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Abstract. An important problem in oil industry nowadays  is the process of oil recovery in porous media. In the micro-
scale of this media, interfacial forces have a strong influence on the recovery efficiency. The capillary aproach is widly 
used to represent this micro-scale. An interesting path to investigate is how rheological properties of non-Newtonian 
fluids can influence on this efficiency. An elliptic mesh generation technique with the Galerkin Finite Element Method 
is used to compute the liquid-liquid interface of the flow problem of a pseudoplastic material displacing Newtonian 
viscous liquids in a capillary tube. The constitutive equation is a Generalized Newtonian Fluid (GNF) with the power-
law viscosity function. The results were given as a function of a non-Newtonian Capillary number, viscosity ratio and 
the power-law index. The goal of the present work is to study flow patterns, configuration of the interface between the 
two phases, and fraction of the mass of Newtonian viscous liquid deposited at the wall, as functions of the 
dimensionless numbers cited. For shear-thinning material, as the displacing fluid  departs from Newtonian behavior 
the fraction of the mass deposited on the tube wall decreases and the shape of the interface becomes flatter. On the 
other hand, when shear-thickening material is used as the displacing fluid, the fraction of mass deposited on the tube 
increases and the shape of the interface becomes sharper. 
  
Keywords:  liquid-liquid displacement, non-Newtonian liquids, Papanastasiou viscosity function, finite element method, 
free surface flows.  

 
1. INTRODUCTION  
 
The displacement of a fluid by gas or liquid injection is a phenomenon that occurs in many industrial processes as well 
as in some biological flows. The enhanced oil recovery, mucus displacement in pulmonary airways, gas assisted 
injection molding and coating of catalytic converters are examples of such processes. Generally these two-phase flows 
take place inside an internal passage characterized by a small length scale. As a consequence, they occur in a laminar 
regime, sometimes with negligible inertial effects, and the capillary forces play a fundamental role on the cited 
processes. The configuration of the interface between the gas and liquid, or between the two liquids, is an important 
result and is strictly related to the effectiveness of the displacing process. An important parameter which can be used to 
evaluate this effectiveness is the fraction of mass of liquid which is left behind adjacent to the wall. In many practical 
applications one or both materials exhibits non-Newtonian behavior and therefore the rheological properties of these 
materials constitute important parameters of the operating window of a typical process since they affect both, the 
configuration of the interface and the fraction of mass which is left behind. The complete understanding of the 
displacing mechanism of non-Newtonian liquids, specially concerning the combined effects of interfacial tension and 
rheological parameters, is in early stages of investigation. 

Figure (1) shows a first approximation of the problem described above: liquid 1 displacing the liquid 2 in a 
capillary tube. The tube is initially occupied by the liquid 1 when the liquid 2 is injected. The phase 1 forms a long 
bubble that displaces the liquid 2 leaving a fraction of mass behind near to the wall. It is worth noting that this process 
can be done at constant pressure or at constant flow rate. In the former case, the interfacial front can accelerate while in 
the latter, the bubble velocity reaches a constant value and the configuration of the interface reaches a fixed shape. 
When inertia effects can be neglected, however, the interfacial front reaches a constant velocity even for a constant 
pressure process, as reported in Taylor (1961) and Cox (1962). 

For the case when gas is used to displace a Newtonian liquid, this flow has been investigated in a number of 
theoretical and experimental works after pioneer papers of Fairbrother (1935) and Bretherton (1960). When inertial 
effects can be neglected, the dimensionless parameter that governs the problem is the capillary number (Ca). This 



parameter signifies the ratio of the viscous to interfacial tension forces. For a constant pressure process the capillary 
number is based on the external pressure which is imposed, since no characteristic velocity exists. For a constant flow 
rate process or negligible inertia, however, the usual expression for the capillary number is σµ /UCa =  where, µ  is 
the fluid viscosity, σ  is the interfacial tension and U is the displacement velocity. 

 
 

 

Figure 1 – Schematics of the problem. 
 

