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Abstract. One of the key issues regarding Large-Eddy Simulations \liE8e modeling of the interaction between
the resolved and unresolved scales. The spatially filteradex-Stokes equation describing the evolution of thedarg
scales includes a term representing that interaction, mfthrm of a divergence of a tensor, which cannot be closed and
therefore must be modeled. Two possibilities have beensix&dy explored in the literature: while structural sulyr
modeling strives to predict as accurately as possible teasor, functional modeling tries to mimic only the dissipat

of the energy arriving at the small scales. The vast majaftjunctional subgrid models currently employed in LES
makes use of a diffusive formulation — the eddy-viscossgyragtion — by which the tensor is supposed aligned with
the symmetrical part of the velocity gradient, which is gafig not true. Since the term to be modeled arises from
an algebraic manipulation of an advective term, the purpokthis paper is, therefore, to investigate and validate an
alternative subgrid modeling, based on an advective foatih. In such approach, instead of modeling the tensor and
take its divergence, one aims directly at the “subgrid féyaghich has only tree components. This force is built in a
way to comply with two basic principles: it must act only ie #mallest scales, and it must be of advective nature, which
means it must have a preferred direction, aligned with thesgritux. The results for benchmark test cases involving
forced and decaying Homogeneous Isotropic Turbulence ghatthis approach can successfully represent the small
scale structures, while guaranteeing numerical stabdityl greater robustness in non-uniform mesh environmemsnhw
compared to traditional eddy-viscosity based models.
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1. INTRODUCTION

Modeling the interaction between the resolved and unresiadzales is the main objective of Large-Eddy Simulations
(LES). The spatially filtered Navier-Stokes equation diégtg the evolution of the large scales includes a term 1sgre
ing that interaction, in the form of a divergence of a tenadrich cannot be closed and therefore must be modeled. Two
possible approaches are extensively explored in the tibtergdSagaut, 2002): functional modeling and structuratimo
eling. In the former, one aims to represent the role of thellssnales in the dissipation of the turbulence energy being
transferred by the well-known energy cascade. In this caseffort is made to match the sub-grid tensor prediction to a
Direct Numeric Simulation (DNS) data, which may be satigfacas long as the correct rate of dissipation of energy is
provided. In the latter case (structural modeling), the goi predict as exactly as possible the sub-grid tensoiGinis
normally done by extrapolating information contained ia treighbor scales.

The vast majority of functional subgrid models currentlyptoyed in LES (Smagorinsky, 1963, Germano et al., 1991)
makes use of a diffusive formulation — the eddy-viscosiguasption — by which the tensor is supposed aligned with the
symmetrical part of the velocity gradient, which is genlgrabt true. This alignment is obtained by multiplying theash
rate by a scalar, known as eddy-viscosity, which may be ddirikom a characteristic length and a characteristic vsloci
The characteristic length is readily available from mesicspy, and usually is taken as the cubic root of the volume of
the cell — control volume in the Finite Volume Method (FVM)sea While this seems appropriated for isotropic regular
meshes, it is easy to understand its limitations when dgalith highly anisotropic ones.

Unlike functional subgrid models, in which the added vistyoaction helps stabilizing the numerical scheme, most
structural models (Bardina, et al., 1980, Sagaut, 200&grsufrom instability problems, and are generally usecdthgr
with some eddy-viscosity based model, in a mixed formutatio

Since the term to be modeled arises from an algebraic matipnlof an advective term, the objective of this paper
is, therefore, to investigate and validate an alternatidegsd modeling, based on an advective formulation, in reéga
the prediction of “turbulence in a periodic box”. In such eggch, instead of modeling the tensor and take its divegenc
one aims directly at the “subgrid force”, which has only tceenponents. This force is built in a way to comply with two
basic principles: it must act only in the smallest scales, iamust be of advective nature, which means it must have a
preferred direction, so that smallest structures alignitidl tire mass flux are eliminated first (or faster). The perfomoe
of the model is tested employing both isotropic and anigitraeshes to predict the “periodic box” in a way to cover
more realistic cases without adding further complexityhi® test problem.
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2. SUBGRID MODELLING

The Navier-Stokes and continuity equations for incompbés$lows are:

%—?—l—V-(uu):—Vp—H/Vzu , V-u=0, Q)

with u the velocity,p = P/p the modified pressure which incorporates the fluid densigndr the kinematic viscosity
of the surrounding fluid.

