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Abstract. Low order flexural waves can be modeled, at low frequencies, using models such as Euler-Bernoulli and 

Timoshenko for beams and Kirchhoff and Mindlin for plates.  At higher frequencies, higher order theories such as 

Flügge’s and Donnell-Mushtari for cylindrical shells and Mindlin-Herrmann for rods can be used to predict 

analytically the wave solutions for simple geometries. However, in the case of more complex geometries, modeling can 

only be achieved practically using numerical methods such as the Finite Element Method (FEM). As frequency goes 

higher, the size of the numerical model of the complete structure becomes excessive and the computational cost sets a 

high frequency limit for numerical methods. Aiming at overcoming this limitation in the case of structures that have 

one dimension much larger than the others and can be treated as a waveguide, waveguide finite element methods 

(WFEM) have been developed in recent years. They are closely related with spectral element methods (SEM), as both 

approach the structure as a waveguide. In the WFEM, a slice of the waveguide is modeled by FE and, from this model, 

a waveguide model can be derived and used to compute the spectral relations, the group and energy velocities, and the 

forced response.This approach can be usefu, for instance, when simulating structural health monitoring techniques 

based upon wave propagation.In this paper, spectral elements are used to model waveguide slices of simple beam and 

plate structures in a WFEM approach. This allows us to investigate the relationships between both approaches and 

possible synergies to be explored. Numerical aspects of WFEM are also investigated using these simple problems 

where the SEM solution is exact. Simple WFEM models of a Timoshenko beam are also developed from FEM slices to 

illustrate similarities and differences of both approaches.  
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1. INTRODUCTION 

 

The modal approach has become overwhelmingly dominant in linear structural dynamic analysis. Most textbooks on 

linear vibrations do not even mention the wave propagation or the transfer matrix (or state vector) approach. This is 

mainly due to the abundance of computing power, which allowed the widespread use of numerical methods such as the 

Finite Element Method (FEM). Analytical methods have been somewhat left aside, although their development 

continued in theoretical and applied physics and in some advanced engineering fields, mainly associated with acoustics 

and structural acoustics. More recently, the development of symbolic computation software brought back the interest for 

analytical and semi-analytical methods that can be more easily implemented with these new tools. In many situations 

the semi-analytical approaches are much more economical computationally than purely numerical methods such as 

FEM. Nevertheless, they still require a more skilled user, as the solutions are typically ad hoc. Therefore, the possibility 

combining semi-analytical with standard numerical methods is very promising for solving structural dynamic problems 

in situations where purely numerical FEM analyses face difficulties, as it is the case with large periodic structures and at 

high frequencies. 

Many structures are made of thin panels and beams. Waves that propagate in waveguides formed by two parallel 

free surfaces are usually referred to as Lamb waves (Graff, 1991; Doyle, 1997). These include flexural, torsional, 

longitudinal and other types of symmetric and anti-symmetric waves. Low order flexural waves can be modeled, at low 

frequencies, using models such as Euler-Bernoulli and Timoshenko for beams and Kirchhoff and Mindlin-Reissner for 

plates. At higher frequencies, higher order theories such as Flügge’s and Donnell-Mushtari for cylindrical shells and 

Mindlin-Herrmann for rods can be used to predict analytically the wave solution for simple geometries. However, in the 

case of more complex geometries, modeling can only be achieved practically using numerical methods such as Finite 

and Boundary Element methods.  

As frequency goes higher, given the rule-of-thumb that the characteristic length of the finite element must be one 

sixth of the wavelength (Petyt, 1996), the size of the numerical model of the complete structure becomes excessive and 

the computational cost sets a high frequency limit for numerical methods. 



Aiming at overcoming this limitation by taking advantage of the periodic nature of many structures, hybrid 

waveguide-finite element methods have been developed in recent years. The first approach, proposed a decade ago by 

Gavric (1995) and Finnveden (1994), was called Spectral Finite Elements (SFEM). Its drawback stems from the 

necessity of developing a solution for each case under investigation. Mode recently, Ichchou and collaborators (Mencik 

and Ichchou, 2005) developed an approach where a standard FEM code can be used to model a slice of the waveguide 

and, from this model, a waveguide model can be derived and used to compute the spectral relations, the group and 

energy velocities, and the forced response. Mace and collaborators (Mace et al., 2005) have also developed this method 

with a similar approach, and have investigated numerical issues (Wake et al., 2006) based on the work by Zhong  and 

Williams (Zhong and Williams, 1995) and proposed a different method for computing the forced response (Duhamel et 

al., 2006). These wave approaches based upon a finite element model of a slice of the waveguide is based upon the 

periodic structures theory developed by Mead (1973) in the early seventies. 