 
 
 Taylor (1961) studied this problem, for a quite large range of capillary number.  In his theoretical analysis, he 
suggested three possible flow regimes of the liquid flow near the interface. The first one, a bypass flow, which would 
occur at high capillary numbers, the flow would pass completely and no recirculation would appear near the free 
surface. The other two have recirculation flow patterns. The second one, at a moderate capillary number, the liquid 
would have a timid recirculation and a stagnation point would arise in the liquid, after the tip of the interface. At low 
capillary numbers, a third streamline pattern would form when the recirculation of the liquid would have a surface 
contact with the gas and in this case a stagnation ring would also be formed. 

Cox (1962), continuing Taylor's study for a Newtonian viscous fluid, found experimentally that the amount of 
dimensionless mass m deposited on the tube wall asymptotically reaches 0.60 as the capillary number approaches 10. 
Here, the dimensionless mass m is the ratio between the mass deposited on the wall and the total mass. In a subsequent 
work, Cox (1964) investigated experimentally the streamline patterns suggested by Taylor and found the two extreme 
cases suggested, namely, a bypass flow and a fully-recirculation flow for high and low capillary numbers, respectively. 

The shear thinning behavior of the displaced liquid in this type of flow was studied Poslinski (1994). They 
used the finite element method to solve the two-dimensional model of the flow. Kamisli (1999) performed experiments 
and showed that the thickness of the deposited layer falls with the power-law index. They presented a singular 
perturbation analysis to model this situation, but their predictions followed the opposite trend of the experimental 
results.  Soares et al. (2006) also used the finite element method to analyze shear-thinning effects on gas-liquid 
displacement and the predictions followed the same trend observed experimentally. Sousa et al. (2007), continuing the 
previews work, investigated the gas-displacement of viscoplastic materials and performed analysis for a wider range of 
power-law index. They also investigate the streamline patterns near the tip of the interface. 

Articles dealing with the analysis of liquid-liquid displacement in capillary tubes are much scarcer. One of these 
few papers is given by Goldsmith and Mason (1963), who report experimental results on the amount of displaced liquid 
left on the tube wall as a function of different parameters. In their experiments, the displacing material is a long drop of 
a viscous liquid. The results showed that the mass fraction rises as the viscosity ratio 2 1Nµ µ µ= is decreased, where 
the index 1 refers to the displacing fluid and 2µ  to the displaced fluid. This trend agrees with the theoretical predictions 
and experimental data presented Soares et al. (2005). They studied the case where a Newtonian viscous liquid was 
displaced by a long drop of another Newtonian viscous liquid in a capillary tube. The problem was analyzed by 
numerical simulations and experiments for some governing parameters. The authors investigated the capillary number 
and viscosity ratio effects on the fractional deposited mass, m. They also analyzed the stream line patterns and the shape 
of the interface tip.  

Petitjeans and Maxworthy (1996) analyzed the situation of liquid-liquid displacement with miscible liquids. They 
studied the effect of the Peclet number, defined as m mPe V D D= , where mV  is the maximum velocity far from the tip of 
the interface, D the tube diameter, and mD is the diffusion coefficient. The high Peclet number regime should 
correspond to the case of immiscible fluids and infinite capillary number.  

Free surface problems are inherently nonlinear even for Newtonian fluids under creeping flow conditions because 
of the nonlinearities introduced by the conditions at the surface boundary.  The prediction of the steady flow free 
surface profile requires therefore a convergent iteration scheme. In the present paper we employ an elliptic grid 
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generation methodology to study the two-phase flow of a shear-thinning liquid displacing a Newtonian material in a 
tube via a Galerkin Finite Element Method. The main objective of this work is to investigate numerically how the 
general results conducted by Goldsmith and Mason (1963), in his classical work concerning liquid-liquid displacement 
of Newtonian fluids, are sensitive to variation of some non-Newtonian parameters of the displacing liquid. The 
constitutive equation used to represent the rheological behavior of the displacing liquid was a shear-thinning power-law 
fluid. The results were presented as flow patterns configuration and the fraction of mass deposited on the tube wall as a 
function of capillary number, power-law index and the non-Newtonian viscosity ratio.  
 
