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Abstract. A current topic of research in kinematics is the structural synthesis and classification of kinematic chains. The
structural synthesis consists of the generation of a complete list of kinematic chains based on methods that enumerate all
kinematic chains with a determined mobility. However, these methods normally generate a large number of isomorphisms.
A significant and unsolved problem in structural synthesis is the precise elimination of all isomorphisms. In the early stage
of design, it is preferable the generation of duplicate chains to the omission of a potentially useful chain. In the synthesis
process, thousands of chains enumerated must be classified to find out the most promising ones that satisfy the functional
requirements required by the task. For the classification ofthese kinematic chains we can use the concepts of connectivity,
redundancy and variety. This paper reviews methods of structural synthesis aiming at identifying the most promising
method for the generation of all kinematic chains without isomorphisms. Other goal of this paper is to present selection
criteria of kinematic chains based on the concepts of connectivity, redundancy and variety. The synthesis of kinematic
chains for robot hands is used as an illustrative example.
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1. INTRODUCTION

The most important phase in the design of a mechanism is to findthe most adequate topology for the accomplishment
of a determined task. This phase is called structural synthesis or enumeration of kinematic chains with determined
mobility and number of links. The topology characteristicsof mechanisms are entirely determined by the pattern of
interconnections among links and are unaffected by metric properties. The mobility of a kinematic chain is the number of
independent parameters required to completely specify theconfiguration of the kinematic chain in the space, with respect
to one link chosen as the reference. The mobility of a kinematic chain, withn links andj single-degree of freedom joints,
may be calculated by the general mobility criterion

M = λ(n − j − 1) + j (1)

whereλ is the order of the screw system to which all the joint screws belong.
A kinematic chain can be uniquely represented by the graph whose vertices correspond to the links of the chain and

whose edges correspond to the joints of the chain. In graph theory terms, the structural synthesis of kinematic chains
corresponds to the enumeration of graphs satisfying the general mobility criterion and having given a number of vertices
and edges. However, the problem of graph enumeration is NP-Hard. All method of graphs enumeration generate a
great amount of isomorphisms which must be eliminated, whithout eliminating any chain with useful potential for the
accomplishment of the task. In practice, since the number ofkinematic chains generated is often too large, it is dificult
to manually consider the individual merits of each chain. For this reason, the concepts of connectivity, variety and
redundancy can be used as criteria to classify kinematic chains according to the constraints required for the task.

This paper first reviews the methods of structural synthesisand the concepts of connectivity, variety and redundancy.
After that, based in kinematic restrictions for robot hand in Mason and Salisbury (1985) summarized in Tischler et al.
(1995b), we investigate the functional requirements of a robot hand and transform these functional requirements into
purely kinematics characteristic. Then we enumerate all the kinematic chains without isomorphisms and apply the criterias
(connectivity, variety and redundancy) to classify the enumerated chains to find alternative mechanisms for robot hands.

2. LINK ASSORTMENTS

The first common step of the works in enumeration of kinematicchains is the determination of the possible assortments
of binary, ternary, quaternary, etc. links that can exist inthe desired chains. These are given by the solutions of the
following equations:

n = n2 + n3 + n4 + · · · (2)

2j = 2n2 + 2n3 + 2n4 + · · · (3)

whereni is the number of links withi connections each,n is the number of links andj is the number of single-degree of
freedom joints.
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The subsequent step is the formation of distinct structuralpatterns in which polygonal (non-binary) links can be
connected together, the addition of available binary linksto the polygonal-link patterns in all possible ways to produce
closed chains and finally discarding degenerate chains and structurally equivalent or isomorphic chains to produce theset
of distinct chains.

For the purpose of classification, each link assortment is called apartition. Algorithms for finding all the partitions
are well documented (James and Riha, 1976). Table 1 shows thepartitions for constructing ten-bar kinematic chains with
λ = 3 (not necessarily planar motion) andM = 3, where number 2 represents binary links, 3 ternary links, and so on.

Table 1. Partitions of the kinematic chains with ten links, with λ = 3 andM = 3.

