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Abstract. The numerical simulation of the flow over a thin flat plate at low incidence angles is the focus of this study. 
The numerical prediction of this complex flow presents a significant challenge due to the presence of laminar-to-
turbulent transition, boundary layer separation and reattachment. The principal interest is the formation of the thin 
and long leading edge bubble due to the flow separation at the sharp leading edge. The numerical solutions are 
obtained through the Reynolds Averaged Navier-Stokes (RANS) equations for the two-dimensional steady state flow, 
using the Spalart-Allmaras and SST turbulence models. Simulations were accomplished for inclination angles of the 
flat plate from 1 to 5 degrees with a Reynolds number of 2.13 × 105. The results are compared with available wind 
tunnel experimental data. 
 
Keywords: flat plate, shallow incidence angle, RANS, reattachment. 

 
1. INTRODUCTION  
 

The understanding of the flow around thin flat plate at shallow incidence can help in the design of airfoils and sails 
(Cyr, Newman, 1996), as well as flexible wing-based micro air vehicles (Lian and Shyy, 2005). The flow around an 
inclined flat plate with a sharp leading edge, as shown in Fig. 1, results in a long and thin bubble, denominated “thin 
aerofoil bubble” (Gault, 1957). At zero incidence angle, the stream is laminar and attached on both sides, generating 
zero lift (assuming equal surface profiles). If the plate has an incidence angle, the stagnation point moves to the inferior 
surface. The boundary layer around the leading edge is very thin, and it is expected to separate immediately, due to the 
flow direction change. The fixed separation point leads to the hypothesis that the flow will be insensitive to a change in 
Reynolds number, and transition will occur soon after separation. 

 

 
 

Figure 1. Simplified model of a thin aerofoil separation bubble. 
 

The thin aerofoil bubble created on a plate with a sharp leading edge is consequently characterized by a flow 
separation at the leading edge with a consequent reattachment to the upper surface at a point which moves gradually 
downstream with increasing incidence. If the incidence angle is sufficiently small (usually smaller than 7 degrees), the 
flow reattaches. As shown in Fig. 1, there is a dividing streamline which demarcates the bubble from the outer flow and 
which rejoins the surface at the reattachment point. For greater angles, there is no reattachment point, the bubble 
enlarges downstream into the wake (Newman and Tse, 1992).  

Subsequent to separation, a deficiency of viscous damping at the wall means that the shear layer is expected to 
suffer transition very close to the leading edge. The turbulent shear layer increases quickly and has a high entrainment 
rate; it then reattaches further downstream and bifurcates. Some flow is going to upstream to feed the shear layer and 
the resultant backflow reduces the pressure at the surface and in turn helps to bend the shear layer back to the 
reattachment point. The remaining flow is driven directed downstream where reverts gradually to an attached turbulent 
boundary layer before reaching the trailing edge (assuming there to be enough length left after reattachment). 

This complex flow around a plate at the shallow incidence has been experimentally investigated by Crompton 
(2001). Detailed velocity and turbulence statistics were measured in wind tunnel for the leading edge bubble with the 
use of Laser Doppler Anemometry (LDV) for inclination angles of the flat plate varying from 1 to 5 degrees with a 
Reynolds number chord of  2.13 × 105. Following the work of Crompton, numerical studies based on Reynolds Average 
Navier-Stokes methodology (RANS) with the κ−ω and SST models were developed by Collie (2005). Due to the 
inability of Reynolds Average models (RANS) to capture the strong anisotropy of this type of flow, Sampaio et al. 
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(2006a, 2006b) employed the Large-Eddy Simulation (LES) methodology to the same thin flat plate test case, with an 
incidence angle of one degree, aiming a better understanding of the physics involved. Although, better agreement with 
experimental data were obtained, the large cost involved in those simulations encouraged the investigation of the 
present work for different angles of attach with the RANS methodology. Further, the influence of the selection of 
different turbulence models is also addressed. The first model selected is the Spalart-Allmaras model (Spalart, 
Allmaras, 1992) that uses a differential equation for transport of the eddy viscosity. The other one is the Shear-Stress 
Transport (SST) κ−ω (Menter, 2003) that uses the best qualities of the models κ−ε and κ−ω through a blend function 
and had best results than κ−ω model in previous study developed by Collie (2005). 