2. PHISYCAL FORMULATION 
 
2.1. Conservation equations and boundary conditions  
 

The physical model to describe the displacement of a Newtonian liquid of viscosity 2µ  by a long drop of a second 
non-Newtonian liquid of viscosity 1η  is now presented. The displacing drop (liquid 1) is translating steadily with speed 
U . To simply the analysis, the governing equations are written with respect to a moving reference frame located at the 
tip of the interface. In this frame of reference, the flow is steady and the wall is moving with velocityU .  

The geometry analyzed is an axisymmetric tube of radius 0R . The liquid is assumed to be incompressible, and the 
flow is laminar and the inertia is negligible. The velocity and pressure fields are governing by the continuity and 
momentum equations. In cylindrical coordinates, these governing equations are written as (the subscript 1,2k =  labels 
the two liquids). 
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Where u and v are respectively the axial and radial components of the velocity field u and the quantities rrrxxx τττ ,, , and 

θθτ  are the components of the stress tensor τ . 
In order to facilitate the following description of the boundary conditions, the boundaries are labeled from 1 to 

5, as illustrated in Fig. (1).  
 
1) Far enough upstream of the interface, Boundary 4, the flow is taken to be fully developed and the pressure is 
assumed to be uniform: 
 

2 20,   inp p⋅∇ = =n u            (4) 
 
where n is the unit vector normal to the boundary surface and inp  the pressure field. 
 
2) Far enough downstream, Boundary 1, the flow is also assumed to be fully developed, but the pressure is not imposed: 
 

0=∇⋅ kun             (5) 
 
3) Along the symmetry axis, Boundary 2, both the shear stress and the radial velocity vanish: 
 

[ ] ( ) 0
k

k rxτ⋅ ⋅ = =t n τ , 0k⋅ =n u           (6) 

where t is a unit vector tangent to the boundary surface. 
 
4) The no-slip and impermeability conditions are imposed along the tube wall, Boundary 3: 
 

xU=u e              (7) 



where ex is the unit vector in the x-direction. 
 
5) At the liquid-liquid interface, Boundary 5, the traction balances the capillary pressure, and there is no mass flow 
across the interface: 

( ) ( )1 2 2 1
m

p p
R
σ− + − =n n τ τ n           (8) 

 
( )1 2 0− =u u             (9) 
 
In Eq. (8), 1/Rm is the local mean curvature of the interface, defined as  
 

2 2 2 2

1 1 s

m s s s s

x
R sx r r x r

∂= −
∂+ +

tn n           (10) 

 
where t is the unit tangent vector to the free surface, s is the arc-length curvilinear coordinate along the interface in the 
r-x plane and sx x s= ∂ ∂  and sr r s= ∂ ∂  are spatial derivatives with respect to s. 
 

2.2. Constitutive equations 
 

In order to close the set of differential equations, the stress tensor was related with the kinematics of the flow by the 
Generalized Newtonian Fluid model. In this model, the stress tensor is given by 
 

( )p η γ= − +T I γ&&            (11) 
 
where = ∇ + ∇ Tγ u u& is the rate of strain tensor. The scalar quantity ( )η γ&  is the viscosity function, and 

( )1
2

trγ ≡ ⋅γ γ& && is the deformation rate. The viscosity function ( )η γ& is the simple power-law function given by Eq. 

(12). 
 

1−= nγκη &                            (12) 
 
where κ   is the consistency and n  is the behavior index of the fluid. 
 
