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Abstract. The aim of the present work is the design of a low cost autonomous chaotic oscillator that could be used
seamlessly for research or in class demonstrations. At the same time, one should be able to easily reproduce the final
system in other educational institutions. Based on these requirements, a chaotic electromechanical oscillator is proposed.
The system is comprised by a mechanical double pendulum, a DCmotor driver, and the accompanying signal processing
electronic circuits, together with an appropriate speed feedback arrangement that guarantees the existence of sustained
mechanical oscillations. In this paper, the oscillator mathematical model and its dynamical characterization from simu-
lated time-series analysis are presented. The chaotic nature of the system for different parameters, such as viscous friction
coefficients, is investigated through the estimation of theassociated largest positive Lyapunov exponent.
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1 INTRODUCTION

In the recent times, chaos theory has become widespread in the scientific literature, and more recently it has entered
the engineering domain through the use of chaotic oscillators based systems and methods in many diverse areas (Tôrres
and Aguirre, 2004; Marinho et al., 2005; Goldberger, 1990; Andrievskii and Fradkov, 2004). Indeed, in these times such
knowledge could be regarded as essential to the completion of a well thought engineering education.

In this context, the proposition of easily reproducible andvisually appealing experimental apparatus focused on the
introduction of engineering students into the chaos theoryworld is most welcome. Clearly, such experimental platforms
can also serve as supporting material in nonlinear dynamicsintroductory courses. Moreover, one expects that sound
research can be initiated based on well designed experiments (Berger and Nunes, 1997; Blackburn and Baker, 1998; Chua
et al., 1993; Laws, 2004; Shinbrot et al., 1991; Tôrres and Aguirre, 2005).

This is particularly true in the case of pendulum based systems. There is an expressive amount of traditional physical
knowledge related to observed phenomena in pendula, from Galileo-Galilei and the famous observation of a pendulum
in periodic motion in the cathedral of Pisa, through other examples found in recent literature (Fiedler-Ferrara and Prado,
1994; Monteiro, 2002). As shown in several works (Shinbrot et al., 1991; Christini et al., 1996; Zhou and Whiteman,
1996; Skeldon, 1994) for double pendulum, and in (Smith and Blackburn, 1989; Blackburn and Baker, 1998; Franca and
Savi, 2001; Laws, 2004) for simple pendulum, such systems can exhibit chaotic behavior if properly designed.

On the other hand, despite the existence of comercial experimental platforms that could be employed to demonstrate
chaotic dynamics to engineering students, the cost of a comercial system is usually in the ranges from US$1,200 up to
US$2,000 (Blackburn and Baker, 1998), which is considered high cost in many brazilian educational institutions. At
the same time, the reproduction of such comercial systems, by using local material and labor, is not possible due to the
violation of copyright laws.

Another interesting point is that it seems to lack, on the present literature, a description of a double pendulum based
system which is autonomous. These systems are usually excited by periodic external functions.

The main objective of the present paper is to present anautonomous electromechanical double pendulum experimental
platform, for educational and research purposes, whose cost is kept as low as possible such that the reproduction of the
proposed experimental system by other educational institutions in Brazil becomes feasible. Based on its mathematical
model, obtained from first principles, simulation results will be presented together with the dynamical characterization of
the system through the estimation of the largest Lyapunov exponent.

The paper is organized as follows. In Section 2, a brief historical accounting of pendulum based systems is done and
the proposed experimental platform is presented in Sections 2.1 and 2.2. In Section 2.3 a mathematical model is derived
from first principles, including friction effects to model the damping in the system. Simulation results are presented in
Section 3, where dynamical analysis is conducted to estimate the system largest Lyapunov exponent. Finally, in Section
4 conclusions related to the dynamical characterization ofthe system and to its cost are presented.
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2 AN ACTIVE DOUBLE PENDULUM

Many works can be found on the scientific literature related to the modelling and simulation of pendulum based
systems (Skeldon, 1994; Levien and Tan, 1993; Zhou and Whiteman, 1996). Real results were also reported in (Shinbrot
et al., 1991; Christini et al., 1996). Despite this, information on the use of double pendulum for educational purposes
seems to be restricted to passive (non-excited) versions, as presented in Shinbrot et al. (1991).

