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Abstract. The mesh influence for the solution of compressible flows with two explicit schemes is presented. The 
investigations measured the order of accuracy, absolute error and the computational cost with structured and 
unstructured meshes. Two explicit Taylor-Galerkin schemes (one-step and two-step) with a linear tetrahedral and tri-
linear hexahedral elements are employed to analyze the fluid flow. Finally, some numerical analyses in inviscid and 
viscous flows are discussed. This article includes a reflection of an oblique shock and a viscous flow over an airfoil. 
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1. INTRODUCTION  
 

The rapid growth in the power and availability of computers in recent years has led to the development of  many 
schemes for solving the Euler and Navier-Stokes equations successfully, and as a result numerical simulations are 
beginning to complement or even replace experimental measurement. In the aerospace industry today Computational 
Fluid Dynamics (CFD) plays an increasingly important role as a tool for design and analysis. 

Computational methods are continuously being required to deliver more accurate solutions for more complex 
realistic configurations at lower computational cost. Traditionally, structured mesh (quadrilateral or hexahedral 
elements) approach have been employed to discretize the computational domain. The natural ordering of 
quadrilateral/hexahedral elements enables the construction of very efficient numerical algorithms for solving the flow 
equations. While amenable to algorithmic efficiency, structured mesh are inherently difficult for discretizing complex 
geometries. Unstructured mesh methods originally emerged as a viable alternative to the structured mesh techniques for 
discretizing complex geometries. In unstructured meshes triangular elements in two dimensions and tetrahedral 
elements in three-dimensions are used. This not only provides greater flexibility for discretizing complex domains but 
also enables straightforward implementation of adaptive techniques where node may be added or deleted, while mesh 
connectivity is updated locally, in order to enhance solution accuracy. 

The choice of the type of mesh element to be employed in the aerospace and aeronautical problems depends on the 
delivered accuracy, efficiency, and flexibility of the numerical solver. A two dimensional study by Aftosmis et al. 
(1994) observed little difference in accuracy between equivalent meshes of quadrilateral and triangular elements. 
Hexahedral meshes have a better accuracy than the tetrahedral meshes in three dimensional experiments (Baker, 2005).  

The time integration, for instance, can be performed in one of the two classical approaches, explicit or implicit 
techniques. Implicit methods are computationally more expensive, but have less stringent stability bounds. Explicit 
methods are relatively simple to code and implemented, and are easily cast in a form suitable for efficient 
parallelization. They require less memory than implicit methods, since only one flow field solution needs to be stored at 
a time.  

In the current work, two explicit Taylor-Galerkin schemes for solving the Euler and Navier-Stokes equations in the 
context of structured and unstructured meshes are investigated. The present comparison intends to emphasize important 
features of these numerical schemes and elements. The tests include the reflection of an oblique shock for which there 
exists a closed-form solution to the compressible Euler equations, as well as the laminar transonic flow past an airfoil.  
 
2. THE GOVERNING EQUATIONS 
 

Let sdnΩ R⊂ and (0,T) be the spatial and temporal domains, respectively, where nsd = 3 is the number of space 
dimensions, and let Γ denote the boundary of Ω. The spatial and temporal coordinates are denoted by x and t. We 
consider the conservation law form of the Navier-Stokes equations governing unsteady compressible flows with no 
source terms: 
 



0i i

i it x x
∂ ∂∂

+ + =
∂ ∂ ∂

F GU
 (1) 

 
where U is the unknown vector of the conservation variables, Fi and Gi are, respectively, the inviscid and viscous flux 
vectors given by 
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with i, j = 1,2,3. Here vi is the velocity component in the direction of the coordinate xi, ρ is the specific mass, p is the 
thermodynamic pressure, τij are the components of the viscous stress tensor, qj is the heat flux vector, e is the total 
specific energy and δij is the Kronecker delta function. 

For a calorically perfect gas, the equation of state and internal energy i are given by the following equations 
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where T is the temperature and p vc cγ =  with cp and cv being the specific heat coefficients at constant pressure and 
constant volume, respectively. The viscous stress tensor τij  and the heat flux vector qj are defined as 
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where k = 1,2,3. Here kij represents the components of the conductivity tensor, λ and µ are the volumetric and dynamic 
viscosity coefficients, respectively. The dynamic viscosity and coefficient of thermal conductivity depend an 
temperature and therefore are modeled using Sutherland’s law (White, 1974) 
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where Tref is the temperature reference and Sµ = 110 K and Sk = 194 K for atmospheric air. 

