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Summary. The estimates of the size and shape of the plastic zones, traditionally used in Linear Elastic Fracture 
Mechanics (LEFM), are based on the supposition that the stress intensity factor (SIF) KI (or KII or KIII) is the only 
necessary parameter to describe them. However, when the linear elastic stress analysis problem is solved in an Inglis 
plate, or the cracked infinite plate is analyzed using the stresses generated by the complete Westergaard function, it is 
verified that those traditional estimates significantly underestimate the position of the elastoplastic border. This 
happens because those solutions ignore the influence of the nominal stress on the stress field. However, as in most of 
the practical cases nominal stresses of up to 80% of the yielding strength are used, it is worthwhile to generate better 
estimates ahead for the plastic zones of the cracks, which are presented in this work. 
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1. INTRODUCTION 

 
The border pz(θ) of the plastic zone around the tip of a crack under mode I can be estimated using only the linear 

elastic stresses generated by KI, superimposing the effect of all stress components through Tresca or Mises, and 
equating the result with the yielding strength Sy (Anderson, 2005; Barson, 1987; Barson and Rolfe, 1999; Broek, 1986; 
Broek, 1988; Gdoutos, 2006; Sanford, 1997; Sanford, 2003; Whittaker et al., 1992). To visualize the several 
elastoplastic borders of the several plastic zones pz(θ) that can be estimated, one can plot pzσ(θ)/pz0 = [f(θ)]2 obtained 
from Tresca and Mises under plane stress, and repeat this exercise under plane strain plotting pzε(θ)/pz0 to compare 
them using the same scale. In this way, the plastic zone sizes calculated from Mises and Tresca in mode I are given by 
(Unger, 2001) 

 
2 2 2 2

yI
2 2 2 2 2

yI

pz( plane ) ( K 2 S ) cos ( 2 ) [ 1 3 sin ( 2 )]
Mises

pz( p l a n e ) ( K 2 S ) cos ( 2 ) [( 1 2 ) 3 sin ( 2 )]

⎧ − σ = π ⋅ θ ⋅ + θ⎪
⎨

− ε = π ⋅ θ ⋅ − ν + θ⎪⎩               (1) 
2 2 2 2

yI
2 2

12 2
yI 2 1

1

pz( plane ) ( K 2 S ) cos ( 2 ) [ 1 sin( 2 ) ]
Tresca cos ( 2 ) [ 1 2 sin( 2 ) ] ,

pz( plane ) ( K 2 S )
sin , 2 sin ( 1 2 )−

⎧ − σ = π ⋅ θ ⋅ + θ
⎪⎪ ⎧ θ ⋅ − ν + θ θ < θ⎨ ⎪− ε = π ⋅ ⎨⎪

θ θ ≥ θ ≡ − ν⎪⎪ ⎩⎩               (2) 
 
But the development of Irwin’s solution, obtained from Westergaard’s stress function 
 
σy = σ⋅(x + a)/√[(x + a)2 − a2] ≅ σa/√(2ax) = σ√(πa)/√(2πx) = KI /√(2πx)      (3) 

 
clearly shows that KI only quantifies the stresses when x tends to zero. Because of this, the linear elastic stress field 
around the crack tips should be always written as 

 
σij(r → 0, θ) = [KI /√(2πr)] ⋅ fij(θ)         (4) 
 
It is because of this as well that it is necessary to question the validity of KI as the stress controlling parameter in the 

residual ligaments, because the nominal stresses found there are larger than the remotely applied ones, which are used 
in the calculation of KI and in the classic pz estimates). For instance, in a plate of width 2w with a central crack 2a under 
traction stress σn perpendicular to the crack (which is the nominal value used in KI), the average nominal stress in the 
residual ligament rl is σn/(1 − a/w), and σy(x→ w, θ = 0) should tend to the analytical value σn /√(1 − a2/w2), and not to 
σn. Besides, as the yielding safety factor φy = σn / Sy < 3 in most of the real components, the elastoplastic plastic zone 
border pz(r, θ) certainly doesn’t have r tending to zero. In summary, estimating the effect of σn on the plastic zone can 
be a complex task, but of course this doesn’t justify the common practice of ignoring these effects, assuming that KI 
describes the plastic zone independently of σn. The indiscriminate use of KI in fact can generate inappropriate 
predictions, or even unacceptable ones in several important cases. The problem is that many of those predictions are 
used by the engineering community without major questioning. Therefore it is worthwhile to more carefully study some 
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of the limitations of KI. For instance, the stress σy generated by KI doesn’t balance the force acting on a strip of width 
2w with a small central crack 2a (and two residual ligaments rl = w − a) under traction by σn, which induces in the strip 
the force F = 2σn⋅t⋅w = 2σnt(a + rl), where t is the thickness of the strip. But the force F’ estimated from the stress σy 
caused by KI = σn√(πa) (if rl >> a) is given by 

rl rl
nn n
n0 0

, 2 t( a rl ) (1 rl / a )a dx F,F 2 tdx t 2a Fx2 x 2 t 2a rl 2 rl / a
σ + +σ π= = σ ⇒ = =