In this text, after briefly reviewing the modal approach and the spectral element method, the relation between the 

dynamic matrix, the transfer matrix, the state transition matrix, and the scattering matrix is shown for a simple case of a 

simple straight homogeneous rod waveguide. Starting from this basic theory, the Wave Finite Element (WFEM) method 

is presented and the problem of predicting the propagation modes and corresponding wavenumbers are addressed using 

simple beam and plate examples. Numerical issues are discussed and numerical examples shown.  

 

2. MODAL FORMULATION 

 

When using FEM, constant parameter stiffness and mass matrices representing the linear dynamic behavior of the 

structure are obtained. With these two matrices, a generalized eigenvalue problem may be solved, and the system of 

equations can be de-coupled, yielding independent simple second order ordinary differential equations, which have 

known closed-form analytical solutions. This modal approach has been extensively developed, and efficient matrix 

methods that take into account the symmetry and sparsity of the large mass and stiffness matrices can be used to solve 

the dynamic problem at an affordable computational cost.  Internal loss factors (damping) can be easily introduced in 

the modal approach with modal damping coefficients. However, as frequency goes higher, the size of the numerical 

model can becomes excessive and the computational cost prohibitive, mainly if the problem must be solved many times 

for different input parameters, as it is the case in optimization and robustness analyses. 

In analytical and semi-analytical methods, the solution to the time-domain partial differential system of equations 

usually starts by transforming the problem to the frequency domain. Therefore, if a direct stiffness approach is used, a 

dynamic matrix is obtained. This matrix can be obtained with the FEM simply by making a Fourier transformation of 

the system of ordinary differential equations: 

 

( ) ( ) ( ) ( ) ( )2    or     K M U F D U Fω ω ω ω ω ω   − = =  
 (1) 

 

In this formulation damping can be included by an internal loss factor that makes the stiffness matrix complex: 

 

( ) ( ) ( ) ( ) ( ) ( )21    or     K i M U F D U Fη ω ω ω ω ω ω   + − = =  
 (2) 

 

A semi-analytical method that is formulated using a direct stiffness approach is the Spectral Element Method. The 

Spectral Element Method (SEM) was proposed by Doyle (1997), although its basic formulation was already widely 

known and currently used in the context of wave propagation solutions. In the SEM, the main idea is to combine all 

advantages of the spectral analysis with the efficiency and organization of the Finite Element Method (FEM). The 

major advantage of the SEM in comparison with the FEM is due to the fact that the spectral element dynamic stiffness 

matrix is computed in the frequency domain, which allows the inertia of the distributed mass to be described exactly. 

Thus, it is not necessary to refine the mesh as the wavelength becomes smaller. It may be shown that the SEM dynamic 

stiffness matrix corresponds to an infinite number of finite elements (Doyle, 1997).  

 

3. SPECTRAL ELEMENT FORMULATION 

 

The SEM is formulated based on two types of elements, two-noded and throw-off.  The latter are used when the 

member extends to infinity. The major drawback of SEM is that the elements may only be assembled in one dimension, 

the solution along the orthogonal dimensions having to be found analytically, which is only possible for simple 

geometries. Doyle (1997) also proposes a more general approach, which consists of using image sources to enforce 

arbitrary boundary conditions, but the approach still requires an ad hoc solution. Thus, the SEM can be combined with 

the superposition method proposed by Gorman (1999). In order to illustrate the use of SEM models, the simpler type of 

spectral element is shown here, namely the low-order rod. The most simple rod theory is described by the following 

partial differential equation of motion:  
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2
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u u
EA A q

x x t
ρ

∂ ∂ ∂ 
= − ∂ ∂ ∂ 

 (3) 

 

where EA is the axial stiffness and ρA is the mass density per unit length of the rod. The relation between the traction 

force and the displacement field may be shown to be: 

u
F EA

x

∂
=

∂
 (4) 

Following that, spectral analysis can be applied with a solution of the form, 

 

