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Abstract. The aim of the present work is the design of a low cost autonsmbaotic oscillator that could be used
seamlessly for research or in class demonstrations. At dneestime, one should be able to easily reproduce the final
system in other educational institutions. Based on theg@irements, a chaotic electromechanical oscillator ispmeed.
The system is comprised by a mechanical double pendulum,®@@ driver, and the accompanying signal processing
electronic circuits, together with an appropriate speeedieack arrangement that guarantees the existence of sestai
mechanical oscillations. In this paper, the oscillator imatnatical model and its dynamical characterization fromusi
lated time-series analysis are presented. The chaoticeatithe system for different parameters, such as viscaatofn
coefficients, is investigated through the estimation obtfsociated largest positive Lyapunov exponent.
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1 INTRODUCTION

In the recent times, chaos theory has become widespread stidntific literature, and more recently it has entered
the engineering domain through the use of chaotic osciidiased systems and methods in many diverse areas (Torres
and Aguirre, 2004; Marinho et al., 2005; Goldberger, 199Aevskii and Fradkov, 2004). Indeed, in these times such
knowledge could be regarded as essential to the complet@mell thought engineering education.

In this context, the proposition of easily reproducible amsiially appealing experimental apparatus focused on the
introduction of engineering students into the chaos thaamld is most welcome. Clearly, such experimental platform
can also serve as supporting material in nonlinear dynamiosductory courses. Moreover, one expects that sound
research can be initiated based on well designed expemsridatger and Nunes, 1997; Blackburn and Baker, 1998; Chua
etal., 1993; Laws, 2004; Shinbrot et al., 1991; Torres andirkg, 2005).

This is particularly true in the case of pendulum based syst& here is an expressive amount of traditional physical
knowledge related to observed phenomena in pendula, frdifeG&alilei and the famous observation of a pendulum
in periodic motion in the cathedral of Pisa, through othexregles found in recent literature (Fiedler-Ferrara and®ra
1994; Monteiro, 2002). As shown in several works (Shinbtatle 1991; Christini et al., 1996; Zhou and Whiteman,
1996; Skeldon, 1994) for double pendulum, and in (Smith aladiburn, 1989; Blackburn and Baker, 1998; Franca and
Savi, 2001; Laws, 2004) for simple pendulum, such system®xhibit chaotic behavior if properly designed.

On the other hand, despite the existence of comercial erpetal platforms that could be employed to demonstrate
chaotic dynamics to engineering students, the cost of a cwaheystem is usually in the ranges from US$1,200 up to
US$2,000 (Blackburn and Baker, 1998), which is consideiigh host in many brazilian educational institutions. At
the same time, the reproduction of such comercial systeynssing local material and labor, is not possible due to the
violation of copyright laws.

Another interesting point is that it seems to lack, on thesgn¢ literature, a description of a double pendulum based
system which is autonomous. These systems are usuallgemjtperiodic external functions.

The main objective of the present paper is to preseatdmnomous electromechanical double pendulum experahent
platform for educational and research purposes, whose cost is gdpivaas possible such that the reproduction of the
proposed experimental system by other educational ifistitsi in Brazil becomes feasible. Based on its mathematical
model, obtained from first principles, simulation resultd be presented together with the dynamical charactadnaif
the system through the estimation of the largest Lyapunporent.

The paper is organized as follows. In Section 2, a brief hisdbaccounting of pendulum based systems is done and
the proposed experimental platform is presented in Sexflohand 2.2. In Section 2.3 a mathematical model is derived
from first principles, including friction effects to modéie damping in the system. Simulation results are presented i
Section 3, where dynamical analysis is conducted to estithat system largest Lyapunov exponent. Finally, in Section
4 conclusions related to the dynamical characterizatidgh@gystem and to its cost are presented.
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2 AN ACTIVE DOUBLE PENDULUM

Many works can be found on the scientific literature relaedhe modelling and simulation of pendulum based
systems (Skeldon, 1994; Levien and Tan, 1993; Zhou and Wihite 1996). Real results were also reported in (Shinbrot
et al., 1991; Christini et al., 1996). Despite this, infotioa on the use of double pendulum for educational purposes
seems to be restricted to passive (non-excited) versisnEesented in Shinbrot et al. (1991).

A key observation is that even the passive double pendulgtesyexhibits sensitivity to initial conditions (Shinbrot
et al., 1991). However, in the absence of excitation, théesysends to stop due to the energy lost to overcome friction
forces. Therefore, chaotic behavior is not possible in¢hise, once the required transitivity property cannot béiedy
which violates the definition of chaos according to Devari9e).