Initial and boundary conditions must be added to Eqs. (1)-(2) in order to define uniquely the problem. 
 
3. A TAYLOR-GALERKIN FORMULATION 
 

The numerical scheme is obtained expanding in Taylor series the governing equation and applying after the space 
discretization process, using the Finite Element Method (FEM) in the context of the classical Bubnov-Galerkin scheme. 
This approach can be interpreted as the finite element version of the Lax-Wendroff scheme used in finite differences. 
Two schemes for explicit time integration (one-step and two-step methods) are investigated for solving the 
compressible inviscid/viscous flow problems. 

This temporal integration provides second-order accuracy for time derivative. The formulation exclusively employs 
tetrahedral and hexahedral finite elements which provide second-order spatial accuracy. Linear unstructured finite 
elements were chosen because they can be easily generated for complex geometries and exactly integrated without 
numerical quadrature. To obtain important savings in CPU time and computer memory, an analytical evaluation of the 
eight node hexahedral element matrices was performed. 
 
3.1. Time discretization: The one-step scheme 
 

The one-step scheme is similar to that presented by Donea (1984). Expanding the conservation variables U at 
1nt t +=  in Taylor series including the first and second derivatives, resulting in 
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with 1 1n n n+ +∆ = −U U U , being s1 and s2 the implicitness parameters defined such that 
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Substituting Eqs. (7) and (8) into Eq. (6), and adopting 1 2 1 2s s= = , the following expression is obtained 
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Substituting Eq. (1) and its second derivative into Eq. (9), and neglecting high-order terms, we obtain 
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where I is an iteration counter, iA  is the convection Jacobian defined as i i= ∂ ∂A F U (Hughes and Tezduyar, 1984), 

1 1n n n
i i i

+ +∆ = −F F F  and 1 1n n n
i i i

+ +∆ = −G G G . 
In expression (10), the variables at time level n+1 are involved in the left and right sides of the equation, therefore it 

is necessary to use an iterative scheme. 
 
3.2. Time discretization: The two-step scheme 
 

The two-step scheme is similar to that presented by Kawahara and Hirano (1983). In the first step, corresponding to 
the time interval [ 1 2,n nt t + ], the unknown vector U at 1 2nt t +=  is expanded in Taylor series, resulting in 
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with 1 2 1 2n n n+ +∆ = −U U U . Substituting Eq. (1) and its second derivative into Eq. (11), and neglecting high-order terms, 
gives 
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In the second step, U at time 1nt +  is determined by expanding Eq. (1) in Taylor series, obtaining the following 

expression 
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with 1 1n n n+ +∆ = −U U U . Substituting Eq. (1) and its second derivative into Eq. (13), and neglecting high-order terms,  
the following expression is obtained 
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where the convection Jacobian iA  is defined as i i= ∂ ∂A F U (Hughes and Tezduyar, 1984).  
 
3.3. Spatial discretization 
 

Applying the classical Bubnov-Galerkin weighted residual method in the context of the FEM to Eq. (10), for the 
one-step scheme, and Eqs. (12) and (14), for the two-step scheme, the spatial discretization are obtained. The 
computational domain was divided into a finite number of tri-linear hexahedral elements (structured mesh) or linear 
tetrahedral elements (unstructured mesh). The consistent mass matrix is substituted by the lumped mass matrix and then 
these equations are solved with an explicit scheme.  

The proposed schemes are conditionally stable, and the local stability condition for element E is given by 
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where LE is a characteristic dimension of the element, a is the sound speed and δ is a safety coefficient (in this work the 
coefficient adopted were δ = 0.1 or 0.3).  

In order to stabilize the solution numerically, specially in the presence of strong shocks, it is necessary to add 
numerical damping to the flow solver. An artificial viscosity model, as proposed by Argyris et al. (1989), is used due to 
its simplicity and efficiency in terms of CPU time. An artificial viscosity is added explicitly to the non-smoothed 
solution as follows 
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where LM  is the assembled lumped mass matrix, 1n

s
+U  and 1n+U  are the smoothed and non-smoothed solutions at 

t t+ ∆ , respectively. The vector D is given by 
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where ele is an index referred to a specific element, CFL Et t= ∆ ∆  is the local Courant-Friedrichs-Lewy number, CAF 
is an artificial damping coefficient given by the user, Sele is a pressure sensor at element level obtained as an average of 
nodal values Si. Values of Si are components of the following assembled global vector 
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where p is the pressure vector of a specific element, the bars indicate that absolute values of the corresponding terms 
must be taken and, finally, M is the consistent mass matrix at element level. 