( )ˆ , ikx ikxu x Ae Beω −= +  (5) 

 

where A and B are the forward and backward-propagating wave amplitudes at each frequency, respectively, and k is the 

wavenumber, given in this case by k Eω ρ= . Now, defining a spectral element of length L and using the end 

displacements as boundary conditions, the following symmetric dynamic stiffness element matrix can be easily obtained 

(Doyle, 1997): 

 

{ }
( )

{ }
2

1 1

22
22

ˆ ˆ1 2ˆ ˆ ˆ
ˆ ˆ2 11

i kL ikL

eikL i kLi kL

F ue eEA ikL
F D u

uL e eeF

− −

− −−

   + −     = = =      − +−        
 (6) 

 

where ˆ
eD 

 
 is the complex dynamic stiffness matrix for the rod element, { }F̂  is the vector of complex amplitudes of 

the nodal forces, and { }û  is the vector of the complex nodal displacement amplitudes. In order to account for structural 

damping, an internal loss factor η  can be applied by using a complex Young’s modulus ( )1E iη+ . 

 

 
 

Figure 1. The elementary straight rod element. 

 

With the dynamic stiffness matrix of the elements, it is straightforward to assemble a global stiffness matrix using 

the direct stiffness method (Craig, 1981). The structural responses can be found by solving, for each frequency, a linear 

system of equations of the type:  

 

{ } { }ˆ ˆ ˆF D U =
 

 (7) 

 

Boundary conditions can be applied in a standard way to the global system matrix. In the case of a fixed degrees-of-

freedom, the corresponding line and column of the global dynamic stiffness matrix are suppressed (they can be used to 

compute the reaction forces later on). Similar element matrices can be found for beams and shafts, and a three-

dimensional frame spectral element can be formulated and used to solve any frame structure problem exactly within the 

framework of the rod, beam and shafts theories used in the element formulation (Ahmida and Arruda, 2001). Spectral 

elements have also been derived for plates and shells assembled along one dimension. 

 

4. TRANSFER MATRIX FORMULATION 

 

The transfer matrix method has been extensively used to solve frame structures and rotor system dynamic problems 

(Pilkey, 2002). Instead of relating forces and displacements at the extremities of an element, the transfer matrix relates 

forces and displacements at a node with forces and displacements at a neighboring node. With transfer matrices, instead 

of using a direct stiffness assembling, the state vector (efforts and displacements) is propagated from one extremity of 

the assembled structure to the other and the boundary conditions are applied, thus generating the solution to the 

problem. 

 

In the case of the rod treated in the previous section, the element transfer matrix is given by: 



 

( )
2 1

21

2 1

ˆ ˆ

ˆ ˆ

u u
T

F F
ω

      
 =    

      
 (8) 

 

By rearranging the equations and changing the sign of { }2F̂ , as now these are internal forces (traction is positive 

and compression is negative, or vice-versa depending on the sign convention used), whereas in the dynamic stiffness 

matrix they are external forces, one can write:  

 

( )
1 1

12 11 12
21 1 121

21 22 12 11 22 12

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆe

D D D
T

D D D K D D
ω

− −

− −

 −
  =   

− + −  
 (9) 

 

There exist alternative formulations for the transfer matrix approach, where some ill-conditioning problems can be 

overcome (Zhong and Williams, 1995). Assembling the global matrix is done by propagating the transfer matrices from 

element 1 to N: 

 

( ) [ ]( 1) 32 21N NT T T Tω −
   =      �  (10) 

 

5. WAVE AMPLITUDE FORMULATION AND THE SCATTERING MATRIX 

 

As discussed before, the displacement field of the rod may be represented by the sum of a forward and a backward 

propagating wave with amplitudes A and B, respectively.  Using Eq. (5), it is possible to express the relation between 

displacement at nodes and wave amplitudes by the matrix equation: 

 

[ ] [ ] [ ]
1 21 2

21 21 21
1 21 2

ˆ ˆ 1 1
   and       with    

ˆ ˆ

u uA A
C C C

B B iEAk iEAkF F

           
= = =         

−           
 (11) 

 

where 2 1 2 1 ;  ikL ikLA A e B B e−= = . Substituting the elements of the dynamic stiffness matrix in Eq. (9) we can write: 

 

[ ] ( ) ( )

( ) ( )
21

sin
cos

sin cos

kL
kL

EAkT

EAk kL kL

 −
 =
 
 

 (12) 

 

and it is easy to show that the eigenvectors of ( )T ω    are the columns of [ ]C  and the eigenvalues are: 

[ ] [ ][ ]
1

21 21 21

0

0

ikL

ikL

e
C T C

e

−

−

 
=  
  

 (13) 

 

It may be shown that the structure of this matrix is always of the form (Moulet, 2003): 

[ ] [ ][ ]1 1C T C diag
− − = Λ Λ

 
. 

