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Abstract. The application of the dual boundary element method (DBEv)He analysis of cracks in shear deformable
plates, is presented. Equations for the DBEM, includingdhrect boundary and the traction boundary equation for
Reissner plates, were established. Taylor expansionshioa with Telles transformation and element sub-division
were used to deal with hypersingular kernels arising in tilaetion equation. Continuity conditions for the existeiode
Haddamard and Holder principal-value integrals are dissed. The stress intensity factors (SIF) were calculed using
the crack surface displacements extrapolation. A gene@tlc modelling strategy is presented and implemented in
MATLAB™. Test problems, including comparisons to reported sohstj@re presented. Results demonstrate that DBEM
is a reliable method for fracture mechanics analysis in @laénding problems.
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1. INTRODUCTION

The Finite Element Method (FEM) has been extensively usethfoanalysis of fracture problems, mainly due to its
generality. In the case of laminar structures FEM analgstairied out developing plate elements based on the Kifthho
or Reissner-Mindlin plate theories. However, this gernigrabuld introduce expensive computational costs, mainly
problems that involve stress field singularities (like #aésund near to the crack tip) that requires very fine disafitn
around of the singular point. The Boundary Element MethddNB is an atractive numerical alternative to treat fracture
problems, mainly to its ability to model continuously higiness gradients without the need of domain discretization.
Additionaly crack propagation problems can be analisedi wiinple techniques that only require aditional elements at
crack frontand incremental solvers. The use of this methatructural analysis has strongly increased since 80b (e
and Dominguez(1989)).

At present, the BEM analysis of Reissner’s plates is basddmiamental solutions developed using thénénder
method as presented on the work of Vander ¥#£982). Rashed, Aliabadi and Brebbia(1999) presentsyperkin-
gular boundary element formulation for plate bending asialpased on the Reissner’s theory. In this work, first order
Taylor expansion was used to deal with the strong singyjavtiereas rigid body considerations, together with thddray
expansion, were used to compute the hypersingular kerivéés, Aliabadi and Young(2003) presents the analysis of
stiffened cracked plates using the dual boundary elemetitadgéDBEM). In this work rectangular stiffened plate con-
taining a single crack and double cracks were analized ukiagnethod. In the work of Dirgantara and Aliabadi(2001)
the dual boundary element formulation for fracture mecteaanalysis of shear deformable shells, was presented. Shel
formulation was formed by coupling boundary element foratioh for shear deformable plate and two-dimensional plane
stress elasticity. Recently, Guimasaand Telles(2007), presents a numerical Green’s funtamique for crack analy-
sis in Reissner’s plates. The technique produces a platirfipfundamental Green’s function that automaticallyirigs
embedded cracks to be used in the classical boundary elenstinod.

This work presents the Dual Boundary Element Method appbealate fracture analysis considering bending mo-
ments and shear forces. The hypersingular equations fesfai's plate bending are developed obtaining the traction
equations. Different types of singularities that appeathése equations and their treatment using the Taylorssexie
pansion methodology are identify. The dual boundary eléemethod is presented for the treatment of fracture meckanic
problems and a general methodology is expossed. Finadlysttiess intensity factors for bending problems are defined.
Numerical examples are presented and preliminary corwigsire stablished.

2. REISSNER’SPLATE EQUATIONS

Consider an arbitrary plate of thicknegswith a domainQ? and boundary' in the z;; space. The;; — z, plane is
assumed to be located at the middle surface- 0. The generalized displacements are denoted; agherew, denotes
rotations (.1 ande,») andws denotes the transverse deflectioifsee Rashed(1999)).

The equilibrium equations can be formed by considering theélierium of a typical differental plate element under
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uniform loadq (per unit area), as regarded positive when applied inctheirection. The equilibrium of moments about
thex; andz, axis and the equilibrium of forces in thg direction can be written as follows:

aﬁ o Qoz =0 (1)
Qa,a +q=0 (2)

The stress resultant-strain relationships are derivetjubie basic minimun principle for the stresses as presémted
Reissner(1947). The resultant tensor momégpgk and the normal shear vectQy, is given by:

2v
Mag = D— <2Xa6 + 1= UXVV(SQB) 3)
1—wv
Qa = D (4)
where:

2XaB = Wa,8 + Wp,a
Yo = Wo + W3 (5)

D represents the flexural rigity,is th poisson’s ratioy s is the curvature tensor ang, are the transversal shear strains.
Equation (4) represents the generalised Hooke’s law fasdRer’s plates.