π σ ⋅∫ ∫
     (5) 

 
Therefore, F’ cannot estimate F, because the errors would grow as the ratio rl/a increased. In other words, the 

opposite effect one would expect happens: as the KI expression gets more accurate, in strips with a << w, the F’ 
estimate gets worse, as shown in Fig. 1(a). This shows that estimates based only on “intuition” can be very deceitful in 
practice.  

 

     
(a)        (b) 

Fig. 1: (a) Ratio F/F’ = (1 + rl/a)/√(2rl/a), where F is the actual traction force and F’ is the force estimated from the σy 
stress generated by KI in a strip with a central crack 2a and two residual ligaments rl; (b) F/F” × rl/a, where F” is 

calculated from the sum of the stress σy generated by KI and the nominal stress σn in the strip. 
 

Irwin addressed the force balancing problem by translating σy, the stress generated by KI, to compensate for the loss 
of force generated by the yielding at the plastic zone. However, his correction is not enough to balance the applied force 
in the piece, because it either doesn’t satisfy the contour condition σy(x → ∞, 0) = σn. An approximate way to satisfy 
this contour condition is to forcefully superimpose σn to the stress induced by KI to obtain 
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This correction is simplistic, but it can generate interesting results, e.g. the force F” that it generates in such strip is 
 

n
,, (1 rl /a )FF 2 t( 2a rl rl ) ,,F 2 rl /a rl / a

+= σ ⋅ + ⇒ =
+         (7) 

 
The estimated F” differs from the actual F that is applied to the strip by less than 25% for 10 ≤ rl/a ≤ 104. In 

addition, it generates a significantly better estimate than the classical one (which neglects σn), as seen in Fig. 1(b). This 
problem can significantly influence the estimates for the plastic zone size and shape, which are the parameters that 
validate the LEFM predictions, as studied next. 

 
2. NOMINAL STRESS INFLUENCE ON THE PLASTIC ZONE SIZE AND SHAPE 

 
It is not difficult, at least, to estimate the effect of σn on the size and shape of the plastic zones, including its value in 

the elastoplastic border calculations under plane stress and plane strain. After doing this, it is found that the plastic 
zones are much larger than the ones estimated above, and they start to depend on the geometries of the piece and of the 
crack, and on the loading type. For instance, defining κ = KI /√(2πr), the Mises stress under plane stress when the 
condition σy(x → ∞, 0) = σn is applied is given by 
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2 1/22 2
n n xyMises x y x ypl 3( f ) ][( f ) ( f ) ( f )( f )−σ σ σ + κσ = κ + κ + − κ κ +

     (8) 
 
where fx, fy and fxy are the Williams’ functions. The effect of σn on the plastic zone obtained from Mises under plane 
stress is calculated equating σMises,pl-σ and Sy, and solving this equation to obtain the function of θ that locates the 
elastoplastic border, see Fig. 2(a). 
 

       
(a)       (b) 

Fig. 2: (a) The size and shape of the plastic zone estimated from Mises changes a lot when σn is added to Williams’ σy, 
to force σy → σn far away from the crack tip (infinite plate with crack 2a under mode I and plane stress); (b) the effect 

of σn is also very large when this technique is used to estimate the plastic zones under plane strain. 
 
It is easy to obtain similar expressions for σMises under plane strain, see Fig. 2(b), and for σTresca under plane stress 

and plane strain. These expressions depend on the geometry of the piece, because they include independent terms that 
cannot be eliminated when dividing KI by a reference stress such as σMises(0), as seen in the previous models. Since 
yielding safety factors 1.5 < φy < 3 are common in practice, the influence of the nominal stress on the plastic zone shape 
and size is not just an academic curiosity. Actually, it is difficult to explain why this very significant effect of σn on the 
plastic zone is not properly emphasized in the literature, since it is the ratio between the plastic zone size and the piece 
dimensions (crack size a, residual ligament rl = w − a, thickness t, etc.) that validate LEFM predictions. 