Partition 1 3 3 3 3 2 2 2 2 2 2
Partition 2 4 3 3 2 2 2 2 2 2 2
Partition 3 4 4 2 2 2 2 2 2 2 2
Partition 4 5 3 2 2 2 2 2 2 2 2
Partition 5 6 2 2 2 2 2 2 2 2 2

3. REVIEW OF THE METHODS OF SYNTHESIS

Applied to the field of project of mechanisms, Reuleaux (1875) defines synthesis as the process of transformation
of the project specifications of a mechanism. Structural synthesis is the process of finding the arrangements of a given
number of bodies and joints which result in kinematic chainsof the desired mobility.

We now consider the traditional methods of synthesis. However, they generate isomorphisms whose elimination
requires a great computational effort.

3.1 Method of Franke

The Franke’s notation is a graphical simplification of the representation of kinematic chains (Franke, 1958). In the
Franke’s notation, each polygonal link is represented by one circle with a labeln inside, that corresponds to number of
connections of the link and binary links, are represented bylines. Figure 1(a) shows one 12-links kinematic chain and
Fig. 1(b) shows the corresponding Franke’s notation of 12-links kinematic chain.

(a)
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0

(b)

Figure 1. Franke’s notation.

In the synthesis procedure based on Franke’s notation, we first consider all the possible mappings of the polygonal
(non-binary) links for each possible partition. For each partition, each circle is connected by lines in all possible ways,
being the incident line number in the circle equal to label ofit. Each line receives a numberk ≥ 0, k = 0 if no binary link
exists between two polygonals (Davies and Crossley, 1966).

Care must be taken to guarantee that degenerate chains containing immobile subchains are not produced. A disadvan-
tage of the method is that it generates a great number of isomorphisms which must be eliminated.

3.2 Method of Assur

Another approach for structural synthesis is due to Assur (1913). He introduced the concept of fundamental groups,
later called Assur’s groups. Assur’s groups are kinematic chains in which some links contain free or unpaired elements
such that when the group is connected to the frame through allits free elements it becomes a structure with zero mobility.

Assur also proposed that chains of greater complexity (i.e.with greater number of links) could be built up by the
sequential addition of these Assur’s groups to simpler chains (i.e. with fewer links). The basis for this idea lies in thefact
that addition of an Assur’s group to a link or links of an existing chain do not modify the mobility of the original chain.
The method is based on visual inspection and does not requiredetermination of partitions. Degenerate chains do not arise
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if the initial simpler chains are free from immobile subchains and if the free elements of an Assur’s group are not all added
to a single link. Figure 2 shows the addition of an Assur’s group to a 4-link chain.

4-link chain

4-link Assur group

Resulting 8-link chains

Figure 2. Aggregation of the Assur’s group to 4-link chain.

However the method produces a large number of isomorphs (Mruthyunjaya, 2003) . Also, it is necessary to have
available atlases of chains with mobilityM and number of links less thatn, as well as complete atlases of all Assur
groups with(n − M − 1) links.

3.3 Method of Heap

Heap’s method produces all the graphs withj vertices (or bodies) andi edges (or joints) by extending all the distinct
graphs withj − 1 vertices andi − ij edges, whereij is the degree of thejth vertex (Heap, 1972). For the purpose of
generating kinematic chains, all the ways of joining thejth vertex usingij edges are found and the process is repeated
until the number of vertices in the graph isn and the number of edges isj.

The advantage of this method is that no initial graphs are needed since more complicated graphs are gradually built
up as each vertex is added. The disadvantages of this method is that the intermediate graphs do not necessarily represent
kinematic chains, Heap’s method generates some graphs thatcorrespond to improper kinematic chains and Heap’s method
also generates isomorphs (Tischler et al., 1995a).