 
2. MATHEMATICAL MODEL 
  

The Reynolds-averaged approach is based on decomposing the velocity as uuu ′+=  where u is the average 
velocity vector and u' the velocity vector fluctuation. The average continuity and momentum equation (RANS), for a 
steady state incompressible flow is given by  

 

0 = u•∇       ;       )u'u'(u)()uu( −•∇+∇+∇−=•∇    2υ
ρ
p  (1) 

 
where ρ is the density, υ=µ/ρ is the cinematic viscosity, µ is the molecular viscosity, p is the pressure. Equation (1) has 
the same form of the Navier-Stokes equation, but now it has an additional term, the turbulent Reynolds stress 
term, u'u'− , representing the influence of the fluctuation on the average flow. In order to close Eq. (1), the turbulent 
Reynolds stress can be modeled based on the Boussinesq hypothesis, where the turbulent stress is obtained through an 
analogy with Stokes law, i.e., the stress is proportional to the deformation rate. The turbulence models selected to be 
investigated at the present work are described next. 

 
2.1. SST  k-ω MODEL 
 

The turbulent Reynolds stress is modeled as  
  

δ)uu(u'u' κυ
3
2

−∇+∇=− T
t  (2) 

 
where κ is the turbulent kinetic energy and υt  is the turbulence viscosity, which is defined in accordance with the 
Shear-Stress Transport (SST) κ−ω  model (Menter, 2003). This model was proposed for aeronautical flows simulations 
with strong adverse pressure gradients and separation with the best behavior of the κ−ε and κ−ω models. For boundary 
layers flows, the κ−ω model is superior to the k-ε model in the solution of the viscous near-wall region, and has been 
successful in problems involving adverse pressure gradients. Nevertheless, the κ−ω model requires a non-zero boundary 
condition on ω for non-turbulent free-stream, and the calculated flow is very sensitive to the value specified (Menter, 
1992). It has also been show (Cazalbou et al , 1993) that the κ-ε model does not suffer this deficiency.  

Thus, the SST model blends the robust and precise formulation of the κ−ω model close to walls with the free-stream 
independence of the κ−ε model outside the boundary layer. To accomplish this, the κ−ε model is written in terms of ω. 
Then the standard κ−ω model and the transformed κ−ε model are both multiplied by a blending function and both models 
are added together. This blending function F1 is zero (leading to the standard κ−ω model) at the inner edge of a turbulent 
boundary layer and blend to a unitary value (corresponding to the standard κ−ε model) at the outer edge of the layer. 
Therefore the turbulent kinetic energy κ and specific dissipation rate ω of the SST model is given by (Menter, 2003): 
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The last term in right side of Eq. (4) is known as cross diffusion term. Menter (1992) demonstrated that introducing 

cross diffusion term in the ω equation, the freestream dependency of the κ−ω model is reduced. The main effect of 
cross diffusion in free-shear flows is to increase the production of ω, which consequently increases the dissipation of κ. 
In the Eq. (4) the cross diffusion is multiplying by blending function F1 based upon the distance to the nearest wall. As 
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explained previously, F1 is equal to zero in the far field (κ−ε model), and switches over to one inside the boundary layer 
(κ−ω model). The blending function F1 is defined as  
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where y is the distance to the nearest surface and CDκω is the positive portion of the cross diffusion term, given for 
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The definition of the turbulent eddy viscosity provides a better treatment of the transport of turbulent shear-stress in 