In order to design a mechanical apparatus capable of exiglstistained oscillations, it is necessary to continuosly
provide energy to the system. As it will be shown in the nextise, this is accomplished in the proposed platform in
such a way that the overall system remains autonomous.

2.1 General Description

The proposed experimental system is presented in Fig.la.apparatus is comprised by two bars linked to form a
double pendulum. A DC motor drive is used to supply energyhéodystem by applying torque on the first bar; which
rotates together with the rotor of the DC motor. The angutesition of the bars in the double pendulum are denoted by
0, andd,, as shown in Fig.1, with corresponding angular speedandd,. The torque applied by the DC motor drive
is a function off; andé;, denoted byG (61, 91) in the figure, such that the overall system remains autonsmi@i no
external excitation explicitly dependent on time is apglias it would be the case, for example, if a periodic forcing
function was employed. In Fig.1b a signal flow diagram is degal showing how bar 1 position and speed signals are fed
back into the system.
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Figure 1. (a) Proposed apparatus — a double pendulum cauhtech DC motor drive. (b) Signal flow block diagram.

The command subsystem block, shown in Fig.1b, generatesrfaero DC voltage commands to the motor drive
subsystem, based on the signals provided by the sefsaad.S;. An issued full DC voltage command is such that
it has always the same sign &f. In this way, the motor drive torque always act in the samgairtaneous direction of
rotation of bar 1. However, this only occurs whgh| < ~, where~ is a limit angle. If|6;| > ~, a zero DC voltage
command is sent to the DC motor drive subsystem, and it besarsbort-circuited DC generator.

The motor drive subsystem is comprised by an electricalaraal motor; taken from a domestic AC sewing machine,
and adapted to work as a DC motor by properly exciting its figltling. An H-bridge electronic circuit is used to reverse
the polarity of the full DC voltage applied to the motor dremature coil, and also to short-circuit the motor ternsnal
when|6;| > ~. In both cases, the circulation of an instantaneous armaturent,, is allowed.

The sensorS; is implemented by using an infrared light emitting diode -CLBnd phototransistor matched pair,
together with a small transparent plastic disc painted shatha high logic level is produced only whéh | < ~. Sensor
S, is a tiny DC motor bonded to the DC motor drive axis, acting &Cagenerator, such that a signal proportionalto
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is produced. The output signals from sensgrsand.S; are such that they can be modelled by the following exprassio

S1(61) :{

wherek,, € Rt is a constant.
The operation of the motor drive subsystem can be summaaizetown in Table 1, which reveals that this subsystem
is designed to provide energy to the double pendulum when@éve< ~.

Table 1.Motor drive operation.

Sensors Outputs Motor States

S1(61) | Sa(6h)
1 >0 Driven to rotate in the clockwise direction.
1 <0 Driven to rotate in the counterclockwise direction.
S1(61) =0 Short-circuited DC generator.

2.2 Mechanical Apparatus

The mechanical design of the proposed system follows gidkelwork presented by Shinbrot et al. (1991). However,
small modifications were added to adequately incorpora&exicitation from the DC motor drive.

The bar 1 in the double pendulum is actually formed by two atwm rectangular pieces, with dimensidh87m x
0.032m x 0.006m, and total mass (bar 1), = 0.152kg, joined so that double pendulum bar 2 can execute a complete
revolution, as shown in Fig.2. The interconnection betweens 1 and 2 is done using a steel axis, located itheint
shown in Fig.1a.
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Figure 2. Proposed apparatus — lateral view.

Bar 2 is also a retangular aluminum piece, with dimensib2s6m x 0.032m x 0.013m, fixed to the middle point of
the aforementioned steel axis. The axis is supported by aildbarings, each one fixed at one of the aluminum pieces
that comprise bar 1 (Fig.2). In this way, bar 2 can rotatelyramound the/ point, while bar 1 rotates around thepoint,
as shown in Fig.1a, fixed to the DC motor drive axis.
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The mechanical system inertia can be computed from the diimes of bars 1 and 2 together with the dengityf
the aluminum material employed in the pendulum constradjo= 2, 700kg/m3). The motor inertial/,,, is computed
separately by performing independent experiments, andstfaund to be/,,, = 22 x 10~ %kg.m?.

The DC motor drive axis is extended by the connection to alstss steel round rod that goes through two supporting
ball bearings, which are fixed at aluminum blocks attachealltase made of steel (Fig.2). The plastic disc of sefgor
is fixed to this rod.

