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Abstract. This article presents a mathematical model for kinematic analysis of vehicle suspensions using Davies’ method
and Assur virtual chains. Davies’ method considers two forms of obtaining kinematic equations: by Kirchhoff’s Circuit
Law and by Virtual Power. The kinematic chain is represented by graphs. Using Circuit Law, kinematic equations are
established between links belonging to each circuit of the kinematic chain. An Assur virtual chain is used for positioning
the chassis. The presented model is planar, has two degrees-of-freedom, and is composed by a chassis and two sets of
McPherson-type independent suspensions. The model provides roll center, tread width and camber for each position and
orientation of the chassis. The model also provides a systematic way to obtain the relative movements between any pair
of components.
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1. INTRODUCTION

There are several approaches to model vehicle dynamics representing vertical, longitudinal and lateral behavior. Ver-
tical dynamics analysis normally uses half and quarter car models (Gillespie, 1992). Longitudinal dynamics uses the
longitudinal static model in order to predict driving and breaking performances (Gillespie, 1992; Dixon, 1996; Rill,
2003). Lateral dynamics analysis uses planar models with two or four wheels in order to evaluate steering system, cor-
nering forces, steady state handling, rollover threshold and load transfers (Gillespie, 1992; Dixon, 1996; Reimpell et al.,
2001; Rill, 2003). These models normally present simplifications on suspension representation e.g. in the rollover models
(Gillespie, 1992; Hac, 2002). Including links and joints properties it is possible to represent the influence of the sus-
pension parameters (camber, toe, caster) in the dynamic behavior of the vehicle (Chen and Beale, 2003; Mántaras et al.,
2004).

The use of computational techniques to derive and solve constitutive equations which describe the behavior of the
system is a current practice. Using multi-body based softwares, suspensions can be modeled with more details including
external forces and prescribed motion (Costa Neto, 1992; Perna et al., 2000; Shabana, 2003; Chang and Joo, 2005).
However sometimes it is possible to improve the representation of the simplified model avoiding the use of more complex
and expensive techniques. In this context, this article presents a suspension planar model based on Davies’ method and
Assur kinematic chains. Such model can represent the rollover behavior of a vehicle and allows to get information not
supplied for similar models.

Davies’ method uses screw theory and graph theory together with Kirchhoff laws for build and to solve mechanisms
kinematics and statics in a concise and compact way (Davies, 2000; Campos et al., 2005). The method can be used in
vehicle modeling, particularly in such mechanical systems as suspensions and steering systems, due to the easiness of to
settle down and to solve relationships between motion (twists) and action (wrenches).

A motion screw or twist ($) is a dual vector that represents the displacement of a rigid body as a combination of
translation along a screw axis and rotation about the same axis (Gallardo et al., 2003). A twist has the form

$ =
{

ω
vO

}
(1)

where ω is the angular velocity of the considered body and vO is the velocity of the body point that is coincident with
point O, the origin of the reference system. A twist may be decomposed into its magnitude, ϕ, and its corresponding
normalized screw, $̂, i.e.

$ = $̂.ϕ =
{

s
sO × s+ λs

}
=
{
r s t u v w

}T
, (2)

where s is a unit vector pointing along the direction of the screw axis, sO is the position vector of any point on the screw
axis, and λ is the pitch (Tsai, 1999). For revolute and prismatic pairs, twists are represented, respectively, by

$̂ =
{

s
sO × s

}
and $̂ =

{
0
s

}
. (3)
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Screw theory has been applied mainly in problems related to differential kinematic and statics of serial and parallel robotic
manipulators (Tsai, 1998; Tsai, 1999; Valdiero et al., 2001; Campos et al., 2003), including analysis of redundancy
(Campos et al., 2003) and of singularities (Tsai, 1998; Martins, 2002). Fundamentals and applications on screw theory
can be found in (Hunt, 1978; Davies, 1995a; Tsai, 1999; Davidson and Hunt, 2004).

The other tool used in Davies’ method is the graph theory. A graph consists of a set of vertex connected by a set of
edges. When a graph represents a kinematic chain, the vertex represent the bodies and the edges represent the couples or
their movements. Graph theory can be found in (Davies, 1995b; Tsai, 2000; Fayet, 2000).