3.4 Method of Farrell

We implement a modified version of the Farrell’s method for enumeration of kinematic chains avoiding to enumerate
the fractionated kinematic chains; therefore, it will be described here with more detail and our method will be described
in the section 3.7. The Farrell’s method imposes a tree structure in the kinematic chains generation process and is sum-
marized in the following steps (Farrell, 1977) (Tischler etal., 1995a):
Step 1: Each body in the partition is assigned by a numerical label according to its degree. One of the bodies with the
highest degree is given the number "1", while the body with the lowest degree is given the highest number. Two bodies
cannot be assigned by the same number. For example, the partition 1 in Tab. 1 has four ternary bodies, which we now
label 1, 2, 3, and 4, and six binary bodies we label 5, 6, 7, 8, 9,and 10. At this stage all bodies are unconnected. Sees the
Fig.3.
Step 2: The body with the lowest number (i.e. 1) is selected and the remaining bodies, {2, 3, ... , 10} are grouped so
that connecting body 1 to any member of the group would resultin an identical, partially connected, form. Here, two
distinct groups materialise, namely a group of ternary bodies, {2, 3, 4}, and a group of binary bodies, {5, 6, 7, 8, 9, 10}.
Connecting body 1 to any member in the group {2, 3, 4} would result in two connected ternary bodies, and connecting
body 1 to any member of {5, 6, 7, 8, 9, 10} would result a ternarybody connected to a binary body.
Step 3: The number of connectionsc needed to make the body with the lowest number fully connected is determined. In
this casec = 3, because body 1 is ternary and no connections have yet been made. All the different ways of selecting
c = 3 bodies to connect to body 1 from the groups of Step 2 are found.These are; three ternary bodies {2, 3, 4}, two
ternary bodies and one binary body {2, 3, 5}, one ternary bodyand two binary bodies {2, 5, 6}, and three binary bodies {5,
6, 7}. The partial forms which result from each of these selections are shown in Fig.3. In each case the lowest numbered
members of each group are selected first. Each of the four partial forms represents a branch in the tree.
Step 4: Each of the branches in Step 3 are selected in turn and any bodies which are fully connected are ignored; Steps
2, 3 and 4 are repeated for the next lowest numbered body whichis not fully connected. In this case the lowest numbered
body will be body 2. Steps 2, 3 and 4 are repeated until all other bodies are fully connected or it is impossible to connect
the remaining bodies. When either of these two situations arises the algorithm back-tracks and continues with the next
unexplored branch.
Step 5: When no unexplored branch remains the next partition is selected, and all of the above steps are repeated until no
further partitions remain.
Step 6: Elimination of improper kinematic chains and isomorphisms and finality enumeration of the found kinematic
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chains.
One of the disadvantages of the method is that it generates many isomorphisms which must be eliminated and the

elimination requires a great computational effort.
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Figure 3. Example Farrell’s method with possible connections for boby 1.

3.5 Method of Melbourne

Tischler et al. (1995a) proposed a method of enumeration of kinematic chains, called Melbourne’s method. The
Melbourne method’s is a modification of Farrell’s method with the objective to reduce the number of isomorphism in
the output list. The modification consists of a set of four rules. To apply these rules they introduced four concepts;
symmetrical body, equivalent body, proper connections andcanonical connections, for more details consult (Tischleret
al., 1995a). However, the method also generates isomorphicchains which must be eliminated.

The Melbourne’s method was applied to synthesise kinematicchains suitable for application as robot hands
(Tischler et al., 1995b).

3.6 Method of Sunkari and Schmidt

Recently, Sunkari and Schmidt (2006) presented a method of synthesis of kinematic chains based on the group theory
techniques. He uses the McKay’s method for generation of a isomorphism class representative in combination with an
efficient degeneracy testing algorithms. According to the authors of the method, the algorithm is computationally efficient
and it generates 318,162 planar kinematic chains whit 14 link andM = 1 in 37.28s on Pentium III 1.7GHz with 512MB
RAM. The authors claims that the computational speed at which the kinematic chains are generated depend on McKay-
type algorithms that greatly minimize the explicit isomorphism detection by using group theoretic techniques.