The constant CAF must be specified with care in order to avoid interferences of artificial and physical viscosities. In 
this work 0.8 CAF 1.0≤ ≤  were adopted. 
 
4. NUMERICAL EXAMPLES 
 

In this section two examples are presented in order to evaluate the accuracy, the capability and the performance of 
the two explicit Taylor-Galerkin schemes in the context of structured / unstructured meshes applied to the solution of 
compressible inviscid and viscous problems.  

Finally, it is assumed that the fluid has a specific heat ratio and a constant Prandtl number equal to 1.4 and 0.72, 
respectively.  
 
4.1. Reflection of an oblique shock in a inviscid flow 
 

The rectangular domain { }0 4.10, 0 1.0x y≤ ≤ ≤ ≤  and boundary conditions of this problem are shown in Fig. 1. 
Along the inflow ABC all variables are fixed; zero normal velocity is imposed at the wall (AD) and along CD all 
variables are left free. The exact solution is formed by an incident shock with angle 29 º and a reflected shock with 
angle 23.28 º. The solution after the second shock is: 2.687ρ = ; 2.934p = ; 1.942M = ; 1 2.401v =  and 2 3 0v v= = . 
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Figure 1. Reflection of an oblique shock and boundary conditions 
 

Four uniform meshes M1, M2, M3 and M4 consisting of 21 x11x 2 , 41 x 21x 2 , 61 x 31x 2  and 81 x 41x 2  nodes, 
respectively were considered. The meshes with hexahedral elements contains 200, 800, 1800 and 3200 elements and the 
meshes with tetrahedral 1000, 4000, 9000 and 16000 elements, respectively. The mesh with tetrahedral is obtained by 
subdividing each hexahedral element into five tetrahedral elements.  

In Figure 2 the meshes with hexahedral and tetrahedral elements, respectively, are shown. 
 

 
 

Figure 2. Meshes with hexahedral and tetrahedral elements 
 

Figures 3 and 4 show the specific mass at y = 0.25 obtained with the four meshes of  hexahedral (H) / tetrahedral (T) 
elements with the one-step and with the two-step (P2) schemes.  

The results for hexahedral meshes exhibit a good agreement with exact solutions and numerical results reported in 
Shakib et al. (1991). A small oscillation in the vicinity of the second shock is observed when tetrahedral meshes are 
used. Also, these tetrahedral meshes fail to give an exact specific mass behind the second shock. In the mesh M4 only 
the tetrahedral mesh with one-step scheme overestimate the specific mass. 

The accuracy of the numerical solution for the problem is measured by the average error defined in the L1 norm and 
the L2 norm. For specific mass, the two norms are given by 
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where ρ e represents the exact solution while and nno is the number of nodes. 
 



 
 

Figure 3. Comparison between exact solution and numerical results of the specific mass along the line y = 0.25 for mesh 
M1 and M2 

 

 
 

Figure 4. Comparison between exact solution and numerical results of the specific mass along the line y = 0.25 for mesh 
M3 and M4 

 
In the error convergence study, we presents plots of ( )1log L Ω  and ( )2log L Ω  versus ( )log h . The results for the 

specific mass are presented in Fig. 5 for hexahedral / tetrahedral elements with the one-step and the two-step schemes. 
Analyzing Fig. 5 it is observed that the error decreases as the grid size decreases. The average mesh density h for the 
hexahedral and tetrahedral meshes is defined as ( )1 31h nno= . 
 

 
 

Figure 5. Convergence study for the reflection of an oblique shock problem 
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In structured meshes a two-step scheme is slightly less accurate than the one-step scheme, while in unstructured 

meshes a one-step scheme is slightly less accurate than the two-step scheme. Finally, we point out that hexahedral 
elements have better accuracy than tetrahedral elements. The error is lower for hexahedral elements, independent of the 
finite element mesh. 

The asymptotic convergence rate of errors, given in Table 1, which is measured over the two finest meshes, is just 
slightly less than 2.0 for ( )1L Ω  norm. Note, however, that the order of convergence is slightly over 2.0 for ( )2L Ω  
norm. This is indeed consistent with the second-order accuracy of the spatial discretization that was used. 
 