Besides Davies’ Method, the proposed model uses the concept of Assur virtual chain. An Assur virtual chain is a
kinematic chain composed of virtual links and virtual joints satisfying the following three properties: a) the virtual chain
is open; b) it has joints whose normalized screws are linearly independent; and c) it does not change the mobility of the
real kinematic chain (Campos et al., 2005). Using Assur virtual kinematic chain is possible to obtain information about
the movement of a kinematic chain or to impose movements on a kinematic chain. A systematic method for calculation
of the differential kinematics of manipulators an extension of Davies method, using the concept of Assur virtual chain
is presented in (Campos, 2004). This method allows to compute direct and inverse differential kinematics of serial and
parallel manipulators in an unified way.

This article presents a kinematic model of automotive suspension, aiming to apply Davies’ method together with the
concept of Assur virtual chain. The proposed model is planar and it is composed by a chassis and two wheels, which
are connected to the chassis by two McPherson type suspensions. In spite of being a quite simple model, it supplies
information on characteristic parameters of the suspensions (camber, tread width, position of roll center and position of
the center of gravity), which are not precisely represented in many models due to simplifications done in the kinematics
of the suspension.

2. METHOD

Davies’ method for kinematics is based on Kirchhoff Circulation Law. In this case, the method states that the algebraic
sum of relative velocities of kinematic pairs along any closed kinematic chain is zero (Davies, 1981). The method can
be described in ten steps: 1) Definition of kinematic chain, including Assur virtual chain; 2) Definition of the Coupling
Graph; 3) Definition of the Motion Graph; 4) Definition of the Circuit Matrix; 5) Definition of normalized screws; 6)
Definition of the unit motion matrix and the vector of motion magnitudes; 7) Definition of network unit motion matrix; 8)
Assembly of the system of equations; 9) Solution of the system; and 10) Computing of the motions matrix.

2.1 Kinematic chain

Figure 1 shows the sketch of the model. The model has a chassis, two McPherson-type suspension and two wheels
(left and right). The McPherson suspension is represented by two dampers (left and right) and two control arms (left and
right).

left
damper

chassis

right
damper

left
wheel

right
wheel

left
control arm

right
control arm

Figure 1. Sketch of the suspension mechanism.

Figure 2 shows the real kinematic chains including the Assur virtual chain. This virtual chain allows to control the
chassis displacement. Links are identified by numbers. The fixed link is link number 1. Couplings are identified by lower
cases roman letters.

2.2 Direct coupling graph

Figure 3 shows the direct coupling graph, GC , corresponding to the kinematic chain showed in Figure 2. The coupling
graph has 14 edges, (e = 14), representing the couplings, and 11 vertex (v = 11), representing the bodies. The edges are
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oriented by arrows.
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Figure 2. Kinematic chain. Figure 3. Coupling graph (GC) referring to Figure 2.

2.3 Motion graph

In the motion graph, GM , each edge of GC that represents a direct coupling of freedom f is replaced by f edges.
Each edge of GM represents a unit motion. The total number of edges of GM , F , is the gross degree of freedom of
the kinematic chain. In this case, F = 14. Figure 4 shows the motion graph, GM . The tree is formed by edges
a− b− e− f − g − h− l −m− n− o and the chords are edges c, d, i, and j.

1

2

a

g

4

5

6

7

8

b

c

e

d

i

f

l

j

h

3

9

10

11

m

n

o

Figure 4. Motion graph GM .

Figures 5 to 8 show each of the four circuits (l = 4). Each circuit is identified and oriented according to its respective
chord.
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Figure 5. Circuit c.
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Figure 6. Circuit d.
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Figure 7. Circuit i.

1

2

a

3

4

5

6

7

8

11
b

c

e

d

i

f

l

j

g

h

10

9

1

g
5

6

7

f

j

h

9

10

11

j

Figure 8. Circuit j.

2.4 Circuit matrix

The motion graph, GM , has a corresponding circuit matrix, [BM ]l,F . Each element bij is: 0 if circuit i does not
include edge j; +1 if the positive sense of circuit i is in the same direction as the positive sense of the edge j; and −1 if
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those positive sense are opposed (Davies, 2000).