A key observation is that even the passive double pendulum system exhibits sensitivity to initial conditions (Shinbrot
et al., 1991). However, in the absence of excitation, the system tends to stop due to the energy lost to overcome friction
forces. Therefore, chaotic behavior is not possible in thiscase, once the required transitivity property cannot be verified,
which violates the definition of chaos according to Devaney (1992).

In order to design a mechanical apparatus capable of exhibiting sustained oscillations, it is necessary to continuosly
provide energy to the system. As it will be shown in the next section, this is accomplished in the proposed platform in
such a way that the overall system remains autonomous.

2.1 General Description

The proposed experimental system is presented in Fig.1a. The apparatus is comprised by two bars linked to form a
double pendulum. A DC motor drive is used to supply energy to the system by applying torque on the first bar; which
rotates together with the rotor of the DC motor. The angular position of the bars in the double pendulum are denoted by
θ1 andθ2, as shown in Fig.1, with corresponding angular speedsθ̇1 and θ̇2. The torque applied by the DC motor drive
is a function ofθ1 andθ̇1, denoted byG(θ1, θ̇1) in the figure, such that the overall system remains autonomous; i.e. no
external excitation explicitly dependent on time is applied, as it would be the case, for example, if a periodic forcing
function was employed. In Fig.1b a signal flow diagram is depicted showing how bar 1 position and speed signals are fed
back into the system.
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Figure 1. (a) Proposed apparatus – a double pendulum connected to a DC motor drive. (b) Signal flow block diagram.

The command subsystem block, shown in Fig.1b, generates full or zero DC voltage commands to the motor drive
subsystem, based on the signals provided by the sensorsS1 andS2. An issued full DC voltage command is such that
it has always the same sign ofθ̇1. In this way, the motor drive torque always act in the same instantaneous direction of
rotation of bar 1. However, this only occurs when|θ1| < γ, whereγ is a limit angle. If|θ1| ≥ γ, a zero DC voltage
command is sent to the DC motor drive subsystem, and it becomes a short-circuited DC generator.

The motor drive subsystem is comprised by an electrical universal motor; taken from a domestic AC sewing machine,
and adapted to work as a DC motor by properly exciting its fieldwinding. An H-bridge electronic circuit is used to reverse
the polarity of the full DC voltage applied to the motor drivearmature coil, and also to short-circuit the motor terminals
when|θ1| ≥ γ. In both cases, the circulation of an instantaneous armature currentia is allowed.

The sensorS1 is implemented by using an infrared light emitting diode – LED and phototransistor matched pair,
together with a small transparent plastic disc painted suchthat a high logic level is produced only when|θ1| < γ. Sensor
S2 is a tiny DC motor bonded to the DC motor drive axis, acting as aDC generator, such that a signal proportional toθ̇1
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is produced. The output signals from sensorsS1 andS2 are such that they can be modelled by the following expressions:

S1(θ1) =

{

0, if |θ1| ≥ γ;
1, if |θ1| < γ;

S2(θ̇1) = kω θ̇1; (1)

wherekω ∈ R
+ is a constant.

The operation of the motor drive subsystem can be summarizedas shown in Table 1, which reveals that this subsystem
is designed to provide energy to the double pendulum whenever |θ1| < γ.

Table 1.Motor drive operation.

Sensors Outputs Motor States

S1(θ1) S2(θ̇1)

1 > 0 Driven to rotate in the clockwise direction.

1 < 0 Driven to rotate in the counterclockwise direction.

S1(θ1) = 0 Short-circuited DC generator.

2.2 Mechanical Apparatus

The mechanical design of the proposed system follows closely the work presented by Shinbrot et al. (1991). However,
small modifications were added to adequately incorporate the excitation from the DC motor drive.