3. BOUNDARY INTEGRAL FORMULATION FOR REISSNER PLATES

The integral equation can be derived by considering thgiateepresentation of equations (1) and (2) via the follow-
ing integral identity:

/KMwﬁ—@@wz+a%ﬂ+mwzmn:o (6)
Q

whereW; (i = «,3) are weighting functions. Integrating by parts and makisg of the relationships in Eq.(4) and
applying the Green’s second identity for th&, 3 integral gives (see Dirgantara and Aliabadi(2001)):

* * * v *
/ (I/VJ pj — Pg ’lUj) dr + / |:W3 + ng,g qu
r Q

+ / (M55 — Q%) wa + Qf yws]d = 0 @)

Q

This equation represents the generalized Betti’s recadtbeorem for Reissner plates; It has to be noted that thghtieg

functions can be chosen to represents arbitrarily statis.stéte is defined for concentrated generalised loads: éwdihg

moments{ = « = 1,2) and one concentrated shear force< 3) at an arbitrary poink’ € 2. By chosing weighting
function as:

M55 (x',x) —Qf, (x',x) = —0(x',x)0din
Q:a,oz (XI’ X) = -4 (le X) 6i3 (8)

and making use of the Dirac delta properfy& x', x) w; (x) dQ =w; (x'), equation (7) can be written as:

ey () w3 () + [ P (¢ )y (< ﬂ*/ - (x',%) pj (x') dT

r
+ / < 5 030~ 3 Wi (x',x))qdﬂ )
Q

wherec;;(x') are the jump terms arising from the terms(af1/r) in the kernelP;;, W (x', x) and P} (x', x) are the
two-point fundamental solution kernels for the displacetaend the tractions respectlvely It represents the alispl
ment or the tractions at the poixin the directionj due to unit Ioad applied at collocation pokitat the directioni. The

expressions for these kernels are given by Vanderew@®d82). W is a weakly singular ané;’; has a strong (Cauchy
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Figure 1.General quadratic element

principal value) singularity)(1/r). Equation (9) represent three integral equations (#w,(2) for rotations and one for
deflection).

The domain integral in Eqg.(9) can be transferred to the banngby applying the divergence theorem), in the case of
a uniform load § = constant) to give:

*(xx) — — W (! -
/ (WiS (X 7X) (1 . 1}) A2 Wla,oz (X 7X)> qu
Q

v *

Q/ <Vvi’a (XI, X) - me (Xl, X)) nadI‘ (10)
T

whereV;* are the particular solutions of the equatigty,, = W ;3. According with Mindlin, the termw/((1 — v)A\?) has

negligible contribution to the results. This term will benayed in this work.

4. BOUNDARY ELEMENT DISCRETISATION

The analytical solution of the integral Eq.(9) is difficuitem for a simple plate problem. Therefore, the numerical
solution can be considered. In this work, the boundary h&etdiscretised intdV, elements, over which the unknows
are approximated to vary quadratically using quadraticatiinuos elements. After the discretization, Eq.(9) can b
rewritten as:

N. 3 +1
i () wi (<) + 3 3wt [ Py (e x(€) 87 () 7 (€) de
N. 3 +1 N. _+1
=Y [ W x (@) 8 © 5 (©de +a Y [ Vi (€ x () ma (€) T (©)de (11)

whereJ is the jacobian of the transformation afds the element shape function. For a general quadratic elewesas
shown in Fig.1 we have:

1gy _ 1 _z
@ (f)—z(z_g)f(ﬁ ¢) (12)
2 _i _F _ 7
(O == (-0 (¢-9) (13)
3¢y 1 _z
@ (f)—g(g_g)f(ﬁ ) (14)
and
7€) = Az (£) Oz (§) (15)
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Ny (€) = —— €a (16)
©=79 0

wheree, g3 is the permutation symbol. After performing the collocatfrocess, Eq.(11) can be written as follows:
Hw=Gp+Q (17)

The influence matrixa and the load vecta® contains weakly singular kernels, which can be cancell@jusnon-
linear coordinate transformation (Telles(1987)). In &iddi, for better numerical accuracy a suitable number ahelet
sub divisions along with the non-linear transformatiorn Wé used in this work. On the other hand, The influence matrix
H, contains a strongly singular kernel, which can be evatlisidirectly be expressing that the free stress problemtsdmi
non-trivial solutions which are arbitrary combinationglufee basic rigid-body displacements (see VanderdW@®82)):

w, = C, Wy = 0,’[1)3 = —CT'l
w, = 0,71)2 = C, w3 = —CT‘l
w1 = 0,11)2 = 0,11)3 = C (18)

whereC' is an arbitrary constant. In this way one obtains:

cig(x') = — / [P:B (x',x) + rgP;s (x',x)] dT
ciz(x') = — | P3(x',x)dl (19)
/

5. HYPERSINGULAR FORMULATION FOR REISSNER’S PLATES

The stress resultants at boundary paeihtan be evaluated from Eqgs.11, by using the resultant stliepfacement
relationships (see Rashed, Aliabadi and Brebbia(199&)).aFsource point on a smooth boundary, the traction integral
equations are obtained as follows:

%pa (x") 4+ no(X) / P}, (x',x) wy (x) dl 4 ng (x') / Pys (x', %) w3 (x) dT
r

_ / 430 (%) py (3) dT + g (x / 3 (', ) py () dT

1 *
+ 7 e (x')/T/Vo(ﬁ3 (x', %) qzdA (20)

-p3 (x') + / a5 (X', X) Wy (X) dD + ng (x 73 ( w3 (x) dT’

F o[ e
[

= /W357 x',x) py (x)dl + nq (x 353 (X', %) p3 (x) dT
r

+ _na( ) W3gs (x', %) gdA (21)

whereng is the the outward normal at the source point.