adverse pressure gradient boundary layers. This definition is based on Bradshaw’s hypothesis that in boundary layer 
flows the Reynolds shear stress is proportional to the turbulent kinetic energy. The turbulent eddy viscosity is 
formulated as follows: 
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where S is the modulus of the mean rate-of-strain tensor ijS ,  
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and F2 is the blending function for the turbulent eddy viscosity in the SST model, defined as 
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In the SST model the production of turbulence kinetic energy is limited to prevent the build-up of turbulence in 

stagnation regions as 
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Let φ  represent the set of closure constants for the SST model and let 1φ  and 2φ  represent the constants from the 

standard κ−ω and κ−ε models respectively. The constants φ  are calculated using a blend between the constants 1φ  
(κ−ω) and 2φ  (κ−ε), which can be seen in Table 1, as 

 
( ) 2111 1 φφφ FF −+=  (11) 

 
Table 1. Closure coefficients of the SST model.  

 
 β β∗ σκ σω σd α 

1φ   (standard κ−ω) 0.075 0.09 0.5 0.5 0.856 5/9 

2φ   (standard κ−ε) 0.0828 0.09 1.0 0.856 0.856 0.44 
 

2.2. SPALART-ALLMARAS MODEL   
 

Developed by Spalart and Allmaras (1992), this is a model relatively simple that solves a transport differential 
equation for the turbulent viscosity and, therefore, it requests smaller computational effort. The Spalart-Allmaras model 
was designed specifically for aerospace applications involving wall-bounded flows and adverse pressure gradients. The 
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differential equation is derived by using empiricism, arguments of dimensional analyses and selected dependence on the 
molecular viscosity. For this model, the turbulent Reynolds stress is modeled without the last term of Eq. (2), as  
  

T
t )uu(u'u' ∇+∇=− υ . (12) 

 
The eddy viscosity is defined as 

  
1νυυ ft

~=   (13) 
 
where fυ1 is a viscous damping function used to treat more appropriate the buffer layer and viscous sublayer, computed as 
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The transport equation for the working variable υ~  is given by (Deck et al, 2002) 
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In the Eq. (15), Gυ is the production term. Dacles-Mariani et al (1995) combine the effects of the rotation and strain 

tensors in the definition of production of υt, in order to avoid overestimation of the turbulent viscosity, in regions where 
the vorticity measure exceeds the strain rate.  Gυ is based on a modification on the vorticity magnitude Ω in order to 
maintains its log-layer behavior, where Ωij is the mean rate-of-rotation tensor.  
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where  d  is the wall distance, Cprod=2.0 and fν2 is a damping function, given by 
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The destruction term Yυ is  
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The empiric constants of the model are: Cb1=0.1355; Cb2=0.622; Cw1= νσκ ~/)(/ 2

2
1 1 bb CC ++ ; Cw2=0.3; 

Cw3=2.0; Cυ1=7.1;  νσ ~ =2/3; k=0.41. 
 

3. RESULTS   
 

The thin flat plate proposed by Crompton (2000) was modeled with the geometry described in Fig. 2. The plate has a 
chord length c of 160 mm and a span of 800 mm giving an aspect ratio of 5, which is sufficient to supply nominally 
two-dimensional flow. 

The reattachment length was found by Crompton (2000) to be independent of Re above 105, where Re is defined as 
Re= U∞ c /υ, where U∞  is the free stream velocity, and c the chord length. The wind tunnel investigation was carried at 
Re = 2.13 × 105 and this Reynolds number is used to compare the turbulence models and the experiments. Attack 
angles, α = 1 to 5 degrees, are available in experimental data in 1 degree intervals. At inclination of 5 degrees the flow 
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is separated for the majority of the length of the plate. The LDV measurements for the mean velocity and a few 
turbulent quantities over the plate are available at Crompton´s study (2000).  

Figure 3 shows the computational domain used in simulations, which was defined based on the work of Collie 
(2005). At the inlet, the cartesian components of velocity are set according to the angle of attack and the turbulence 
intensity of the freestream defined as 
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is set as 0.05%,  as measured in wind tunnel (Crompton, 2000). Constant pressure equal to the freestream p∞ was set at 
the outlet. 