The bar 1 in the double pendulum is actually formed by two aluminum rectangular pieces, with dimensions0.27m ×
0.032m × 0.006m, and total mass (bar 1)m1 = 0.152kg, joined so that double pendulum bar 2 can execute a complete
revolution, as shown in Fig.2. The interconnection betweenbars 1 and 2 is done using a steel axis, located in theJ point
shown in Fig.1a.

DC motor

bar2

bar1

Double pendulum

sensorS2

support with ball bearings

sensorS1

ball bearing

Figure 2. Proposed apparatus – lateral view.

Bar 2 is also a retangular aluminum piece, with dimensions0.216m× 0.032m× 0.013m, fixed to the middle point of
the aforementioned steel axis. The axis is supported by two ball bearings, each one fixed at one of the aluminum pieces
that comprise bar 1 (Fig.2). In this way, bar 2 can rotate freely around theJ point, while bar 1 rotates around theO point,
as shown in Fig.1a, fixed to the DC motor drive axis.



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

The mechanical system inertia can be computed from the dimensions of bars 1 and 2 together with the densityρ of
the aluminum material employed in the pendulum construction (ρ = 2, 700kg/m

3). The motor inertiaMm is computed
separately by performing independent experiments, and it was found to beMm = 22 × 10−6kg.m2.

The DC motor drive axis is extended by the connection to a stainless steel round rod that goes through two supporting
ball bearings, which are fixed at aluminum blocks attached toa base made of steel (Fig.2). The plastic disc of sensorS1

is fixed to this rod.
The total friction in the system can be accounted for by considering the viscous friction in all the supporting ball

bearings mentioned above, together with the viscous friction in the bearings used in the DC motor drive construction, and
the air resistance to the movements of bars 1 and 2. The momentproduced by these viscous friction forces are considered
to be proportional to instantaneous angular speed. Despiteof being constants, the opposing friction forces (Coulomb
friction) at the DC motor drive bearings and at all the other ball bearings are also taken into account.

All the friction forces are considered to be applied at pointsO andJ in Fig.1a. At the pointO, the total viscous friction
coefficient is denoted bybm1, and the Coulomb friction is represented bybm2. At the pointJ , the total viscous friction
coefficient is denoted byb3, and the Coulomb friction is represented byb4.

2.3 Mathematical Equations

The point of origin of an inertial reference frame is defined to be theO point in Fig.1a. The equations of motion can
be derived from the application of Steiner’s theorem and Newton laws at each center of mass – c.m. of each bar, such that:

∑

Fx = mac,x,
∑

Fy = mac,y,
∑

MO = IO θ̈, (2)

where
∑

Fx is the total force acting in thex direction;
∑

Fy is the total force acting in they direction;ac,x andac,y

are the horizontal and vertical accelerations of the c.m. ofeach bar relative to the inertial reference frame;MO is the
total moment around theO point for a specific bar;IO is the bar moment of inertia aroundO; andθ̈ is the corresponding
angular acceleration.

Let m1 andm2 be the masses of bars 1 and 2, respectively, andl1 andl2 its corresponding lengths.
The forces acting on the systems are the bars weightsm1g andm2g; whereg is the acceleration of gravity (g =

9.8m/s
2); the torqueG(θ1, θ̇1) applied by the DC motor drive, the viscous and Coulomb friction forces on bar 1, denoted

by bm1θ̇1 + bm2 sgn(θ̇1), and the corresponding viscous and Coulomb friction forceson bar 2, denoted byb3(θ̇2 − θ̇1) +
b4 sgn(θ̇2 − θ̇1). There are also internal forcesJx andJy that keep the bars connected. Free-body diagrams, for each bar,
are depicted in Fig.3.
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Figure 3. Double pendulum free-body diagrams. (a) Bar 1 and (b) bar 2.