3.7 Proposed Method

The proposed method in this paper is a modification of the Farrell’s method in order to avoid generation of fractiona-
ted kinematic chains. We notice that, in the majority of the applications, the fractionated chains are generated without
necessity. We present, as illustrative example, the project of a robotic hand where fractionated chains do not attend the
project specifications. We also notice that some methods do not enumerate fractionated chains and the authors of these
methods do not justify why they do not enumerate them. We are working in a fractionated chains generation method for
aggregation similar to the Assur’s method , thus we enumerate fractionated chains only when is necessary (i.e. fractiona-
ted chains satisfy the project specifications). One of the disadvantages of the proposed method is that it generates many
isomorphisms which must be later eliminated.

The method was implemented in C++ using graphs as data structure. The method imposes a tree structure in the
generation process similar to the Farrell’s method, see Fig. 4. The input data of the algorithm is the number of vertices
and the degree of each vertex. The vertices are orderly decreasing of degree and labeled with gradual number. The graph
of the root of the tree is formed by a set of vertices labelled.Combinations of the degrees of the vertices are made and
edges are connected in accordance with the label of each vertex. The process of adding edges is repeated to complete the
degree of all the vertices. In the generation process, if a graph has a connected subgraph with the degrees of the vertices
complete except one of them such graph do not generate more children because in this case the children will originate
fractionated kinematic chains, see Fig. 5. Some fractionated chains are generated in leaves of the tree, in this case we use
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Figure 4. Structure of proposed method.

the test of biconnectivity (time complexity is polynomial)of the Boost Graph Library (BGL, 2002) to exclude them. Thus
we avoid the generation of graphs that originate fractionated kinematic chains. In the graphs of leaves of the tree we run
the test of isomorphisms of the Boost Graph Library (BGL, 2002) whose worst-case time complexity isO(|V |!), where
V is the number of vertices.
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Figure 5. Eliminated graph, avoiding generate fractionated kinematic chains.

Table 2 shows some of the results known in the enumeration of planar kinematic chains. A reason for the discrepancies
in the results of Tab. 2 is the generation of kinematic chainswithout fractionation for Sunkari and Schmidt (2006) and
Tuttle (1996) and with fractionation for Hwang and Hwang (1992) and Tischler et al. (1995a). Another reason can be
related the imperfections in the tests of isomorphisms and detection of degenerated kinematic chais. In the tested cases,
the results of our method are in accordance with of Sunkari and Schmidt (2006).

After this review we evidence that the problem of generationof kinematic chains is still an unsolved problem.

Table 2. Summarises of some known cases of planar kinematic chains enumeration.

Loops Mobility
1 2 3 4

2 2 3 [1][2], 4 [3] 5 [1][2], 7 [3] 6 [2], 10 [3]
3 16 35 [1][2], 40 [3] 74 [1][2], 98 [3][4] 126 [2], 189 [3]
4 230 753 [1][2], 839 [3] 1962 [1][2], 2442 [3] 4356 [2], 5951 [3]
5 6856 [1][2], 6862 [3] 27496 [1][2],29704 [3] 83547 [1][2] 216291 [2]
6 318126 [1], 318162 [2] 1432608 [1],1432730 [2] 4805382 [1], 4805764 [2] 13743920 [2]
Legend of references:
[1] - (Tuttle, 1996); [2] - (Sunkari and Schmidt, 2006);
[3] - (Hwang and Hwang, 1992); [4] - (Tischler et al., 1995a);
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4. DETECTION OF ISOMORPHISMS

A major problem in the study of kinematic structures is that of detecting a possible isomorphism (structural equiva-
lence) between two given chains. Two kinematic chains or mechanisms are said to be isomorphic if they share the same
topological structure. In terms of graphs, there exists a one-to-one correspondence between their vertices and edges
that preserve the incidence. We now consider the traditional methods of detecting isomorphism and their weaknesses,
admitting that, in the general case, no efficient solution ofthe graph isomorphism problem has been found yet.

Uicker and Raicu (1975) suggested that the characteristic polynomial could be used to test for isomorphism. However,
if two kinematic chains are isomorphic, it is necessary, butnot sufficient, that their characteristic polynomials are identical
as there are counter-examples where this method fails (Tischler et al., 1995a)(Mruthyunjaya, 2003).