[BM ]l,F = [B]4,14 =


1 0 1 0 1 0 0 0 0 0 0 −1 −1 −1
1 1 0 1 0 0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 1 1 0 1 0 1 −1 −1 −1
0 0 0 0 0 1 1 1 0 1 0 −1 −1 −1

 (4)

2.5 Definition of unit screws

Four reference frames has been defined in order to make more easy the definition of the screws. The frames are
represented in Figure 9 and their position are defined in Table 1.
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Figure 9. Global (0) and local(1, 2, and 3) reference systems.

Table 1. Position of local systems.

system position angle
x y z

1 0 0 0 θa

2 Lf 0 0 θg

3 Lm Ln 0 θo

First we define the unit screws locally and then we transform them to the global system. The reference system are:

• System 0: The global system, whose origin is on the contact point of the left wheel to the floor, and x-axis is
horizontal.

• System 1: Placed on the contact point of the left wheel to the floor and parallel with the wheel plane.

• System 2: Placed on the contact point of the right wheel to the floor and parallel with the wheel plane.

• System 3: Placed on a point in the center of the chassis and oriented with its local horizontal and vertical directions.

In order to solve position kinematics, screws $d, $e, $j , and $l are also defined in system 3.
It is possible to compute the screws using expressions (3) and the data presented in Figure 10, Figure 11, and in Tables

2 and 3.
Transformation matrices transforms the velocity state from the local references to the global reference frame (Tsai,

1999):

i$̂ =i Tj .
j $̂ (5)

where iTj is the transformation matrix of a screw in frame j to frame i, as follows

iTj =


iRj

... 03×3

· · · · · · · · ·
iWj .

iRj

... iRj

 , where iWj =

 0 −pz py

pz 0 −px

−py px 0

 , (6)
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Figure 10. Body dimensions.
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Figure 11. Magnitudes and their respective references.

Table 2. Identification and location of the couplings.

coupling type symbol system orientation position
x y z x y z

a R θa 1 0 0 1 0 0 0
b R θb 1 0 0 1 C6 C7 0
c P Lc 1 0 1 0 C5 rp 0
d R θd 1 0 0 1 C6 + C8. sin θb C7 + C8. cos θb 0
e R θe 1 0 0 1 C5 rp + Lc 0
f P Lf 0 1 0 0 0 0 0
g R θg 2 0 0 1 0 0 0
h R θh 2 0 0 1 −C6 C7 0
i P Li 2 0 1 0 −C5 rp 0
j R θj 2 0 0 1 −C6 − C8. sin θh C7 + C8. cos θh 0
l R θl 2 0 0 1 −C5 rp + Li 0

m P Lm 0 1 0 0 0 0 0
n P Ln 0 0 1 0 Lm 0 0
o R θo 0 0 0 1 Lm Ln 0
d R 3 0 0 1 −C2 −C4 0
e R 3 0 0 1 −C1 C3 0
j R 3 0 0 1 C2 −C4 0
l R 3 0 0 1 C1 C3 0

Table 3. Constants.

constant value (mm) description
C1 500 half-top width of the chassis
C2 300 half-bottom width of the chassis
C3 350 desistance between the reference point and the top of the chassis
C4 300 desistance between the reference point and the bottom of the chassis
C5 150 distance between damper and wheel
C6 50 knuckle length
C7 200 height of the lower pivot
C8 300 arm length
rp 300 tire radius

is a 3x3 skew-symmetric matrix representing the position of origin j expressed in the ith frame, and iRj is the rotation
matrix from jth frame to ith frame as follows

0R1 =

 cos θa − sin θa 0
sin θa cos θa 0

0 0 1

 0R2 =

 cos θg − sin θg 0
sin θg cos θg 0

0 0 1

 0R3 =

 cos θo − sin θo 0
sin θo cos θo 0

0 0 1

 . (7)
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Table 1 shows the position vectors iPj of the three origins of the local frames.

2.6 Unit motion matrix and vector of magnitudes

The unit motion matrix, [M̂D]d,F , has all the F unit screws of the kinematic chain, after the transformation to the
global frame.