 
 
 
 
 
 
 
 
 

 
 

Figure 2. Thin flat plate dimensions. 
 

Figure 3. Domain details. 
 

The mesh was created in the software GAMBIT with 3.5 × 105 cells, a slightly larger number of points than 
employed by Collie (2005), based on a grid convergence study performed by him. The distance of first node above the 
plate was designed as 6.25 × 10-5 c (c is the length of the chord) to guarantee y+=(τs/ρ)0.5 y/υ around 1, which is the 
value indicated for both RANS, where τs is the wall shear stress.       

To flow field was determined with the commercial software Fluent (2006) with both models described in section 2. 
This code is based in Finite Volume Method. The QUICK scheme (Leonard, 1979) scheme was employed to discretize 
the governing equations.  The pressure-velocity coupling was handled by the SIMPLE algorithm. The system of 
algebraic equation was solved with the Multgrid method (Hutchinson and Raithby, 1986). The problem was considered 
converged when the maximum residue of all equations was smaller than 10-6.  

 
3.1. Mean velocities profiles  

 
Due to the abrupt geometry at the main extremity, a long and thin bubble is created at the leading edged just after 

the separation of the boundary layer. If the inclination angle is positive, the stagnation point will be located below the 
surface of the plate and due to the high inertial forces (high Reynolds number) the particles do not follow the abrupt 
curvature of the extremity and separation occurs. The separated shear layer is unstable and transition rapidly occurs. 
After transition, a rapid development of the shear layer occurs due the high rate of turbulence entrainment, which bends 
the streamlines toward the surface of the plate at the reattachment point XR. Now, due to the favorable pressure gradient 
existent between the larger pressure point in the reattachment point and the minimum pressure point close to the bubble 
center, the portion of the flow that goes back to the leading edge suffers a relaminarization process. The boundary layer 
of this portion of the flow moves forward to the leading edge becoming again laminar and ready to suffer a second 
separation, generating a secondary recirculation bubble, since there is another adverse pressure gradient at the minimum 
pressure point in the center of the bubble to the leading edge. This second very small bubble is very hard to be 
predicted, and it was not observed with all RANS models. 

Table 3 presents the reattachment lengths (XR) for the flat plate at 1o, 3o and 5o incidence angles, obtained by the 
present work. The results obtained by Collie (2005) with the κ−ω and SST models employing the CFX software 
(Ansys, 2007) are also presented. Sampaio et al (2006a) investigated the same problem for θ =1o with the LES 
methodology. The results obtained with the Smagorinsky Sub-Grid model are also included in Table 3. 

The numerical prediction of the reattachment lengths obtained with the different turbulence models presented in 
Tab. 3 are approximately the same for all RANS models, with the exception of the κ−ω model, for θ  =1o. The SST, 
which is formed by a blending of the κ−ω model with the κ−ε model, predicted a better result. The present SST model 
predictions differ from Collie’s results of approximately 2%, due to small differences in the mesh definition, as well as 
softwares implementations. For the inclination angle equal to 1o, the LES methodology was able to predict a 
reattachment length with excellent agreement with experimental data (Sampaio et al, 2006a). The prediction of the 
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reattachment length with the Spalart-Allmaras model (SA), which requires less computational effort was quite good, 
specially for the greater angles of attach.  It should be noticed that for smaller angles of attach; the bubble is smaller and 
therefore much harder to be predicted, leading to larger errors in relation to the experimental values. 

 
Table 3 – Normalized reattachment lengths (XR) and respective errors. 