Ambekar and Agrawal (1987) suggested a method of identification called the optimum code. The method involves
a technique for labeling the links of a kinematic chain such that a binary string obtained by concatenating the upper
triangular elements of the adjacency matrix row by row, excluding the diagonal elements, is maximized. This is called
the MAX code. We can also search for a labeling of the chain that minimizes the binary string of the upper triangular
elements, called the MIN code. There is a need to develop a more eficient heuristic algorithm for determination of the
optimum code (Tsai, 2001)(Mruthyunjaya, 2003).

Rao and Raju (1991) present a method for detecting isomorphsbased on Hamming numbers of the adjacency matrix.
Although no counter-examples are known, when the algorithmwas applied to the detection of isomorphs among the
number of inversions of the planar,M = 1, ten links, some non-isomorphic inversions were omitted (Tischler et al.,
1995a).

The algorithm of generation of kinematic chains implemented in this paper uses the test of isomorphisms detection of
the Boost Graph Library (BGL, 2002) whose worst-case time complexity isO(|V |!), whereV is the number of vertices.

Köbler et al. (1993) have examined the structural complexity of the graph isomorphism problem and state that there
is strong evidence to suggest that no efficient algorithms exist for this problem (i.e. the problem of isomorphisms is
NP-Hard).

5. DEGENERATED KINEMATIC CHAINS

5.1 Fractionation

Sets of kinematic chains with mobilityM > 1 contain some chains that are fractionated; these members can present
body-fractionation and joint-fractionation.

A body-fractionated chain contains a body which divides thechain into two closed, independent, kinematic chains.
A closed kinematic chain is one in which every body is connected to at least two other bodies. A body-fractionated
chain must have at least two independent loops and a mobilityM ≥ 2 (Tischler et al., 1995a). Figure 6(a) shows one
body-fractionated planar kinematic chain with three loopsandM = 3.

A joint-fractionated chain is one in which the remotion of a joint divides the chain in two closed kinematic sub-
chains. A joint-fractionated kinematic chain must have a mobility M ≥ 3 and at least two independent loops. When one
fractionating joint is removed the combined mobility of thetwo resulting chains isM − 1 (Tischler et al., 1995a) . Figure
6(b) shows one joint-fractionated planar kinematic chainswith with three loops andM = 3.

Our method not enumerate fractionated chains eliminating computational efforts for generation and identification of
the fractionated chains.

(a) (b)

Figure 6. Fractionated planar kinematic chain.

5.2 Improper Kinematic Chains

An improper kinematic chain is a kinematic chain where at least one biconnected subchain has mobilityM ′ ≤ 0. The
subchain with mobilityM = 0 are called Baranov chains (Manolescu, 1979). Improper chains are of no interest in pure
kinematic analysis. Some methods of synthesis generate improper chains which must be identified and eliminated.
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6. CRITERIA FOR CLASSIFICATION OF KINEMATIC CHAINS

In general, the number of generated kinematic chains in the synthesis process is great and it is difficult to evaluate
each chain individually. Therefore, it is necessary to develop a set of criteria to evaluate the merit of each chain without
eliminating a chain with possibilities to develop the desired task. For selecting the enumerated chains the criteria of
variety, conectivity and redundancy are presented.

6.1 Variety

Variety is a useful property for determining the relative connectivities within a chain and also for selecting actuated
pairs. Variety may also be used to classify kinematic chainsaccording to the constraints required (Tischler et al., 1995b).

A kinematic chain is varietyV if it does not contain any loop, or subset of loops, with a mobility of less thanM − V ,
but does contain at least one loop, or subset of loops, which has a mobility ofM − V (Tischler et al., 1995b).

Classification of kinematic chains by varietyV allows generalizations to be made about the relative connectivity of
bodies within the kinematic chain therefore if a varietyV kinematic chain has a mobilityM greater than the order of the
screw system that generally prevailsλ , i.e. if M > λ , then any two links, separated by at leastλ−V joints, have relative
connectivityC ≥ λ − V . The variety of the kinematic chains also affects the choiceof the joint to be actuated. If the
Variety of a kinematic chain withj joints isV = 0, the actuated pairs may be selected at random. The Fig. 7 shows a ten
links planar kinematic chain with varietyV = 0.