The total friction in the system can be accounted for by aeréng the viscous friction in all the supporting ball
bearings mentioned above, together with the viscousdridti the bearings used in the DC motor drive constructiod, an
the air resistance to the movements of bars 1 and 2. The mgrezhiced by these viscous friction forces are considered
to be proportional to instantaneous angular speed. Desplteing constants, the opposing friction forces (Coulomb
friction) at the DC motor drive bearings and at all the othat bearings are also taken into account.

All the friction forces are considered to be applied at ppintand.J in Fig.1a. At the poin©, the total viscous friction
coefficient is denoted by,,;, and the Coulomb friction is representedy.. At the point.J, the total viscous friction
coefficient is denoted bls, and the Coulomb friction is representediy

2.3 Mathematical Equations

The point of origin of an inertial reference frame is definedbé theO point in Fig.1a. The equations of motion can
be derived from the application of Steiner’s theorem and ftdaMaws at each center of mass — c.m. of each bar, such that:

ZFQE = Macg, ZFU = MAac,y, ZMO = IOé7 (2)

where} " F, is the total force acting in the direction; F), is the total force acting in thg direction; a. . anda,,
are the horizontal and vertical accelerations of the c.meawh bar relative to the inertial reference framé&; is the
total moment around th@ point for a specific bar]o is the bar moment of inertia arouii@t andd is the corresponding
angular acceleration.

Letm; andms be the masses of bars 1 and 2, respectively/aaddl; its corresponding lengths.

The forces acting on the systems are the bars weights andmsg; whereg is the acceleration of gravityy(=
9. 8m/5 ); the torqueG (s, 91) applied by the DC motor drive, the viscous and Coulomb fitfiorces on bar 1, denoted
by b 191 + bma 5gn(01) and the corresponding viscous and Coulomb friction foorebar 2, denoted blx;(eg - 91)
ba sgn(92 — 91) There are also internal forcds and.J,, that keep the bars connected. Free-body diagrams, for each b
are depicted in Fig.3.

b3 (92 — 91) + by Sgn(éz — 91)

. . l2
bm161 + b2 sgn(01)

@ (b)
Figure 3. Double pendulum free-body diagrams. (a) Bar 1 bjpddr 2.

By applying equations (2) to the free-body diagrams showkign3, one has that, for bar 1:

l 0 . . . 1 .
_mlg%(ﬂuyzl sen(61) + Ju 1y co8(01) — b1 61— bz sgn(6y) + G(61, 61) = <§m1 12 +Mm) i, 3)
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and, for bar 2,

o cos(6 I sen (6 . . . . 1 ..
I 2 2( 2) +Jy, 2 2( 2) — b3 (02 —01) — by sgn(bs — 61) = ﬁlegeT (4)

The internal forced, and.J,, acting at the/ point, are related by

Jp = —ma aCy,z Jy = —M20acC,,y —M24g,

whereac, . andac, , are the horizontal and vertical acceleration of the bar 2.cTime acceleratioac, is the sum of the
J point acceleration ;, with the relative acceleratiarn, , ; of the bar 2 c.m. relative to thé point: ac, = a; + ac,, ;-
The acceleration, can be determined based on the concept of relative moveivienigin and Kraige, 2003), such that

iy, =01 x Fyj0 + 01 x (01 X 7y0) + 02 X Ty g+ 02 x (02 X 7cy/5) (5)
wherer; o = 11 (sen(01) i — cos(01) ), andic,,; = 2 (sen(6s) i+ cos(6s) 7).
To find the equations fof, andd it is necessary to consider the torqd&, 91), as a function of the DC motor
drive armature current,,, such that:

G(01,01) = Kpia(01, 61), (6)
V(ela 91) _L*Kvsel_‘Rala7 (7)

lq =

whereK:, K, R, andL, are DC motor drive constructive parameters, &fd,, 91) is the voltage applied to armature
coil.

From the above relations, and back substitution into eqoat8 and 4, it is possible to isolate the following equations
for 6, andf,:

i — —3glysin(01) (dmy1 +5ma) +9maly (gsin(—61 +2602) + 1 9% sin(20)) +12maly lo 9% sin(() n
e 8 My, 4+ 8my 12 + 15ma 1 — 9ma 13 cos(2 3)

(8)