In the general case, with l and r denoting the left and right side sections of the waveguide, the eigenvalue problem 

with the transfer matrix can be written as: 
 

[ ]
ˆ ˆˆ

ˆ ˆˆ

l lr

l lr

u uu
T

F FF
λ

         
= =     
        

 (14) 

 

Given Eqs. (13) and (11) we can write: 

 

2 1

2 1

0

0

ikL

ikL

A Ae

B Be
−

    
=     
     

 (15) 
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When two transfer matrices are associated, one can write: 

 

[ ]
3 1

32 21

3 1

ˆ ˆ

ˆ ˆ

u u
T T

F F

      
=      

     
 (16) 

 

Transforming to the wave amplitude relation: 

 

[ ][ ] [ ]
13 1 1

32 32 21 21
3 1 1

A A A
C T T C Q

B B B

−     
= =           

    
 (17) 

 

When two homogeneous elements are coupled, a discontinuity can be introduced, as the two rod elements may have 

different properties, causing waves to reflect and/or be transmitted at the discontinuous junction. A scattering matrix 

can be defined, which relates waves incoming at the junction to waves out coming from the junction (see Fig. 2), by 

rearranging Eq. (17): 

 

1 113 31

13 313 3

B AR T

T RA B

    
=    
    

 (18) 

 

where the following relations apply for the reflection and transmission coefficients: 
1 1

13 22 21 31 22

1 1
13 11 12 22 21 31 12 22

R Q Q T Q

T Q Q Q Q R Q Q

− −

− −

= − =

= − =
 (19) 

 

Replacing the values for two-rod elements of the same material and of equal length L, but different cross-section 

areas (now denoted S not to mix with the wave components), one can obtain: 

 

2 21 2 1
13 31

1 2 1 2

2 22 2 1
13 31

1 2 1 2

2

2

i kL i kL

i kL i kL

S S S
R e T e

S S S S

S S S
T e R e

S S S S

−
= =

+ +

−
= =

+ +

 (20) 

 

These values are equal to the theoretical values that can be obtained by standard wave equation solutions for the 

same discontinuity multiplied by 2i kLe , which is the phase delay caused by the crossing of the element twice for each 

wave component. Therefore, the scattering matrix for this area discontinuity in a rod is expressed as: 

 

[ ]

1 2 1

1 2 1 2

2 2 1

1 2 1 2

2

2

S S S

S S S S
S

S S S

S S S S

− 
 + + =
 −
 

+ + 

 (21) 

 

 
Figure 2. Incoming and out coming waves at a junction. 

 

 

6. STATE WAVE FORMULATION 
 

The transfer matrix formulation is a discrete version of a more general formulation for waveguides known as state 

equation formulation. The idea is to transform the structural equilibrium equations, which are partial differential 

equations, into a set of ordinary, first order differential equations whose closed-form solution is known. 



For the rod we can write, from Eqs. (3) and (4), in the homogeneous case ( )0q =  transforming to the frequency 

domain (spectral solution): 

2
ˆ

ˆ

ˆˆ

F
A u

x

u F

x EA

ρ ω
∂

= −
 ∂


∂
= ∂

 (22) 

 

This is a linear system of first order differential equations and can be written in matrix form as: 

 

{ }
[ ]{ }

ˆ
ˆ

X
N X

x

∂
=

∂
 (23) 

 

where 

{ } [ ]
2

1ˆ 0
ˆ    ;   

ˆ
0

u
EAX N

F Aρ ω

     = = 
    − 

 

 

For this first order system, the homogeneous solution can be written in terms of a transition matrix: 

 

( ){ } [ ] ( ){ }ˆ ˆ( ,0) 0X x x X= Φ  (24) 

where  

( ) [ ]
,0

N x
x e Φ =   (25) 

 