By applying equations (2) to the free-body diagrams shown inFig.3, one has that, for bar 1:

−m1 g
l1 sen(θ1)

2
+Jy l1 sen(θ1)+Jx l1 cos(θ1)− bm1 θ̇1− bm2 sgn(θ̇1)+G(θ1, θ̇1) =

(

1

3
m1 l21 + Mm

)

θ̈1, (3)
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and, for bar 2,

Jx
l2 cos(θ2)

2
+ Jy

l2 sen(θ2)

2
− b3 (θ̇2 − θ̇1) − b4 sgn(θ̇2 − θ̇1) =

1

12
m2 l22 θ̈2. (4)

The internal forcesJx andJy, acting at theJ point, are related by

Jx = −m2 aC2,x Jy = −m2 aC2,y − m2 g,

whereaC2,x andaC2,y are the horizontal and vertical acceleration of the bar 2 c.m.. The accelerationaC2
is the sum of the

J point accelerationaJ , with the relative accelerationaC2/J of the bar 2 c.m. relative to theJ point: aC2
= aJ + aC2/J .

The accelerationaC2
can be determined based on the concept of relative movement (Meriam and Kraige, 2003), such that

~aC2
= ~̈θ1 × ~rJ/O + ~̇θ1 × (~̇θ1 × ~rJ/O) + ~̈θ2 × ~rC2/J + ~̇θ2 × (~̇θ2 × ~rC2/J) (5)

where~rJ/O = l1 (sen(θ1)~i − cos(θ1)~j), and~rC2/J = l2
2

(sen(θ2)~i + cos(θ2)~j).
To find the equations for̈θ1 and θ̈2 it is necessary to consider the torque,G(θ1, θ̇1), as a function of the DC motor

drive armature current,ia, such that:

G(θ1, θ̇1) = Kt ia(θ1, θ̇1), (6)

i̇a =
V (θ1, θ̇1) − Ks θ̇1 − Ra ia

La
, (7)

whereKt, Ks, Ra andLa are DC motor drive constructive parameters, andV (θ1, θ̇1) is the voltage applied to armature
coil.

From the above relations, and back substitution into equations 3 and 4, it is possible to isolate the following equations
for θ̈1 andθ̈2:

θ̈1 =

(

−3 g l1 sin(θ1) (4 m1 + 5 m2) + 9 m2 l1 (g sin(−θ1 + 2 θ2) + l1 θ̇2
1 sin(2 β)) + 12 m2 l1 l2 θ̇2

2 sin(β)

8 Mm + 8 m1 l21 + 15 m2 l21 − 9 m2 l21 cos(2 β)
+

36 l1 cos(β) (b4 sgn(β̇) + bm2 β̇) − 24 l2 ( bm1 θ̇1 − Kt ia(θ1, θ̇1) + bm2 sgn(θ̇1) ))

l2 (8 Mm + 8 m1 l21 + 15 m2 l21 − 9 m2 l21 cos(2 β))

)

, (8)

θ̈2 =

(

−24 (bm2 β̇ (Mm + m1 l21 + 3 m2 l21) + b4 sgn(β̇) (Mm + m1 l21 + 3 m2 l21))

m2 l22 (8 Mm + 8 m1 l21 + 15 m2 l21 − 9 m2 l21 cos(2 β))
+

−12 l1 θ̇2
1 sin(β) (Mm + m1 l21 + 3 m2 l21) − 9 l21 g sin(−2 θ1 + θ2) (m1 + 2 m2)

l2 (8 Mm + 8 m1 l21 + 15 m2 l21 − 9 m2 l21 cos(2 β))
+

−36 l1 cos(β)Kt ia(θ1, θ̇1) − bm1 θ̇1 − bm2 sgn(θ̇1)) − 3 sin(θ2) g (m1 l21 + 6 m2 l21 + 4 Mm)

l2 (8 Mm + 8 m1 l21 + 15 m2 l21 − 9 m2 l21 cos(2 β))
+

−9 m2 l21 θ̇2
2 sin(2 β)

8 Mm + 8 m1 l21 + 15 m2 l21 − 9 m2 l21 cos(2 β)

)

, (9)

i̇a =

(

V (θ1, θ̇1) − Ks θ̇1 − Ra ia
La

)

. (10)

Whereβ = θ2 − θ1 andβ̇ = θ̇2 − θ̇1.