Table 1. Order of convergence for the example of the reflection of an oblique shock problem. 
 

element / scheme L1 L2 
H 1.378 2.257 

HP2 1.213 2.241 
T 1.715 2.588 

TP2 1.907 2.470 
 
 
4.2. Transonic viscous flow around an airfoil 
 

To investigate these schemes in viscous flows and the influence of different type of elements, the flow around a 
NACA 0012 airfoil is computed. The flow is specified by 0.80M∞ = , the viscosity by Re = 500 and an angle of attack 
is equal to 10 deg. With these conditions, a separation bubble extends over more than an half of the upper surface. The 
airfoil wall is assumed to be adiabatic, and non-slip condition is specified for the velocity on the surface of the airfoil. 

Solutions were obtained for three meshes consisting of 19680, 27860 and 40450 nodes, respectively. The meshes 
with hexahedral elements have 9600, 13600 and 19800 elements meanwhile the meshes with tetrahedral have 48000, 
68000 and 99000 elements, respectively. The mesh with tetrahedrals is obtained by subdividing each hexahedral into 
five tetrahedrals. 

A sample of Mach number contours and the streamlines at the mesh with 27860 nodes and 68000 tetrahedrals using 
the one-step scheme is shown in Fig. 6.  
 

 
 

Figure 6. Mach number contours on the mesh with 27860 nodes and 68000 tetrahedral elements for the NACA 0012 
airfoil 

 
Contours of pressure for the mesh with 19680 nodes and 9600 hexahedrals using the one-step and two-step schemes 

are shown in Fig. 7-a and Fig. 7-b. Both solutions are very similar and agree with those reported in Tang and Hafez 
(2001). A comparison of the pressure coefficient distributions obtained from the finest meshes with hexahedral and 
tetrahedral elements using the one-step scheme are plotted in Fig. 8. The results obtained are practically coincident with 
those reporter by Hafez and Wahba (2007). 



 

 
 

Figure 7. Contours of pressure on the mesh with hexahedral elements for the NACA 0012 airfoil using the one-step and 
two-step schemes (a and b, respectively) 

 

 
 

Figure 8. Coefficient of pressure distribution over a NACA 0012 airfoil, compared with result obtained by Hafez and 
Wahba (2007) 

 
The behavior of the drag and lift coefficients with grid refinement on the hexahedral (H) and tetrahedral (T) meshes 

and the one-step / two-step (P2) schemes are plotted in Fig. 9, in order to further quantify the accuracy level of the 
computed pressure distribution. 

The drag and lift coefficients obtained by Forsyth and Jiang (1997) ranged between 0.2430 0.2868dC≤ ≤  and 
0.4145 0.5170lC≤ ≤ , respectively. The mesh with tetrahedral elements using the two-step scheme underpredicts the 
drag and lift coefficients compared with the same meshes using the one-step scheme.  
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Figure 9. Variations of the drag and lift coefficients for the transonic viscous flow around a NACA 0012 airfoil 
 
5. CONCLUSION 
 

This paper emphasizes the accuracy and the efficiency of two explicit Taylor-Galerkin schemes in the context of 
meshes with hexahedral and tetrahedral elements. A comparison among the one-step and two-step scheme using 
hexahedral and tetrahedral elements leads to the following conclusions: (a) Simulations with meshes employing 
hexahedral elements, using either the one-step or the two-step scheme, are more accurate and robust in both example 
studied here, with respect to results employing meshes of tetrahedral elements; (b) In structured meshes a two-step 
scheme is slightly less accurate than the one-step scheme, while in unstructured meshes a one-step scheme is slightly 
less accurate than the two-step scheme, for non-viscous flow problem; (c) Simulations with meshes employing 
tetrahedral elements using the two-step scheme is the most inaccurate in the case of the transonic viscous flow. Clearly, 
the artificial viscosity plays a fundamental role in the accuracy. The one-step scheme is less diffusive than the two-step 
scheme allowing to take a smaller value of the coefficient CAF in Eq. (17).  

As in the one-step scheme some vectors and matrices are stored to avoid their calculation during the iterative 
process, the two-step scheme requires less memory (approximately 75 % with respect to the one-step scheme) but it 
demands more processing time. 

In spite of the conclusions given previously, it is necessary to take into account that meshes with tetrahedral 
elements are more suitable for complex geometries. Another important subject is mesh adaption, which is an essential 
tool to obtain accurate results in problems involving, for example, strong shock waves, as in the first application (the 
inviscid flow). Adaptive meshes will be considered in future works. 
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