[M̂D]d,F = [M̂D]3,14 =
[

$̂a $̂b $̂c $̂d $̂e $̂f $̂g $̂h $̂i $̂j $̂l $̂m $̂n $̂o

]
. (8)

The F magnitudes unknown are organized in the vector of magnitudes, {Φ}F,1, as

ΦF,1 = Φ14,1 =
{
wa wb vc wd we vf wg wh vi wj wl vm vn wo

}T
. (9)

2.7 Network unit motion matrix

The network unit motion matrix, [M̂N ]dl,F , represents the relation between the F unit screws, in [M̂D]d,F (expression
8), with the l circuits, defined by the circuit matrix, [BM ]l,F in expression (4). Each row of [BM ]l,F informs the unit
screws belonging to the circuit corresponding to that row. If the unit screw doesn’t belong to that circuit, a null screw is
inserted in the place. Taking account that this is a planar case, three coordinates (wx, wy e vz) are null. The dimension
of the screw system is d = 3. So, for each circuit, there is d = 3 rows in the network matrix, resulting in a d.l × F or
12× 14 matrix, as follows.

M̂N =



1 0 0 0 1 0 0 0 0 0 0 0 0 −1
0 0 − sin θa 0 m1,5 0 0 0 0 0 0 −1 0 −Ln

0 0 cos θa 0 m2,5 0 0 0 0 0 0 0 −1 Lm

1 1 0 1 0 0 0 0 0 0 0 0 0 −1
0 m5,2 0 m5,4 0 0 0 0 0 0 0 −1 0 −Ln

0 m6,2 0 m6,4 0 0 0 0 0 0 0 0 −1 Lm

0 0 0 0 0 0 1 0 0 0 1 0 0 −1
0 0 0 0 0 1 0 0 − sin θg 0 m8,11 −1 0 −Ln

0 0 0 0 0 0 −Lf 0 cos θg 0 m9,11 0 −1 Lm

0 0 0 0 0 0 1 1 0 1 0 0 0 −1
0 0 0 0 0 1 0 m11,8 0 m11,10 0 −1 0 −Ln

0 0 0 0 0 0 −Lf m12,8 0 m12,10 0 0 −1 Lm



(10)

where

m1,5 = (rp + Lc). cos θa + C5. sin θa m2,5 = (rp + Lc). sin θa − C5. cos θa

m5,2 = C7. cos θa + C6. sin θa m5,4 = (C7 + C8. cos θb). cos θa − (−C6 − C8. sin θb). sin θa

m6,2 = C7. sin θa − C6. cos θa m6,4 = (C7 + C8. cos θb). sin θa + (−C6 − C8. sin θb). cos θa

m8,11 = (rp + Li). cos θg − C5. sin θg m9,11 = −Lf + (rp + Li). sin θg + C5. cos θg

m11,8 = C7. cos θg − C6. sin θg m11,10 = (C7 + C8. cos θh). cos θh − (C6 + C − 8. sin θh). sin θg

m12,8 = −Lf + C7. sin θg + C6. cos θg m12,10 = −Lf + (C7 + C8. cos θh). sin θg + (C6 + C8. sin θh). cos(θg)

(11)

2.8 Assembly of equation system

Davies’ method states that the sum of the motion screws belonging to the same circuit is zero. For l circuits,

[M̂N ]dl,F .{Φ}F,1 = {0}dl,1, (12)

where [M̂N ]dl,F is the network unit motion matrix, defined in expression (10), and {Φ}F,1 is the vector of motion mag-
nitudes, defined in expression (9). For l independent circuits there are d.l equations imposing conditions on F unknown
magnitudes. Where there are redundant equations it is because the kinematic chain is overconstrained. The cause might
be that we have used a larger value for the dimension d than was necessary. This happens for example if we analyze a
planar kinematic chain using d = 6 (Davies, 2000). After removing redundant rows of the system, the remaining m rows
form the final system:

[M̂N ]m,F .{Φ}F,1 = {0}m,1. (13)

The nett degree of freedom of the coupling network is (Davies, 2006):

FN = F −m. (14)

In this case, m = d.l = 12, and FN = F −m = 14− 12 = 2 primary variables are necessary to describe the motion.
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2.9 Solution of the system

To obtain the solution for (13), it is necessary to identify a suitable set of FN primary variables from among the F
unknowns in Φ. Once the set has been identified, the system (13) is partitioned in two sets, as follows[