To reduce the number of degrees of freedom of the originakpart equations, the Large-Eddy Simulation (LES)
method employs a spatial filtering operator to select thgekstrand most energetic structures to be computed, learlypg o
the small eddies to be modeled.

The filtered transport equations can be written as,

ou
871tl+v'(ﬁﬁ)+5com+v'TSGS:_vﬁ+yv2ﬁ ) V-u=0, (2)

whereu is the filtered velocity, ang, the filtered modified pressure. The commutative eergy,,, often neglected, is a
consequence of commuting the filtering process with a dpddi@vative operator, while the subgrid tensesg s, is the
result of commuting the filtering with the produetn and needs to be modeled.

The vast majority of subgrid models (Sagaut, 2002), in paldir the eddy-viscosity models, tries to capture only the
forward energy cascade, where energy from the large eddiemnisferred to small turbulent structures. In the cotirsu
dynamic system, as found in the real world, the energy isahitsd at very small scales where viscous dissipation besom
important. However, in a simulation environment, therelisnét on the smallest mode a mesh can represent, and, unless
a Direct Numerical Simulation (DNS) is used, the mesh is gahebigger than the scale at which dissipation is strong
enough to end the energy cascade. In order to prevent thenatation of energy in the smallest modes, we thus need to
add a dissipative term, which is usually done by modelingstitegrid tensorsas as

1 — — ou; ou;
Tsgsij = Tsasi; — 3 Tsaskk 0ij = —2vsas Sij 3 Si; = 0.5 < + ]) ; 3)
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whereTsqs;; is the trace-free tensowscs is the subgrid viscosity, which is the essence of the SGSME&;] is the
filtered strain rate.

In the particular case of Finite Volume Method (FVM), thediilhg operation may be conveniently confused with the
volume integral over the control volume. Therefore, noHartfiltering is needed, and this process is said to be inplici
or embedded in the FVM.

2.1 Motivation for the advective for mulation

As previously mentioned all eddy-viscosity models are Hase an extra dissipative term added to the transport
equations with the purpose of eliminating or damping thelkstiaictures, which would otherwise be fed and amplified
by the energy cascade. The success of a LES resides maihly ootrect choice of the dissipative coefficient;s so
that just enough dissipation is provided to damp the sntatesles, without over damping other structures that might be
important, either because they already carry a significardgntage of the total turbulent energy, or because thgyapla
significant role in the formation of other structures. Irstbontext, the best one can expect from a eddy-viscositgsdb-
model is achieved when some kind of feedback control meshgrsuch as the Germano et al. (1991) dynamic approach,
is employed, which decreases the subgrid dissipation wiesrallest modes are very weak and increases it when they
become important. The dynamic model was originally prod@sea way to automatically adjust the coefficient present in
the Smagorinsky sub-grid model (Smagorinsky, 1963), dpting it for different flow regime requirements, a procedure
that is, in principle, extensible to any other "static" mibd&lthough the original idea was that the sub-grid coeffitie
should not vary when two different filter bandwidths are ewgpl, latter, Germano (1999) showed that the model could
be reinterpreted as a control feedback mechanism forcimgiellest resolved modes to have a fixed percentage of the
energy contained in the adjacent frequencies. Apart frdfersing from numerical instability (Sagaut, 2002), the dymic
model is still somewhat sensitive to mesh anisotropy, ascallar eddy-viscosity approaches.

As an alternative idea to the widely accepted Boussinesqthgges (Eq. 3), we propose a new SGSM approach, which
consists of enforcing the sub-grid damping by adding to taegport equations an additional force, ife= V - 7s¢s.
Instead of finding an expression fags s and adding its divergence to the Navier-Stokes equatiancan directly derive
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a forcef such that the smallest — or "spatially" fastest — modes stgpdy the mesh are severely damped, while those
with twice their wavelength are almost or completely untwedt

A potentially advantageous effect of damping small mod#sdsthe resulting discrete dynamic system is more robust
and less prone to numerical instability. Generally, LESptianers employ non-dissipative central differenceesols
to calculate derivatives, avoiding other more stable agghies like upwind. Since instability issues are often eeldb
constraints not allowing the use of a regular mesh, the almargioned effect might prove handy, allowing more flextiili
in mesh design. In fact, Sampaio (2006) have shown that thieadelogy presented here is very robust, even in highly
stringent mesh environment presenting strong shrinkimstretching.