36 ll COS(ﬁ) (b4 sgn(ﬂ) + me ﬁ) —24 l2 (bml 91 — Kt ia(91, 91) + bmg sgn(él) ))
lo (8 My, + 8my 12 + 15mal? — 9myl? cos(23)) ’

i <_24 bz B (My +my 12 + 3ma12) + by sgn(B) (M, + my 12 + 3ma 12))
maol3 (8 My, +8my 13 + 15ma 12 — 9ma 2 cos(2 3))
—1211 62 sin(B) (My, +m1 12 +3ma13) — 912 g sin(—261 + 65) (my + 2my)
lo (8 My, +8my 12 + 15mal3 — 9mal? cos(23))
—3611 cos(0) Ky ia (01, 01) — b1 01 — bma sgn(6:1)) — 3 sin(fa) g (my 13 +6mal? + 4 M,,)
lo (8 My, +8my 12 + 15mal3 — 9ma i3 cos(2 3)) +

—9my 12 03 sin(2 ) )

9
8 My, +8my 13 + 15ma 3 — 9ma 13 cos(2 3) ©)

- <V(91791)—]:Ks91—3a2a>_ (10)

Wheres3 = 6, — 6, andj3 = 65 — 6;.
3 SIMULATION RESULTS AND TIME SERIES ANALYSIS

The model was simulated using a fourth order Runge-Kuttdaget It has been used different values for damping
coefficients. A time series of angular spegdof bar1 was used to estimate the greatest Lyapunov exponent for each
case. Table 2 shows the damping coefficients used for simngathe other parameters are shown in Table 3.
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Table 2.Damping coefficients values used in each simulation.

Parameters Simulation
b1 bino bs by \oltage applied to motdr

0.0010 | 0.0010 | 0.000015 | 0.00015 30V 1

0.0014 | 0.0014 | 0.000017 | 0.00017 30V 2

0.0025 | 0.0025 | 0.000019 | 0.00019 30V 3

1 Applicable maximum voltage regarding to current limits.

Table 3.Parameters and values used in simulations.
Parameterg &, kg ¥ R, | L, 1 ly mi mo M,,

Values | 0.0358 | 0.0358 | 1.05 | 32 | 0.03 | 0.273 | 0.216 | 0.297 | 0.236 | 22-10~¢
Units - —— rad | Q H m m kg kg kg.m?

The values of constants used in the simulation procedurshenen in Table 3. For the reconstruction of the phase
space, it has been used the mutual information method tafgesuitable delay. The immersion dimension was calcu-
lated by means of false neighbors and Lyapunov exponent et@smdined by the algorithm proposed by Kantz (1994).
All algorithms have been implemented in the TISEAN toolbbbegger et al., 1999). The results are shown in Table 4.

Lyapunov exponents were estimated using the immersionrdiiorss, 6 and7. An average of the three values was
obtained with the corresponding sample variance. In thailsitions1 and2 the Lyapunov exponents were positive,
which may indicate a chaotic regime. For simulatiyrihe results show that the trajectory is not convergent aitther
divergent, that is, the Lyapunov exponent is null and thémegs periodic. Figure 4 shows the phase spads @ndd;
for each case.

Figures 4a and 4b show a projection over the strange atrattibre system. Figure 4c shows periodic behavior
observed in simulatioB.

4 CONCLUSIONS

In this paper, the design and dynamical characterizati@naictive double pendulum electromechanical system was
presented. From the perspective of a low cost based systensystem proposed was designed using a DC motor, a
mechanical pendulum and an electronic apparatus to gesrargustained mechanical oscillations.

Itis possible to summarize the following points. FirstBgarding the damping, there is a limit above which the system
exhibits only periodic motion, and the sensitivity to ialtconditions is lost. However, this problem can be avoidgd b
using a more powerful dc motor.

The results obtained by working with chaotic time seriesthesused with care, because the mathematical procedure
to find the greatest Lyapunov exponent assumes an infiniged@ries, which is unfeasible in both numerical simulations
and in experiments. The results from the analysis indicgtesitive Lyapunov exponent, thus the existence of a chaotic
regime.

The proposed experimental system is being developed aetsiilade Federal de Minas Gerais and the cost of a first
prototype is approximately US#)0.00.

By the time of the end of the present paper revision procesdinpnary practical results were obtained and the
corresponding dynamical characterizarion is being peréat. These real results will be submitted to publication in a
near future.

Table 4.Analysis of the simulated time seri#s) and used parameters to reconstruct the phase space.

Simulation | Delay (Mutual Information)| Dimension (False neighbors)Lyapunov Exponent,
1 36 5(0.4%), 7(0.02%) 1.39 £+ 0.25
2 35 5(0.4%), 7(0.06%) 1.24 £ 0.17
3 8 1 0t

1 Expected values for periodic systems.
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(a) Simulationl (b) Simulation2
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Figure 4. Phase portrait of the proposed systems - The gtdatepunov exponent\(): (a) Ay = 1.39 + 0.25; (b)
M =124 4+ 017 ()N =0
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