 
3. INGLIS’ PLASTIC ZONE ESTIMATES 

 
To more accurately estimate the elastoplastic border of the plastic zone in an infinite plate with a crack 2a under 

traction stress σy(x, y → ∞) = σn, the Inglis’ solutions or a complete Westergaard function can be used, because both 
consider all the problem contour conditions. This task is quite lengthy, but it is not particularly difficult. The Inglis’ 
solution for the linear elastic stress field in an infinite plate under traction with a central elliptic hole can describe the 
stresses in an infinite plate with a central crack. To do this, the crack faces should coincide with the longer axis of the 
elliptic hole, with a tip radius that should be half of the CTOD. The Inglis’ solution uses elliptic-hyperbolic orthonormal 
coordinates (α, β), which map the plane through ellipses generated from the coordinate α and through hyperboles 
generated from β, all of them with focus on x = ±c, which are given respectively by 

 

2 2 2 2 2x cosh y sinh cα + α =   and  2 2 2 2 2x cos y sin cβ − β =                 (9) 
 

The Cartesian coordinates (x, y) relate to the elliptic-hyperbolic coordinates (α, β) by x = c⋅coshα⋅cosβ and y = 
c⋅sinhα⋅sinβ. The semi-axes of the elliptic hole whose border is given by α = α0 are a = c⋅coshα0 and b = c⋅sinhα0 
(therefore b/a = tanhα0), where c = a/cosα0, and the hole is described by 
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The stress component σα is perpendicular and the component σβ is tangent to the ellipses α, in the direction that β 

varies, therefore they work in a similar way as polar components σr and σθ, respectively. In the general case, the 
stresses according to Inglis are given by 
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In the plate under uniaxial stress σn perpendicular to the a axis of the elliptic hole, only five constants of Inglis’ 

series are not null:  
 

A1 = −σn(1 + 2e2α0)/16,   A−1 = σn/16,   B1 = σne4α0/8,   B−1 = σn(1 + cosh2α0)/4,   and   B−3 = σn/8         (12) 
  
Because the border of the hole is a free surface, σα(α = α0) = ταβ(α = α0) = 0, and as at the border α0 = atanh(b/a), 

the stress σβ(α = α0) tangent to the border is given by 
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Therefore, the stress σβ(α = α0) is maximized at the end points of the axis 2a perpendicular to the applied load σn, 

where cos2β = 1 (thus β = 0 or π), where 
 

2 0max 02 0
n 0

a b a b3 2(1 e ) sinh 2 aa b a b 1 2e 1 ba b a bcosh 2 1 2a b a b

− αβ α
+ −− −σ + ⋅ α⎡ ⎤ − + = +== −⎢ ⎥σ + −α −⎣ ⎦ + −

− +              (14) 

because 
0 0 2 00 0 0

b e e a btanh ea a be e

α −α
α

α −α
− += α = ⇒ = −+

. In this way, being ρ = b2/a the radius of the elliptic hole at the two 

ends of its longer axis 2a, perpendicular to the nominal stress σn, then 
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Assuming ρ = CTOD/2 = 2KI 

2/πE’ Sy, and knowing that KI = σn√(πa), it can be seen that 
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Using the yielding safety factor φy = Sy/σn in the equation above, then 
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Substituting the constants given in Eq. (12) into Eq. (11) to obtain the Inglis’ stresses in an infinite cracked plate 

under traction σn, the elastoplastic pz border can then be mapped around the crack tip using semi-axes given by Eq. 
(17). Using Mises under plane stress, the following equation should be solved: 

 
2 2 2

Mises ypl 3 Sα α β−σ β αβσ = σ + σ − σ σ + τ =              (18) 

 
Equation (18) can be solved numerically for α and β by fixing one of the variables first and then finding the value of 

the other one that leads to σMises = Sy. To plot these points in polar coordinates, as shown in Fig. 3(a), (α, β) are first 
transformed into Cartesian coordinates (x, y), and then into polar coordinates (r, θ). The traditional plastic zone pz(KI) is 
given by Eq. (1), which only depends on KI, not considering the effect of σn on the pz size and shape. 

 

       
(a)       (b) 

Fig. 3: Plastic zones around the crack tip modeled as an Inglis’ hole with ρ = CTOD/2 under: (a) plane stress; (b) 
plane strain. 

