  respectively. As for the 

space-time borders, they will be referred to as Gn and Gn
e .

Consider now the following sets of functions:

 S n
h = U ∣ U ∈ [C 0  Rn ]nd1

, U = U d ,∀ x ,t  ∈ G n
d (18)

 V n
h = W ∣ W ∈ [C 0  Rn ]nd1

, W = 0, ∀ x , t  ∈ Gn
d (19)

where S n
h is  the  discrete  set  of  so-called  trial  or  test  functions,  whereas V n

h is  a  discrete  space  of  so-called 
weighting functions.

It is considered in this paper the trial solution U as being constant in time inside each Rn
e as defined by Eq. 

(16). In so doing, an approximate variational formulation can be written with regard to Eq. (5). Such approximate 
variational formulation can be stated as:

within each Rn , find U ∈ S n
h such that for all W ∈ V n

h the following expression holds:
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∫
n

W T B U n1− U nd −∫
n

∫
t n

t n1 ∂W T

∂ t
U dt d

− ∫
t n

t n1

∫
n

∂W T

∂ x k
 F k− Dkd dt  ∫

t n

t n1

∫
 n

[W T  F k− Dknk ]d  dt ≡ 0

(20)

where nk is the k−th component of the unit outward normal vector to the boundary.
The SUPG weighting function W is to be written in the SUPG context as follows:

 W ≡ ∑
i=1

N

N i I nd1 × nd1  P ind1 ×nd1w ind1×1 (21)

where N stands for the number of nodes into which the spatial domain is divided, P i is the perturbation function,
w i is a vector of nodal constants and N i is a constant-in-time and linear-in-space shape function for the node i

.
In this work, we will make use of the P i form given by Hughes and Mallet (1986): 

 P i ≡ A k
∂N i

∂ x k
 (22)

Matrix  in Eq. (22) is the so-called matrix of intrinsic times in SUPG terminology. Employing the weighting 
function expressed by Eq. (21) with P i being given by Eq. (22), it is possible to reach the following approximate 
variational equation:

 

∫
n

N iB  U n1− U nd− t ∫
n

∂ N i

∂ x k
 F k− Dkd 

 t ∫
 n

N i  F k− Dk nk d t ∑
e=1

N e

∫
n

e

Ak
∂ N i

∂ x k
Ah

∂U
∂ xh

d ≡ 0

(23)

The usual FEM expansion is now re-called for expressing trial function U :

 U = ∑
j=1

N

N j u j (24)

where N j is a constant-in-time and linear-in-space shape function for the node j , N stands for the number of 
knots into which the spatial domain is divided and u j are constant nodal vectors.

Re-writing of Eq. (23) by considering Eq. (24) yields:

 

∫
n

N i N j B un1−und −t ∫
n

∂ N i

∂ x k
 F n1

k − Dn1 
k d 

 t ∫
 n

N i  F n1
k − D n1 

k nk d t ∑
e=1

N e

∫
n

e

Ak
∂ N i

∂ x k
Ah

∂ N j

∂ x h
un1d  ≡ 0

(25)

In Equation (25), subscripts k and h refer to the spatial co-ordinate, whereas i and j refer to the number 
of the node. Equation (25) can then be written in the following fashion:
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  un1  , u n = 0 (26)

where  is the functional on the left hand-side of Eq, (25). 
One possible way of solving Eq. (26) is by means of a  Predictor-Multicorrector algorithm. Such an algorithm 

enables us to obtain the solution at time level n1 , if we possess its value at time level n . This is possible via 
solution of a system of linear equations with the following form:

 
∂ u i

n1  , un
∂ ui

n1  u i1
n1 − u i

n1 ≈ − ui
n1 , un (27)

where  u i
 n1  is the  i− th guess on the solution  u n1  and  ui1

 n1  is its improved value obtained through 
solution of the linear system (27). 

The very first term on the left member of Eq. (27), i.e., the derivative of  with respect to u i
 n1  is a matrix 

which can be decomposed as a sum of elementary matrices as follows:

 
∂ ui

n1  , un
∂ ui

n1 = BaM e   t [ae  aPGe  a he ] (28)

where subscripts e stand for “element”.
As a standard procedure when operating in the context of the Finite Element Method, the computation of each term 

on the right member of Eq. (28) can be carried out in an elementwise fashion. If we denote the number of nodes in an 
element  by N c ,  then  the  resulting  element  matrices  on  the  right  member  of  Eq.  (28)  have  dimension
[N c×nd1]×[N c×nd1] . Furthermore, re-calling it is being used linear shape functions in this work, it may 

be written what follows:

 aM e i , j  = [∫
e

n

N i N j d ] I (29)

 a e i , j  = A k
∂N j

∂ x k
∫
e

n

N i d (30)

 aPGe i , j  = Ak 
∂ N i

∂ x k
Ah

∂ N j

∂ x h
∫
e

n

d (31)

 ahe i , j  =
∂ N i

∂ x k
K

∂N j

∂ xh
∫

e
n

d  (32)