2.2 Advective formulation methodology

Without any lost of generality, the methodology is illusée for a pure advection, 1-D case, for a scalar variagble
obeying the transport equation:
%+u-v¢+f¢=0, (4)
ot
wheref, is the “artificial” force to be derived, for a general scalariable¢. Later, the methodology will be extended to
a more interesting case of a 3-D vector field, whgie the velocity components, in a full Navier-Stokes equatio
The first step toward the derivation of a force capable ofcsielely damping only the smallest modes supported by
the mesh is the identification of a fundamental differendevben these modes, hereby referred to as undesired orfcut-of
modes, and smoother modes, of bigger wavelengths. A pessidy to distinguish them is through the evaluation of
the projected gradients of the transported varighlat the faces of a control volume. In the mesh shown in Fighd, t
gradient at the cell-centet, can be calculated using, for instance, Gauss theorem as

1 A
(v¢)A = 7A Z (b? SFw (5)
i=1

whereV, is the volume of the celly 4 is the number of faces of control volurnag ¢; is the transported variable evaluated

at face %", andSp, is a vector orthogonal to the facé', pointing outwards from the cell, with magnitude equallte t

face area.

Figure 1. General mesh topology

For the projection of the gradient into the line segm&i, at the face” of Fig. 1, two possibilities are thus available:
it can be obtained from the interpolations of the gradienteetwo neighbor cell centers to the face,

_ ap. IBFI(VO), + [AF|(V6),

AB - (v¢)int ||ABH )

(6)

or alternatively, from the difference of the transportedafale over the distance between cell centers,
AB-(Vo), =¢p—da. )

Equations 6 and 7 are presented in a general 3-D form and asselén any topology, including unstructured meshes,
whereAB denotes the vector from poirtto pointB, || BF|| and||AF|| are the distances from poidtandB to the face
F, respectively. The subscriptsand B refer to the points where gradients are evaluated whérgaendn identify how
those face gradients are calculated. Additionally, anrergocan be defined as the difference between the two alternative
ways of evaluating the gradient projected alohB, at the face:

ev 2 AB - [(Vo), — (V)] - ®)

In the case of cell centered variables, the gradient at theaid cannot capture the fastest spatial oscillating rmpde
but the face gradient constructed from the two neighbofferince can. This is why central difference based schemes
cannot detect and react to the presence of the smallest rsagpsrted by the mesh. Those modes are thus allowed to
grow and are the main source of numerical instability, usisme form of artificial damping is provided.
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Examining Fig. 2(a), it can be seen that both methods pratridesame results for a regularly spaced mesh for a
smooth mode, which can be fitted by a second degree polyno@®iethe other hand, for the fastest supported mode, as
shown in Fig. 2(b), the errary is significant and gets bigger as the amplitude of the spasillations is increased. The
same happens for modes whose wavelength spans at leasbfral wolumes (Fig. 2(c)), where the derived force would
also be non-zero, but a way to avoid this and restrict th@adf this force to just the smallest mode will be shown later.
Thereforegy is an excellent candidate for detecting and indicating havetmenergy an undesired mode carries and can
be used in the derivation of the forgg.
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Figure 2. Different Gradient evaluations for: (a) a cutrofide; (b) a 2nd degree polynomial mode; (c) a mode with twice
the wavelength of the cut-off mode

Assuming that the gradient is based on a centered differeisagg only nearest neighbors, the computational kernel
involved in the 1-D case calculations spans 4 cell centersrat the face. For a regular mesh, the etrgwill be zero
if values of the transported variable at cell centers canttefivith a polynomial of degree less than or equal to 2, but
this is not the case for higher order polynomials. Therefafercef, based on this gradient difference will not attenuate
a zerd", first or second order polynomial, which is a distinguishiegture when compared to current solutions to deal
with numerical instability of non-dissipative schemes. dpwind scheme, for instance, will, for the same second order
polynomial, yield a resultant force, altering the Navi¢ok®s equation by adding a dissipative term.