An eigenvalue decomposition of matrix ( ),0x Φ   can be made by using the property that the eigenvalues of 
[ ]N

e  

are the exponentials of the eigenvalues of [ ]N  and the eigenvectors are the same. This is due to the Cayley-Hamilton 

theorem. The eigenvalues of [ ]N  can be easily shown to be ik± , so that: 

 

[ ] [ ][ ][ ] [ ] [ ]
1 1 1 0

    where      and  
0

ik
N

ikEA ikEA ik

− −   
= Ψ Λ Ψ Ψ = Λ =   

−   
 (26) 

 

Thus, the transition matrix, which in this case is the transfer matrix, can be written as: 

 

[ ] [ ] [ ] [ ] ( )
( )

( ) ( )

1

sin
cos

sin cos

N L L

kL
kL

e e kEA

kEA kL kL

−Λ

 
 

= Ψ Ψ =  
 − 

 (27) 

 

There is a sign change with respect to Eq. (12). This is due to the sense of transition: ( ),0L Φ   or ( )0, L Φ  , 

which causes a sign change in the eigenvalues. Finally, it should be noted that, usually, a matrix [ ]N i N =    is used so 

that the eigenvalues of N    become simply the wave-number k±  (Moulet, 2003). 

 

7 CHARACTERISTIC EQUATIONS FOR WAVENUMBER SOLUTIONS 

 

For the general waveguide case, denoting by subscripts l and r the left and right section displacements and forces, 

respectively, the dynamic matrix condensed (see next section) for the left and right section degrees-of-freedom can be 

written as: 

 

ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ

ll lr ll

rrl rr r

D D Fu

uD D F

      
=     

       
 (28) 
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From the waveguide (periodic) assumption, we have: 

 

ˆ( , , , ) ( , , ) nk z
n

n

u x y z u x y eω ω=∑  (29) 

from which comes the relations ˆ ˆ ˆnk
rn ln n lnu e u uλ∆= =  and ˆ ˆ ˆnk

rn ln n lnF e F Fλ∆= = . Now, using the first equation in Eq. 

(14) and the above relations gives: 

 

( )ˆ ˆ ˆˆ
ll lr l lD D u Fλ+ =                          (31) 

and combing with the second equation in Eq. (14) yields 
1ˆ ˆ ˆ ˆ ˆ 0ll rr lr rl lD D D D uλ
λ

 
+ + + = 

 
, which can be rearranged 

as:  

( ) 2ˆ ˆ ˆ ˆ ˆ 0rl ll rr lr lD D D D uλ λ + + + =  
 (31) 

 

To this characteristic equation can be associated the following companion eigenvalue problem: 

 

( )ˆ ˆ ˆˆ ˆ ˆ0

ˆ ˆˆ ˆ0 0

ll rr lrrl n n
nT Tn n n nlr lr

D D DD u u

u uD D

λ
λ λ

   +−     =     
         

 (32) 

 

Solving this eigenvalue problem yields the wavenumbers ( ) ( )( )ln /n nk ω λ ω= ∆  and the propagation modes, 

ˆ ( , , )nu x y ω . The dependence upon the frequency is shown to emphasize this feature of the wavenumbers and 

propagation modes. The eigenvalue problem must be solved for each frequency and the pairing of the wavenumbers can 

be done by the correlation between the corresponding eigenvectors.  

 

8. CONDENSATION OF THE INTERNAL DOFS IN WFEM 

 

When computing the transfer matrix for waveguides with arbitrary shape with a FEM model, the degrees-of-

freedom (DOF) must be separated into left surface, right surface and internal DOF. Furthermore, they must be paired by 

finding at each surface the corresponding DOFs. The dynamic matrix can then be partitioned as (Mace et al., 2005): 

 

ˆ ˆ ˆ 0ˆ

ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ

ii il ir i

lli ll lr l

rri rl rr r

D D D u

FD D D u

uD D D F

    
    
  =   
     

     

 (33) 

 

The internal degrees-of freedom can be condensed with: 

 

( )1
i ii il l ir Ru D D u D u−= − +  (34) 

 

Thus, it is possible to write the condensed dynamic matrix as: 

 

1 1

1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

lll li ii il lr li ii ir l

rrl ri ii il rr ri ii ir r

uD D D D D D D D F

uD D D D D D D D F

− −

− −

   − −    
=     

 − −      
 (35) 

 

The transfer matrix [ ]T  can then be written as in Eq. (9). This matrix depends only on the dynamic stiffness of one 

section of the waveguide. Its eigenvalues can be found by solving the companion matrix Eq. (32) and then be processed 

to yield the wavenumbers. The spectrum relation obtained is shown for beams and Levy plates in the following 

sections.  