To complete this formulation, we need to make the form of the  matrix explicit. The form of the  matrix 
used in this paper is the following:

  ≡ diag {11 , 22 , 33} (33)

where

 11 =
he

2 (34)

 22 =
he

2
1

∣ue2∣  2
1
2

(35)
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 (36)

33 =
he

2
1

∣ue2∣  1 
1
2

where he is a characteristic dimension of the element which can be, for two-dimensional problems, the square root of 
the element area. As for ∣ue∣ , it stands for the euclidean norm of the element velocity vector ue .

4. NUMERICAL RESULTS

The problem of the lid-driven cavity was used as a test for the formulation presented in the previous section. Figure 
(3) depicts the cavity in itself as well as the mesh employed for simulating its flows.

In Figure (3), left, u denotes the magnitude of the lid velocity vector, which was taken as  u = 1 m / s in this 
work.  With  regard  to  the  co-ordinate  system  shown  in  Fig.  (3),  left,  the  lid  velocity  vector  has  the  form
u = [u ,0,0]T . This is precisely the boundary condition regarding region A in Fig. (3), left. As for regions B, C and 

D of  Fig.(3),  left,  the  boundary  condition  is  that  of  non-slipping  one,  i.e.,  u = 0 m /s .  The  final  boundary 
condition involves pressure and is  p  x = 0.5m , y = 0m  = 0 N /m2 .  The initial condition, in its turn, was 
taken as p t = 0 s = 0 N /m2 and u t = 0 s = 0 m /s . There should be noticed that there is a singularity 
on both left  and right  top corners of  the cavity  with respect  to  the definitions  of velocity.  To circumvent such a 
difficulty, we deal with such a singularity in this paper just as, for instance, Lyra (1994) or Costa (2004) did. It was then 
prescribed a linear velocity distribution for those top corners regions. If we use linear-in-space shape functions, as it is 
the  case  in  this  paper,  assumption  of  a  linear  velocity  distribution  for  the  regions  described  above  amounts  to 
prescribing the velocity vector on both left and right top corners of the cavity as u = [u ,0,0]T . With regard to the 
knots placed on the vertical walls of the cavity, namely regions B and D, and right below the top corner knots, it was 
prescribed  velocity  vector  as  u = 0 m /s .   The  problem mesh  can  be  seen  in  Fig.  (1),  right.  The  uniform, 
unstructured mesh seen in Fig. (1), right, contained 5227 linear triangular elements and 2712 nodes. The reference 
literature employed for purposes of comparison was Ghia et al. (1982). 

We  simulated  flows  with  three  different   Reynolds  numbers,  namely Re = 100 , Re = 1000 and
Re = 5000 . Plots were done where we can see the value of the u2 component of the velocity field as a function 

of  the  abcissa x for  ordinate y being  kept  constant  and  equal  to 0.5 m for  each of  the  Reynolds  numbers 
considered. Likewise, plots were drawn where we can see the value of the u1 component of the velocity field as a 
function  of  the  ordinate y for  abcissa x being  kept  constant  and  equal  to 0.5 m for  each  of  the  Reynolds 
numbers considered. Figures (2) through (4) show such plots.

Figure 1: Cavity sketch (left) and its related mesh (right).(out of scale)
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In Figs. (2) through (4), the small-sized, colored circles represent the values obtained by Ghia et al. (1982). Curves 
in black represent the data obtained in this work. As it can be seen from Figs.(2) through (4), there was good agreement 
between the results published by Ghia et al. (1982) and ours, for all the Reynolds numbers considered. Figure (5) shows 
the pressure isolines obtained in this work for the considered Reynolds numbers.

Figure 2: Lid driven cavity - Reynolds 100

Figura 3: Lid driven cavity - Reynolds 1000

Figure 4: Lid driven cavity - Reynolds 5000
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5. CONCLUSIONS

An SUPG Finite Element Method was shown to solve the quasi incompressible Navier-Stokes equations. Although 
the stabilizing matrix presented was quite simple, the numerical results showed the robustness of the formulation to 
cope with rather  complex problems such the lid  driven cavity  one.  Further  work might  address,  for  instance,  the 
description of  turbulence for quasi incompressible fluid flows.
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Figure 5: Lid driven cavity - pressure isolines for Re = 100 (a), Re = 1000 (b) and for Re = 5000 (c) 