3 SIMULATION RESULTS AND TIME SERIES ANALYSIS

The model was simulated using a fourth order Runge-Kutta method. It has been used different values for damping
coefficients. A time series of angular speedθ̇1 of bar1 was used to estimate the greatest Lyapunov exponent for each
case. Table 2 shows the damping coefficients used for simulations, the other parameters are shown in Table 3.
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Table 2.Damping coefficients values used in each simulation.

Parameters Simulation

bm1 bm2 b3 b4 Voltage applied to motor†

0.0010 0.0010 0.000015 0.00015 30V 1

0.0014 0.0014 0.000017 0.00017 30V 2

0.0025 0.0025 0.000019 0.00019 30V 3

† Applicable maximum voltage regarding to current limits.

Table 3.Parameters and values used in simulations.

Parameters ks kt γ Ra La l1 l2 m1 m2 Mm

Values 0.0358 0.0358 1.05 32 0.03 0.273 0.216 0.297 0.236 22 · 10−6

Units −− −− rad Ω H m m kg kg kg.m2

The values of constants used in the simulation procedure areshown in Table 3. For the reconstruction of the phase
space, it has been used the mutual information method to specify a suitable delay. The immersion dimension was calcu-
lated by means of false neighbors and Lyapunov exponent was determined by the algorithm proposed by Kantz (1994).
All algorithms have been implemented in the TISEAN toolbox (Hegger et al., 1999). The results are shown in Table 4.

Lyapunov exponents were estimated using the immersion dimensions5, 6 and7. An average of the three values was
obtained with the corresponding sample variance. In the simulations1 and2 the Lyapunov exponents were positive,
which may indicate a chaotic regime. For simulation3, the results show that the trajectory is not convergent and neither
divergent, that is, the Lyapunov exponent is null and the regime is periodic. Figure 4 shows the phase space ofθ1 andθ̇1

for each case.
Figures 4a and 4b show a projection over the strange atractorof the system. Figure 4c shows periodic behavior

observed in simulation3.

4 CONCLUSIONS

In this paper, the design and dynamical characterization ofan active double pendulum electromechanical system was
presented. From the perspective of a low cost based system, the system proposed was designed using a DC motor, a
mechanical pendulum and an electronic apparatus to guarantee a sustained mechanical oscillations.

It is possible to summarize the following points. Firstly, regarding the damping, there is a limit above which the system
exhibits only periodic motion, and the sensitivity to initial conditions is lost. However, this problem can be avoided by
using a more powerful dc motor.

The results obtained by working with chaotic time series must be used with care, because the mathematical procedure
to find the greatest Lyapunov exponent assumes an infinite time series, which is unfeasible in both numerical simulations
and in experiments. The results from the analysis indicate apositive Lyapunov exponent, thus the existence of a chaotic
regime.

The proposed experimental system is being developed at Universidade Federal de Minas Gerais and the cost of a first
prototype is approximately US$200.00.

By the time of the end of the present paper revision process, preliminary practical results were obtained and the
corresponding dynamical characterizarion is being performed. These real results will be submitted to publication in a
near future.

Table 4.Analysis of the simulated time series (θ̇1), and used parameters to reconstruct the phase space.

Simulation Delay (Mutual Information) Dimension (False neighbors)Lyapunov Exponent:λ1

1 36 5 (0.4%), 7 (0.02%) 1.39 ± 0.25

2 35 5 (0.4%), 7 (0.06%) 1.24 ± 0.17

3 8 1 0‡

‡ Expected values for periodic systems.
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Figure 4. Phase portrait of the proposed systems - The greatest Lyapunov exponent (λ1): (a) λ1 = 1.39 ± 0.25; (b)
λ1 = 1.24 ± 0.17; (c) λ1 = 0
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