 
 XR / c (θ =1o) error XR / c (θ =3o) error XR / c (θ =5o) error 

Experimental Crompton (2000) 0.140  0.470  0.942  
SA 0.153 9.2 % 0.462 1.6 % 0.929 1.4 % 
SST 0.147 5.4 % 0.463 1.5 % 0.924 1.9 % 

κ−ω (Collie, 2005) 0.184 24 % 0.510 8.4 % - - 
SST (Collie, 2005) 0.149 5.8 % 0.437 6.4 % - - 

Sampaio et al.(2006a) 0.139 0.4% - - - - 
 
The mean velocities profiles obtained with SST and Spalart-Allmaras (SA) models for the incidence angles θ = 1o , 

3o and 5o are compared with the experimental data de Crompton (2000) at three stations in Figs. 4, 5 and 6, respectively. 
All stations are located inside the bubble for θ = 3o and 5o, but for θ = 1o the third station is outside the bubble. The 
results obtained with the SST model by Collie (2005) were very similar to the present SST results and are omitted for 
clarity reason. For the θ=1o case, the LES results (Sampaio et al, 2006a) are also included in Fig. 4. 
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Figure 4. Velocities profiles for incidence angle θ =1o . 
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Figure 5. Velocities profiles for incidence angle θ =3o. 
 
The reversed flow in the leading edge bubble experiences relaminarisation and the boundary layer begins to show 

very laminar features. The velocity profiles, in the two initial stations ( x/c = 0.031 ; 0.125) of Fig. 4 and in all other 
stations of Figs. 5 and 6, which are inside the bubble, show that the experimental data has a more laminar profile in 
comparison with the RANS turbulence models results which all experience a sharp increase in velocity over the near-
wall region, specially the SA model. To simulate the process of relaminarization an appropriate transition model is 
required which is not provided by the RANS models investigated, consequently these models predict greater velocity 
gradient in this wall region. On the other hand, for the θ=1o case, the LES results (Sampaio et al, 2006a) showed an 
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excellent agreement with experimental data for the two first stations inside the bubble (Figs. 4a and b). However, the 
agreement deteriorates at station 3, outside the bubble (Fig. 4c), where the velocity recovery is slower, while the RANS 
models predict a faster recovery. Collie (2005) attributes this difference between the turbulence models and 
experimental results to the influence of wind tunnel in the boundary layer, however, this assessment is difficult to 
quantify. Sampaio et al (2006a) attributed the discrepancy the LES model with the experimental data at this station to 
the mesh refinement. The present paper prefers to explain the discrepancies of the RANS models to their inability to 
capture the anisotropy of flow near the wall.    
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Figure 6. Velocities profiles for incidence angle θ =5o . 
 

After the reattachment point, the boundary layer continues to grow and developed turbulence is obtained. Normalizing 
the velocity u with the friction velocity uτ =(τs/ρ)0.5 (u+=u/uτ) and using a log scale for y+= uτ y/υ , the boundary layer 
profiles at x/c = 0.875 for θ=1o case are presented in Fig. 7. It can be seen that good results were obtained at this station, 
since both models agreed with the developed turbulence results in the sublayer and in the log-region.  
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Figure 7. Velocity profile at x/c = 0.875 for angle of attack 1o. 

 
3.2. Pressure Distributions 
 

The pressure distribution is analyzed through the pressure coefficient defined as 
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where p is the static pressure, p∞ and U∞ are the freestream pressure and velocity.  

Figure 8 presents the variation of the pressure coefficient along the plate for θ =1o. Again the RANS models SA and 
SST are compared with the experimental data. These results confirm the discussion of the previous section, i.e., the 
turbulence models overpredict the velocity magnitude near the wall, therefore, as expected the pressure distribution is 
underpredict. In Figure 8, the LES results of Sampaio et al. (2006) were also included. It can be seen a pressure peak 
displaced from the leading edge as the experimental data, however the pressure peak was also underpredicted as the 
RANS results. Further, the pressure coefficient drop of LES is steeper and delayed, in relation to the experimental data. 
Both RANS models underpredicted the pressure coefficient downstream of the reattachment point, where the LES 
results for θ=1o was quite good. 
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Figure 9 illustrates the pressure coefficient for the three angles of attach along the plate, normalized by the 
reattachment point, x/XR. It can be observed that near the leading edge, where the separation occurs for all cases, the 
maximum pressure is near one. It can also be clearly seen the similarity of the flow for the different angles, once all 
experimental data are very close together. The SA model is capable of capturing this similarity, however for the SST 
model, a smaller CP peek is predicted for θ=5o. 