[M̂NS ]m,m

...[M̂NP ]m,FN

] {ΦS}m,1

· · ·
{ΦP }FN ,1

 = {0}m,1 (15)

where {ΦP }FN ,1 is the vector of primary magnitudes, {ΦS}m,1 is the vector of secondary magnitudes, [M̂NP ]m,FN
is

the network primary matrix, and [M̂NS ]m,m is the network secondary matrix.
In this case, the vector of primary magnitudes is

ψP =
{
vn wo

}T
(16)

and the vector of secondary magnitudes is

{ψS}12,1 =
{
wa wb vc wd we vf wg wh vi wj wl vm

}T
. (17)

The network matrices MN S and MN P are obtained by selecting the corresponding columns.
The system (13) is solved, resulting

{ΦS}m,1 = −
[
M̂NS

]−1

m,m

[
M̂NP

]
m,FN

{ΦP }FN ,1. (18)

The solution results in the secondary variables {ΦS}m,1 expressed in terms of FN primary variables {ΦP }FN ,1.

2.10 Computing the motion matrix

After the reconstruction of the vector of motion magnitudes ΦF,1, (9), the motion matrix [MD]d,F can be created by
multiplying each column of [M̂D]d,F by the corresponding element of ΦF,1 , resulting

[MD]d,F = [M̂D]d,F .diag(Φ), (19)

where diag(Φ) is a diagonal matrix with the magnitudes as the diagonal elements.

3. RESULTS

To illustrate the results, two cases of motion are presented:

Case 1: A vertical motion (heave) is applied to the chassis, with Ln varying from 400mm to 600mm. The other primary
variables are: θo = 0, L̇n = 1 m/s, and θ̇o = 0 rad/s.

Case 2: A roll movement is applied to the chassis, with Ln = 500 mm, θo varying from −10 to +10 degrees, L̇n = 0
m/s, and θ̇o = 1 rad/s.

3.1 Finding relative velocity between unconnected bodies

To find the motion between two indirectly coupled bodies i and j, it is necessary to select any path of GM in Figure
4. The velocity of the chassis in the reference frame, for example, is obtained by one of the following sums:

$a + $b + $d,
$a + $c + $e,
$m + $n + $o,
$f + $g + $h + $j ou
$f + $g + $i + $l

(20)

The magnitude of the screw represents the relative motion between the connected bodies. Figures 12 to 15 shows angular
and linear relative velocity of the bodies for 50 instant positions of the displacement. Refer to Figure 11 to identify the
components.

3.2 Relations between magnitudes

The resulting magnitudes ΦF,1 supply the geometry of the suspension: magnitudes a and g describe camber angle
displacement in both wheels. Magnitude f describes tread width, n describes chassis height, and o describes chassis roll.
For Case 1, chassis height x tread width and chassis height x camber are presented in Figures 16 and 17, respectively. For
Case 2, roll angle x tread width and roll angle x camber are presented in Figures 18 and 19, respectively.
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Figure 12. Angular velocity of left wheel couplings.
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Figure 13. Angular velocity of right wheel couplings.
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Figure 14. Linear velocity of dampers.
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Figure 15. Linear velocity of sliders f , m, and n.
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Figure 16. Chassis height x tread width.
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Figure 17. Chassis height x camber.

3.3 Getting the position of interest points

Position of roll center, can be achieved taking account the screw representing the chassis motion ($o):

$o =

 wz

vx

vy

 =


1
poy

−pox

 .wo (21)

Thus, pox coordinate is the negative of the third normalized screw component and poy coordinate is the second normalized
screw component. Figure 20 shows roll center position for Case 2.
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Figure 20. Roll center position.

4. DISCUSSION

A kinematic model of suspension based on Davies method using Assur virtual chain has been presented in this article.
The model produces displacements and relative motions between any pair of selected bodies in the kinematic chain. The
presented cases show the influence of chassis height and roll angle in camber and tread width. However, it is possible
to compute displacement and motion between any pairs of bodies of the kinematic chain. To represent other type of
suspension, is enough to change the graphs, GC and GM , the circuit matrix, [BM ]l,F , and the position and orientation
vectors of each couple. The combination of Davies’ method and Assur virtual chains is a powerful tool to automatize the
kinematics analysis. The next stage of the research is to extend the model for static analysis.
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