6.2 Connectivity

In a kinematic chain represented by a graph G, the connectivity between two linksi andj is defined in Carboni and
Martins (2006) as

Cij = min : {Dmin[i, j], M, M ′

min, λ} (4)

whereDmin[i, j] is the minimum distance between verticesi and j of G, M is the mobility of the kinematic chain
considered,M ′

min
is the minimum mobility closed-loop biconnected subchain of G containing verticesi andj, andλ is

the order of the screw system (Carboni and Martins, 2006).
The connectivity is an important criterion for selecting kinematic chains. For example, the Fig.8 represents a closed

planar kinematic chain with mobilityM = 3, but the connectivity between any two linksi andj cannot be greater than 2.
From this simple example, it is evident that connectivity, not mobility, determines the ability of an output link to perform
a task relative to a frame.

Figure 7. Planar kinematic chain with V=0. Figure 8. Planar k. c. eliminated for the connectivity.

6.3 Redundancy

Redundancy is one of the most important parameters in a kinematic chain together with connectivity and variety. To
introduce the redundancy concept we need the degrees-of-control concept. In a kinematic chain represented by a graph
G, the degrees-of-control between two linksi andj is defined in Carboni and Martins (2006) as

Kij = min : {Dmin[i, j], M, M ′

min}. (5)

The degrees-of-controlKij between two linksi andj of a kinematic chain is the minimum number of independent
actuating pairs needed to determine the relative position between the two linksi and j, possibly leaving some other
link-relative position undetermined as whenKij is less than the mobilityM (Belfiore and Benedetto, 2000)(Carboni and
Martins, 2006).

In a kinematic chain represented by a graph G, the redundancybetween two linksi andj is the diference betweenKij

andCij

Rij = Kij − Cij . (6)
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The redundancy can be used to prevent collisions in manipulators which operate in confined environment (Simas,
2005).

7. KINEMATIC CHAINS FOR ROBOT HANDS

In this section, we examine the specific application of kinematic chains as robot hands. Our starting point is the work
described by Tischler et al., (1995a, 1995b). Our objectiveis to enumerate and to classify alternative mechanism for
robot hands. Our method is applied to generate the kinematicchains and the connectivity is applied to classify kinematic
chains that are suitable for application as robot hands. Theresults are compared with those obtained by for Tischler
et al. (1995b). The contact types suitable is point contact with friction. A point contact with friction is kinematically
equivalent to a spherical pair (Tischler et al., 1995b), thus spherical pairs are required to represent the contacts. Therefore,
if a kinematic chain with single-freedom joints is suitablefor application as a robot hand in accordance with above
specifications it must contain the subchain shown in Fig.9.

Figure 9. A three dimensional subchain representing a grasped body and three point contacts with friction which must be
included in all suitable kinematic chains for potential robot hands consistent with these specifications.

To maintain static equilibrium, three point contact with friction are required. Since three point contact are required
between the grasped object and the finger-tips, we must synthesise kinematic chains which contain at least one ternary
body. The desired connectivity of the grasped object relative to the grounded body isM = C. To synthesise one entire
robot hand, we need three spherical pairs to represent the contacts in the linkage. The only screw system which has
full-cycle mobility and can admit three distinct sphericalpairs is the general six-system,λ = 6 (Hunt et al., 1991). Since
we require a ternary body in the linkage and at least two independent loops, i.e.ν = 2.

Fractionated chains withM = 6 andν = 2 are not suitable for the specifications of robot hand. Body-fractionated
chains, with only two independent loops, do not contain a ternary body which has to be present to represent the grasped
body, hence they can be disregarded. Joint-fractionated chains, withλ = 6 andν = 2, are also unsuitable, because it is
not possible to choose a grounded body such that the grasped body has a connectivity ofC = M relative to the ground.