In the interior of the thin airfoil bubble the pressure is mainly determined by the shear layer curvature, in other 
words, stronger streamline curvature will lead to smaller pressure. Due to the difficulty of the turbulence models to 
predict with accuracy the transition position and resolution of the secondary bubble, these models demonstrate an 
inferior and flatter suction peak. Larger discrepancies between the predictions and the experimental data are observed as 
the angle of attack increases. These discrepancies are associated with the inability of the models to predict the complex 
flow inside the bubble. Large angles of attack are associated with longer bubbles; therefore, worse predictions are 
obtained. These results encourage the investigation of these higher angles with LES, in spite of being much more 
expensive. 
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Figure 8. Pressure Coefficient for angle of attack  1o 
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Figure 9. Pressure Coefficient for angle of attack  1o , 3o and 5o     

                                 
3.3. Second order statistics 

 
The turbulent second order statistics uu ′′  predicted with SA and SST are compared with the experimental data in 

Figs. 10, 11 and 12 for the three angles of incidence. For θ=1o, the LES results of Sampaio et al (2006) are also included 
in Fig. 10, where it can be seen that at the first station the production of turbulence is underpredicted resulting in smaller 

uu ′′ , being overpredicted at x/c=0.125, what is in agreement with the displaced pressure peak observed in Fig 8a. After 
the reattachment point, its predictions are superior to the RANS predictions. 

The Spalart-Allmaras model uses a viscous damping function to better represent the buffer layer and viscous 
sublayer, but this feature results in a major damping of entrainment rate and consequently smaller turbulence levels 
inside the bubble, which are visible in all stations for the three cases shown in Figs. 10, 11 and 12. 

The SST model simulates more turbulence in the shear layer than the Spalart-Allmaras model. For turbulent 
boundary layers the SST model uses standard κ−ω  in the near-wall region and then blends to the standard κ−ε  model 
across the outer region of boundary layer. Nevertheless inside the thin airfoil bubble the SST model blends κ−ε across 
the inner region of the bubble so that the ε−equation is solved across the shear layer. Therefore it appears that the 
ε−equation predicts a lower dissipation of turbulence which leads an over prediction of turbulence in the separated shear 
layer. Thus the increase of turbulence is a direct result of the ε−equation which actually improves SST results. This 
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effect is partially compensating for the model’s inability to predict the increase in the turbulence entrainment.  
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Figure 10. Second order statistics for angle of attack 1o . 
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Figure 11. Second order statistics for angle of attack 3o . 
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Figure 12. Second order statistics for angle of attack 5o . 
 

4. CONCLUSION 
   

In the present work, the turbulence models of Spalart-Allmaras (1992) and SST (Menter, 1994) were applied to 
determine the incompressible flow over a flat plate with a sharp leading edge, with small inclination angles. Three 
different angles were investigated θ =1o, 3o and 5o. The results obtained were compared with experimental data of 
Crompton (2000). For θ =1o the solution was also compared with available LES results (Sampaio, 2006).  

The mean profiles velocities presented reasonable agreement with the experimental results; however the details of 
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the recirculating bubble were underpredicted in size and over predicted in magnitude. Qualitatively the profiles are the 
same for the different angles of attach indicating the presence of similarity. The prediction of the reattachment length 
was improved with the increase of the angle of attack; on the other hand, the pressure distribution over the plate has 
deteriorated. The LES model prediction was slightly superior in relation to the pressure distribution for θ =1o, as well as 
the second order statistics. Although a better prediction of the reattachment length was obtained with the SA model, the 
overall results of the SST were better. The difficulty to capture the entrainment of the separated shear layer, encourage 
the investigation of the problem with more demanding models such as LES and DNS.  
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