The suitability ofey to build the forcef, can be further appreciated by noticing that, being a gradieis almost
in a form of an advection term, missing only a velocity factbhe amount of attenuation this force must provide to the
variable¢ can be seen from the expected advection of the scalar figdiitdd in Fig. 3. In this figure, during the interval
At, the fluid occupying positiond and B would have moved to new position and B’ respectively.

Axis Convention:
CV-faces Ao Initial field @
0] |A/ \l Advected field ®
cv-Y o Final ¢
centroids

A B x (Position)
Figure 3. Advection of scalar field in a non-uniform velocity field

One can easily check in Fig. 3 that the decreasingai cell center3, due to the advection of the piece-wise element
connecting pointsl and B, depends on the gradieWty,, at its upwind facer’, and the distance traveled by the neighbor
centroids under advectiom s At andugAt. Since the force must only complement the information aagutiy the
“smooth” interpolated gradieriV ¢)int, generally already present in discretized equations, wewsnstead ofV ¢, to
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Axis Convention:
CV-faces A Initial field @
(0] |‘/ \I LOngO~g  Final field ¢
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u.At = Ax
fAt= AQ
| o 1 o 1 o 1 o 1 o 1
x (Position)

Figure 4. Damping of scalar field after advection by half control volume

derive the force:

f _%__ (AB-UB)€V
T At |AB| + AB- (up — ug)At

)

Here, f4 ., is the force associated with the centrdiddue to the influence of the upwind fagg.

In 2-D or 3-D meshes, there are several faces that contributee force acting in a single control volume, and we
need to find out which are upwind faces and how to weight thefrortance. In this paper, this is done by measuring the
alignment of each face with the stream, through the variable

AB
wp, =max[u-ab,0] ; ab=-——- (10)
|IAB||
where the subscript; denotes théth face of the given control volume ard is the normalizedA B segment, pointing
toward the cell center in question. Note that, is greater than zero only for upwind faces, and that the bigalees are
those corresponding to faces perpendicular to the stream.
Summing all contributions (Eg. 9) to the final forg§,, using weighting factors as in Eq. 10, we get:

Nctaces
Do wr fop,
s

where fs,. is given in EQ. 9,N¢ac.s is the number of faces enclosing the given control volume,«ay) are the non-
normalized weighting factors.

As can be readily seen in Fig. 4, in this particular case, tigesirable mode damping characteristic time is of the
order of the half control-volume advection time, or the tiitntakes a fluid element to be advected from the center of
control volume to the face.

A significant improvement to this scheme may be obtainedcimgfithat the gradient calculated according to Eg.
(7) reaches its maximum accuracy at the midpoint of the leggmentAB, and not at the point where it cuts the face.
Therefore, it is more accurate to selecB’s midpoint as the target point for the interpolation of E), (nstead of the
point whereA B crosses the face, so that

AB - (Vo) = AB - [(V9) 4 + (V) 5] /2. 12

Referring again to Fig. 2, another interesting feature texmored is that, for the fastest mode (Fig. 2(a)), the face
gradient calculated with Eq. (7) lies outside the range @efiny the neighborhood centroid-evaluated ones, at pdints
andB. This does not happens for the other modes (Fig. 2(b) and (c))

Based on that, the action of the force can be really restrittigust the cut-off mode by setting; to zero whenever
AB-(V9), isinside the range limited by the valuesAB - (V¢) , andAB - (V¢) ;. One can define a “switch” variable
£, associated with each segmeXxiB, responsible for turning off the contribution of a smoothdado the forcing term:

cxs = s fien [ (12 ). ], -

wheregy is an arbitrary toleranceign is a function returning or —1 for positive or negative arguments respectively,
andg andh are given by:

f¢> = ) (11)

g=06a— 05— 5 AB-[(VO), +(Vo)s] : h=AB-[(Vo),~ (V6)] . (14
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The weightswg, thus become:
wp, = &ap max [u-ab,0] , (15)

so that now the only faces contributing to the artificial ®ere those upwind of the control volume centroid, where the
fastest mode supported by the mesh has been detected. dreetb€ only way we have a non-zero force in a volume is
if one of its upwind faces presents a undesirable spacidlaigm aligned with the face normal vectSr,

The ratiolg|/|h| in Eq. (13) roughly indicates how much energy the cut-off modntains compared to “smoother”
modes. Thereforegj; defines a threshold for this ratio, when the “artificial” forg term starts to act. Typical values of
By are between 1 and 2, and féf > 1, modes like the one depicted in Fig. 2c are no longer atteduat

The application of the above methodology to the momentunatoyuis straightforward, sufficing to replageby the
velocity vector fieldu.