 

 

 

 



9. BEAM EXAMPLE 

 

The methodology is first shown for a straight homogeneous beam example. First the Timoshenko frame spectral 

element matrix is used (Ahmida and Arruda, 2001) and results are compared with the theoretical Euler-Bernoulli and 

Timoshenko spectral relations (Doyle, 1997). Results obtained with a MATLAB
®
 implementation are shown in Fig. 3 

for a steel beam with the following properties: thickness=5mm, width=5mm and a slice length of 0.5mm. The figure 

shows in solid lines the theoretical spectral relations and in lines with circles and plus signs the wavenumbers extracted 

from the eigenvalues of the transfer matrix.  
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Figure 3. Spectrum relation for a Timoshenko beam; solid lines show the theoretical values and circles and plus signs 

the wavenumbers computed from the eigenvalues obtained from the spectral element dynamic matrix. 

 

Then a slice of the beam was modeled with solid finite elements (brick) (Fig. 4) and the results obtained are shown 

in Fig. 5. Observe the validity of Bernoulli-Euler theory for beams for very low frequency ranges. The Timoshenko 

beam theory is valid for higher frequencies and the waveguide finite element approach is validated. Nevertheless, the 

WFEM presented frequency limits due to aliasing problems. The limit of the analyzed wavelength is determined by 

sliceD2≥λ , where sliceD  is the maximum section dimension of the beam slice. In this example, the limit for flexural 

wavenumbers is at 1
lim 628/ −== mDk sliceit π .  This limit is indicated by a horizontal heavy black line in Fig. 5. 

 

10. PLATE EXAMPLE 

 

The same methodology is now applied to a homogeneous Levy plate example (simply supported along two parallel 

sides). The Kirchhoff spectral element matrix (see, for instance, Donadon et al., 2004) is used and the results obtained 

with a MATLAB
®

 implementation are shown in Fig. 6 for a steel Levy plate with the following properties: 

thickness=1.8mm, width=180mm and a slice length of 2mm. The figure shows in lines with circles and plus signs the 

flexural wavenumbers extracted from the eigenvalues of the transfer matrix. A FEM model of a slice of the Levy plate 

has also been modeled but the pairing of corresponding DOFs has not been concluded and therefore, results are not 

shown. A general procedure for extracting paired DOFs for left and right surfaces of FEM slices of arbitrary sections in 

currently being implemented in commercial FEM software.  

 

11. CONCLUSIONS 
 

In this paper the basic concepts of the Waveguide Finite Element Method were reviewed and results for simple 

Timoshenko beams and Kirchhoff Levy plates were presented to illustrate the technique. Exact spectral elements of the 

Timoshenko beam and Kirchhoff plate were first used to validate the implementation and then some preliminary 

WFEM results for the beam were presented and discussed. In the SEM implementation, the high wavenumber limit 
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determined by the length of the slice (see Mace et al., 2005) of Lπ   was clearly observed. In the case of the FEM slice, 

the other dimensions of the cross section of the beam also determine high wavenumber limits for the eigenvalues above 

which an alias phenomenon can be observed. Once the waveguide modes and spectrum relations (wavenumber versus 

frequency) have been computed, wave propagation solutions for the forced waveguide response can be predicted. The 

methods for forced response prediction will be treated in a future paper. These methods can be useful for the simulation 

of wave propagation damage detection techniques in structures such as pipes, frames, and reinforced plates and shells. 

This paper has treated the basic issues concerning the implementation of the WFEM method and aims at facilitating its 

comprehension and its use by a more large audience. 

 

 
Figure 4: FE mesh of the beam slice. 
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Figure 5: Spectrum relation for a Timoshenko beam. Solid lines show the theoretical values and circles and plus signs 

the wavenumbers computed from the eigenvalues obtained from the spectral element dynamic matrix.  
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Figure 6. Spectrum relation for a Levy plate. Solid lines show the theoretical values and circles and plus signs show the 

wavenumbers computed from the eigenvalues of the transfer matrix obtained from the SEM dynamic matrix. 
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