 
In the plane strain case, the Mises stress near the crack tip is given by 
 

2 2 2 2
Mises z z ypl 0.5[( ) ( ) ( ) ] 3 Sα β α β−ε αβσ = σ − σ + σ − σ + σ − σ + τ =              (19) 

 
where σz = ν(σα + σβ). A few elastoplastic borders generated from this equation are shown in Fig. 3(b). 
 
4. WESTERGAARD’S PLASTIC ZONE ESTIMATES 

 
To estimate the plastic zones considering the effect of the nominal stress in the cracked infinite plate, with a uniaxial 

traction stress σn perpendicular to the crack 2a, the complete Westergaard function should be used without Irwin’s 
simplification that generated KI = σn√(πa). In this way, given z = x + i⋅y, Z(z) = zσn/√(z2 – a2) and Z’(z) = −a2σn/(z2 – 
a2)3/2, where Z(z) is the Westergaard function that solves the problem of a plate submitted to the biaxial nominal stresses 
σx(z → ∞) = σy(z → ∞) = σn, then 
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are the stresses that act on the plate under uniaxial traction (in the same way as in Williams’ series, a constant term can 
be added to the σx component to satisfy the contour conditions in this case). Representing Z and Z’ in polar coordinates 
centered at the crack tip, then 
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To obtain the estimate of the elastoplastic border from Mises under plane stress, it is sufficient to substitute Eq. (21) 

into (20) and to use an equation similar to (18) to obtain 
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          (22) 

 
This equation can be solved by numerical methods using similar techniques as the ones used in Eq.(18): for each 

value of θ, the value of r that satisfies Eq.(22) is obtained, locating the desired border. This process is computationally 
intensive, but it can be easily repeated to consider also the case of plane strain, generating Figs. 4(a) and 4(b).  

 

     
(a)       (b) 

Fig. 4: Plastic zones around the crack tip modeled using the complete Westergaard stress function under: (a) plane 
stress; (b) plane strain. 
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5. COMPARISON BETWEEN THE INGLIS AND WESTERGAARD SOLUTIONS 
 
Figures 5 and 6 compare the plastic zones estimated from Inglis, assuming (i) that the crack is an Inglis’ hole with 

tip radius equal to half the CTOD associated with KI; and (ii) using the complete Westergaard function, without the 
simplification that Inglis used to obtain KI. The near overlapping of these two curves, which were generated from totally 
different equations, certainly it is not coincidental. This indicates that the predicted large effect of σn on the plastic zone 
size and shape is true. 

 
 

 
 

Fig. 5: Comparison between the plastic zones estimated from Inglis and from Westergaard, under plane stress. 
 

 
 

 
 

Fig. 6: Comparison between the plastic zones estimated from Inglis and from Westergaard, under plane strain. 
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This point should be emphasized. It is the size of the plastic zone that validates the LEFM predictions. And it is very 

convenient to assume that this size only depends on KI, as it is traditionally assumed in all the textbooks on this subject. 
However, both the size and shape of the plastic zone also depend on the magnitude of the applied nominal stress. And 
for nominal stresses of the order of those usually used in mechanical components, the estimated plastic zones 
considering the effect of σn are much larger than the traditional plastic zone estimates that only depend on KI. In 
addition, the effect of σn also depends on the shape of the component. In this work, only an infinite plate is analyzed, 
but the effect of the component shape is also very significant. This can be used to explain a series of incongruities in the 
LEFM predictions.  

It is interesting to note that the coincidence of the plastic zones estimated from Inglis and from Westergaard can be 
forced simply by changing the estimate of the Inglis’ notch radius. Instead of assuming a tip radius of ρ = CTOD/2, the 
smaller semi-axis b can be assumed as equal to CTOD/2, resulting in Fig. 7, for plane stress. Note in this figure how 
well both estimates agree. The agreement is also excellent under plane strain. 

 

 
 

Fig. 7: Agreement of the plastic zones estimated by Inglis (assuming b = CTOD/2) and Westergaard under plane 
stress. 

 
6. CONCLUSIONS 

 
The nominal stress significantly affects the size and shape of the plastic zones ahead of cracks in an Inglis (infinite) 

plate. Therefore, unlike what is usually accepted and taught in the traditional LEFM literature, the plastic zones do not 
depend only on the magnitude of the stress intensity factor KI. This fact has important consequences, because it can be 
used to question the similarity principle, one of the pillars of the mechanical design methods against fracture. Therefore, 
this effect should be better explored and understood. 
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