It is expected that this new approach eliminates or attesutite mesh instability even when central-differencing is
used, allowing more flexibility in mesh spacing adaptingyviiding at the same time subgrid modeling functionality.
However it is important to realize that it only represents fitrward energy cascade, although in principle it showdd al
be possible to use the same forcing term philosophy to im@hrorrections aiming to capture the backward cascade.
As in Germano (1991), this model is dynamic in the sense teagjtowth of undesirable modes is immediately detected
by the gradient errary, which in turn controls the forcing, in such a way as to damp these modes, without attenuating
smoother turbulent structures.

The idea of eliminating the smaller spatial modes in nunaésanulations of turbulent flows, which is the essence
of LES, is not new and several strategies have been propesedhe years. Apart from the widespread eddy-viscosity
strategy, other possibilities include Fourier treatmdrfiedd variables from time to time to discard undesired modes
modes faster than a certain threshold (Fornberg, 1977)ideseof the proposed model is, in a sense, similar to the one
proposed by Fornberg (1977), but a physical instead of dispapace is used, allowing complex geometry applications
with unstructured meshes. Furthermore, instead of a Foweiatment done sporadically, we here opted for a contisuou
damping, acting at every time step.

3. RESULTS

The proposed sub-grid model was tested on a wide range afisitis (Sampaio, 2006) including: 1D-transient scalar
advective transport case; 2D steady-state scalar trangpat finally, a more realistic 3D turbulent in a box, or Homo-
geneous Isotropic Turbulence (HIT) governed by full NaxBéokes equation. In this section we present only the result
for the HIT, which are compared to those obtained with maditional sub-grid models, as the Smagorinsky (1963) and
dynamic (Germano et al., 1991).

The geometry consists of a unit-side cubic box with periagioditions in all opposite faces, where two different
situations are examined. Firstly, a pseudo-random boagfacting only in the large scales is imposed, following Eswa
and Pope (1988), injecting energy and balancing the dissipeate at small scales. The spectrum of energy is exttacte
after the flow has reached statistic steady-state, and aeahpa the theoretical-5/3 slope. In the second set of tests,
the initial velocity field contains only very large scalesddhe flow develops with no dissipation until the energy hesc
the Kolmogorov scales, where the viscous forces becomertamito Once the cascade of energy reaches the dissipation
range, the total kinetic energy of the box starts to decagritigmically (Mansourt and Wray, 1993, Wang et al., 2000).
As we will be using Large Eddy-Simulations in a coarse mestesd of a DNS, the effect of molecular viscosity will be
mimicked by the subgrid modeling, which means that the litlgar decay of energy should start as soon as the energy
reaches not the Kolmogorov scales, but the smallest mog®eed by the mesh.

3.1 Statistically steady-state of forced HIT

The Homogeneous Isotropic Turbulence (HIT) is obtained re@odic box, by adding a forcing term to the filtered
Navier-Stokes equation, as
P
a—‘;+v-(ﬁﬁ)+fsgs:—Vﬁ+yvzﬁ+fb . V.u=0 (16)

wheref}, is a pseudo-random body force acting only in the largesescébllowing exactly the proposal of Eswaran and
Pope (1988). The subgrid teffps s is eitherV - 755 for the traditional subgrid models érfor the advective approach
proposed.

Since the primary purpose of this simulations is to evaltiagesubgrid models, we set the viscosity to zero, which
results in an unbounded Reynolds number. This, howeves noecause any instability in the simulations, thanks to the
high wave numbers damping provided by the sub-grid modeling

After statistical steady-state is reached, the energytspads extracted from the velocity field. An extensive stady
the influence of parametess: andg3y in the spectrum has been performed and the most relevatisraseishown in Fig.
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5. The results suggested that for eahthere is oney; that optimizes the spectrum in relation to the theoretiea|3
slope. The spectra for the optimal pairs of parameters anersin Fig. 5, where we can seen that all of them presents a
slightly better agreement with the5/3 relatively to the traditional dynamic subgrid model.
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Figure 5. Spectrum of HIT in a periodic box wigi2* for optimal combinations of; and3;.