Table 3 shows the results for the synthesis of kinematic chains with λ = 6 andν = 2. The column 1 shows the
mobility, column 2 the total number of kinematic chains without fractionation for a given mobility, column 3 how many
of the total number of kinematic chains in column 2 contain the subchain shown in Fig. 9, column 4 the number of
useful inversions (i.e. number of choices for the grounded body, strictly only linkages can be inverted) for each of the
kinematic chains represented in column 3. Of the inversionsin column 4, the only suitable mechanisms for application as
robot hands are those which have a relative connectivity between the grasped object and the grounded body equal to the
mobility M shown in column 1.

The relative connectivity between the grasped object and the ground was calculated through the automatic method of
Carboni and Martins (2006). Tischler et al. (1995b) calculate the connectivity for the method based on the variety of the
kinematic chain. Of the inversions of column 4 were eliminated 181 chains in the total that has connectivity of grasped
object relative the groundedM < C. The suitable inversions are shown in column 5. The alternative mechanisms for
robot hands satisfying our specifications are derivatives of the inversions show in column 5 of Tab. 3.

Table 3. Synthesis of kinematic chains withλ = 6, ν = 2 and k.c’s suitable as robot hands.

1 2 3 4 5
Mobility Total number of k.c’s Unique k.c’s Useful inversions of k.c’s suitable

M without fractionating containing subchain k.c’s with subchain as robot hands
2 7 4 21 19
3 10 6 34 26
4 12 7 50 22
5 15 9 71 16
6 18 11 97 9

Figure 10 shows the kinematic chain and potential mechanismfor robot hand that operates in the general screw system
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with M = 6 andν = 2. The mechanism of Fig. 10 is known as Stanford/JPL or Salisbury’s hand (Mason and Salisbury,
1985)(Ruoff et al., 1984). The other eight structures can befound in Tischler et al. (1995b).

subchain

Figure 10. Potential mechanism known as Stanford/JPL or Salisbury’s hand.

Figure 11(a) shows a symmetrical kinematic chain and the potential mechanism for robot hand and Fig. 11(b) show
a non-symmetrical kinematic chain and the potential mechanism, both operates in the general screw system withM = 3
andν = 2. The others 24 mechanisms can be easily sketched.

The results of the Tab. 3 are in accordance with results obtained in Tischler et al. (1995b). The difference in the Tab.
3 is that Tischler et al. (1995b) enumerate fractionated kinematic chains which must be eliminated because they are not
suitable for the specifications of robot hand and our method do not enumerate fractionated kinematic chain eliminating
computational efforts for the generation and the identification these chains.

subchain

(a)

subchain

(b)

Figure 11. Potential mechanism for robot hand.

8. CONCLUSION

In this paper, we review some methods of synthesis of kinematic chains and we present our method for generation
of kinematic chains. A kinematic chain can be uniquely represented by the graph whose vertices correspond to the
links of the chain and whose edges correspond to the joints ofthe chain. Representing a kinematic chain as a graph
allows consideration of its kinematic structure with minimal reference to its geometrical proportions. This is a useful
simplification in the preliminary stages of design. The problem of the synthesis of kinematic chains is reduced to the
problem of enumeration of graphs that satisfy the mobility criterion. One of the unsolved problem in structural synthesis
is the precise elimination of all the kinematic chains structurally equivalent (i.e. isomorphism). It is necessary to study
the problem of isomorphisms and search new methods to identify the isomorphisms.

We present the criteria of variety, connectivity and redundancy to classify kinematic chains. Based in kinematic
constraint for robot hands in Mason and Salisbury (1985) summarized in Tischler et al. (1995b), we enumerate all
the kinematic chains that satisfy the mobility criterion and number of loops for robot hands. In order to identify those
kinematic chains most suitable for application as robot hands, we apply the criteria of connectivity to classify the kinematic
chains generated. One table of alternative mechanisms for robot hands is presented and is in accordance with the previous
work of Tischler et al. (1995b).

This application validates our method of automatic generation of kinematic chains and the criteria of classification
applied.
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