In these equations, the singularity order is higher thandibplacement integral equations. In th¢] [matrix, the
kernelsP;; andFPj; are strongly singular, whereas, th_e kerr@@v and P35, are hypersingular. In the off-diagonal
sub-matrices, the shape functions will reduce the ordemgfusarity by one. This means that, elements entrieddh [
matrix corresponding to the kerndty ;; andP;;., become smooth, whereas, elements of the kedgls and P, still
remain stringly singular (Dirgantara and Aliabadi(2001)) [G] matrix, the off-diagonal sub-matrices are smooth again
due to the shape functions reducing the order of singulartig diagonal matrices, on the other hand, contain the lerne
W335 andWy ;. which are weakly singular and the&; ;. andW;, which are strongly singular. Weak singularities are

treated using a nonlinear coordinate transformation aglie§(1989). Strong-singular and the hypersingular iratisgare
evaluated using Taylor series expansion around the singaiat.
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Figure 2.Crack tip element

6. CRACK MODELLING STRATEGY

The finite-part integral of first order, in the displacememni&tions, requires continuity of the displacement comptme
at the nodes: any continuos or discontinuos boundary elesagisfies this requirement. In the tractions, the finite-pa
integral of second order requires continuity of the dispiaent derivatives at the nodes, on a smooth boundary. Then,
discontinuous quadratic boundary elements can be used.géieral modelling strategy implemented in this work is
based closely to that used by (Dirgantara and Aliabadi(20@hd can be summarized as follows:

e (i) The crack boundaries are modelled with discontinuosigatic flat elements.
e (i) The displacement equations is applied for collocatorone of the crack surfaces
e (iii) The traction equations is applied for collocation dwetopposite surface.

¢ (iv) discontinuos quadratic flat elements are used alongemaining boundary of the body.
7. STRESSINTENSITY FACTOR EVALUATION

For plate problems, considering bending and plane tensienstress intensity factors can be represented by three
stress intensity factors (SIF’s), due to bending and slhoeatd. In terms of displacements on the crack surfaces they ca
be written as:

1
K} =—=C{A 22
{K} 7 {Aw} (22)
whereK is a vector containing the stress intensity factors amdcontains displacements and rotatios. Using the extrap-
olation technique and discontinuos quadratic boundampetes for modeling crack surfaces, SIF can be calculated as
(see Fig. 2):

{K}tip _ raar <{K}BB _I'BB’ {K}AA’> (23)
TAA" —TBB’ TAA

8. NUMERICAL EXAMPLES
8.1 Platewith acentral crack loaded by bending and tension

A rectangular plate with a central crack loaded by edge lmgndind tension is analyzed (see Fig.3. The properties
of the plate areb/h = 2; ¢/b = 2; M, = 1.0N.m; t = b/10, E = 210000M Pa andv = 0.3. For DBEM analysis,
32 boundary elements for plate border and 16 discontinuadrgtic elements for each faces of the crack has been used
(see Fig.3). Table 1 shows SIF faf, factor for differents:/b relations. The DBEM results show good agreement when
compared with those obtained by Dirgantara and Aliaba@i{20

Table 1.K7, stress intensity factor for rectangular plate with certratk

a/b Kyy/M,\/ma - BEM K1y /M,\/ma - Ref.[2] % error

0.1 0.993 0.995 0.20
0.2 0.992 0.990 0.20
0.4 0.845 0.850 0.59
0.6 0.095 0.100 0.50

0.8 0.134 0.135 0.74
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Figure 3. Left: DBEM model for rectangular plate with cethtiaack right: Displacement distribution

Figure 4. Left: DBEM for Simply supported square plate witbestral crack right: Displacement distribution

8.2 Squareplatewith a center crack: uniform pressure

A simply supported square plate with a central crack loageahiform pressurg, = 1.0 is analyzed. The properties
of the plate ared = 1; b/h = 2; E/p, = 1000 andv = 0.3. DBEM contains 4 elements per side of the plate and
16 elements for each crack surface as shown in Fig. 4. Tabfe®ssSIF forK, factor for differentsa/b relations.
DBEM results show good agreement when compared with thaséneld in the literature. Bending deflection distribution
is showed in Fig.4.

Table 2. K, stress intensity factor for square plate with central crack

a/b K11/pob*\/ma - BEM K1p/p.b*\/ma - Ref.[2] % error

0.1 0.149 0.150 0.67
0.2 0.139 0.138 0.72
0.4 0.120 0.119 0.84
0.6 0.099 0.098 1.02
0.8 0.061 0.060 1.67

9. CONCLUSIONS

The Dual Boundary Element Method applied to plate fractaadyssis considering bending moments and shear forces
was presented. The hypersingular for Reissner’s plates stablish. Different types of singularities arising in the



Procedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasilia, DF

displacement and traction equations has been identify lemddylor's expansion technique was used to threated it. A
general metodology for application of the dual boundarynelet method was presented. Numerical examples shows a
good agreement for SIF’s calculated with those reporteberiterature.
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