3.2 Decaying Homogeneous | sotropic Turbulence

Turbulence is a complex phenomena that has many aspeats, thel “universal’—5/3 spectrum just one of them.
Therefore, an accurate spectrum result is not enough tcagtes that a new model will be successful in numerical
simulations of turbulent flows. Another important behawioat turbulence simulations must be able to reproduce is
the free decaying of kinetic energy and dissipation rataclwvbbeys a logarithmic law during a certain period of time
(Mansour and Wray, 1993, and Wang et al., 2000). This is egglor this subsection for the same periodic box of Section
3.1, but here we initialize the velocity field with a spectrgiven by

E(k) = Eq(k/ko)* exp(—2(k/ko)?), with k=8 and E, = 1000, (17)

so that it contains only large structures, and let the flonh@mithout any “pseudo-random” forcindy = 0). Initially,

the energy stored in the largest scales is transfered todighlmorhood modes where there is still no dissipation. The
total kinetic energy is thus kept constant, until the enegegches the smallest modes supported by the mesh, when the
subgrid modeling starts to act, damping the smallest strest From this point on, the total kinetic energ¥{) decays
logarithmically, as can be seen in Fig. 6(a) for the differsubgrid models and different meshes. In the figures that

follow, the legend code “f-LES” refers to the proposed fogesubgrid model, with parametetg = 0.5 andg; = 1.2.
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Figure 6. Comparison of HIT LES behavior in isotropic andsatriopic meshes with different models: a) kinetic energy
decaying; b) dissipation rate decaying.

In Fig. 6 (a), the curves for the different cases have beditady shifted for better visualization, since all simtitans
started from the same initial velocity field, therefore wiitle same K). All the subgrid models result in similar curves
for the total kinetic energy, although the proposed strasegms to present an extended logarithmic range.
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The dissipation rate also obeys a logarithmic decay frontithe the energy reaches the smallest scales on. Before this
point, it is clear from Fig. 6(b) that the proposed subgriddelds less dissipative than both Dynamic and Smagorinsky,
being the latter the most dissipative of all. Since the higlyiency spectrum is empty in the beginning of the simuiatio
and becomes populated as time goes by, one can concludaetatrtagorinsky model dissipates energy at larger scales
when compared to Dynamic model and advective forcing, whithmore selectively, damping only the smallest modes,
as expected.

Figures 6(a) and (b) also present some results for the sardelsnander anisotropic periodic bosd(x 32 x 32 and
128 x 32 x 32), initialized with the same velocity field as before. Thegwsed advective subgrid formulation presents
a more consistent behavior than traditional models whehrdpaith isotropic and anisotropic meshes, being the csirve
are almost coincident, which is very desirable.

4. FINAL REMARKS

A new approach to subgrid modeling has been proposed anstig&ted hoping to develop Large-Eddy Simulations
more versatile and robust. The proposed formulation miraitsdvective damping whose action is restricted to the
smallest modes supported by the mesh, with no effect on sthegctures. The rationale for the forcing term has been
presented and followed from the fact that the subgrid tertherfiltered Navier-Stokes equation comes from the adwectiv
term, thus justifying our efforts to give the new proposabawective nature.

The performance of the new proposal has been evaluateddaldbsic benchmark test cases involving forcing and
decaying of homogeneous isotropic turbulence. The spacand decaying rates for kinetic energy obtained with the
advective forcing proved to be very similar to those obtdingth the dynamic model and therefore much better than
those of Smagorinsky model. Since the dynamic model hasvitdssues, mostly regarding numerical instabilities, a new
approach that presents similar automatic damping of sroalés has a great potential. Our expectation around this new
approach is further substantiated by other simulationmffséo, 2006) involving more complex cases not shown in this
paper, which confirmed its robustness and immunity to nusakinstabilities, even in a highly adverse mesh envirortmen
The proposed model also showed a promising consistencedigiions when facing different mesh anisotropies, which
suggests it can tackle more complex problems.
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