3. SOLUTION METHOD 
 
3.1 The free boundary problem 
 

Due to the free surface, the flow domain is unknown a priori. In order to solve this free-boundary problem by 
means of standard techniques for boundary value problems, the set of differential equations and boundary conditions 
written for the physical domain has to be transformed to an equivalent set, defined in a known reference domain. This 
subject is better discussed on papers of Kistler and Scriven (1983) and de Santos (1991). This transformation is made by 
a mapping ( )x = x ξ  that connects the two domains, as shown in Fig. (2). A functional of weighted smoothness can be 
used successfully to construct the type of mapping involved here. The inverse of the mapping that minimizes the 
functional is governed by a pair of elliptic differential equations that are identical to those encountered in diffusional 
transport with variable diffusion coefficients. The coordinates ξ and η of the reference domain satisfy 

 
( ) 0Dξ ξ∇ ⋅ ∇ = and ( ) 0Dη η∇ ⋅ ∇ =          (13) 

 
where Dη  and Dξ  are diffusion-like coefficients used to control gradients in coordinate potentials, and thereby the 

spacing between curves of constant ξ on the one hand and of constant η on the other that make up the sides of the 
elements that were employed; they were quadrilateral elements. Eq. (13) describes the inverse mapping ( )xξ . To 

evaluate ( )x x ξ= , the diffusion equations that describe the mapping also have to be transformed to the reference 
configuration.  
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The gradient of the mapping ( )x x ξ=  in a two dimensional domain is defined as xξ∇ = J , and detJ = J  is the 
Jacobian of the transformation. Boundary conditions are needed in order to solve the second-order partial differential 
equations (13). Spatial derivatives with respect to the coordinates of the physical domain x can be written in terms of 
the derivatives with respect to the coordinates of the reference domain ξ  by using the inverse of the gradient of the 
mapping 

 
1x

J
y

ξ
η

−∂ ∂ ∂ ∂   
=   ∂ ∂ ∂ ∂   

           (14) 

 
Along the solid walls and synthetic inlet and outlet planes, the boundary is located by imposing a relation between 

coordinates x and y, and stretching functions are used to distribute the nodal points of the finite element mesh along the 
boundaries. The free boundary (liquid-liquid interface) is located by imposing the kinematic condition, Eq. (Erro! 
Fonte de referência não encontrada.). The discrete version of the mapping, Eq. (13), is generally referred to as mesh 
generation equations. 

 
 

Figure 2 – Mapping between the physical and reference domains. 
 
3.2 Solution of the equation system by Galerkin / Finite Element Methods 
 
 The differential equations that govern the problem and the mapping (mesh generation) equations were solved all 

together by the Galerkin/Finite Element Method. Biquadratic basis functions ( jφ ) were used to represent the velocity 
and nodal coordinates, while linear discontinuous functions ( jχ ) were employed to expand the pressure field. The 
velocity, pressure and node position are represented in terms of appropriate basis functions. 

 
; ; ; ;j j j j j j j j j ju U v V p P x X r Rφ φ χ φ φ= = = = =∑ ∑ ∑ ∑ ∑       (15) 

 
The coefficients of the expansions are the unknown of the problem: 
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The corresponding weighted residuals of the Galerkin method related to conservation of momentum, mass and 

mesh generation are: 
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3.3 Solution of the non-linear system of algebraic equation by Newton’s Method 
 
As indicated above, the system of partial differential equations and boundary conditions is reduced to a set of 

simultaneous algebraic equations for the coefficients of the basis functions of all the fields. This set is non-linear and 
sparse. It was solved by Newton’s method. In order to improve the initial guess there were necessary to solve 
intermediate problems. The first successful free surface flow was computed using a fixed boundary flow field with 
slippery surface in place of the free boundary as the initial condition for Newton’s method. The linear system of 
equations at each Newton iteration was solved using a frontal solver. A mesh convergence analysis was done increasing 
the elements number until the solution changed by less that 1% between successive refinements. The domain was 
divided into 880 elements that correspond to 3635 nodes and 17180 degrees of freedom. A representative mesh is 
shown in Fig (3). 

 

 
Figure 3 – The finite element mesh, with 880 elements and 17180degrees of freedom. 

 
4. RESULTS 
  

The amount of the liquid 2 that remains on the capillary wall is usually reported in terms of the mass fraction of 
liquid that is not displaced m , or simply by the liquid film thickness ∞h  left on the wall. The two forms are related by  
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Figure 4 –Velocity profile as measured from a reference frame at the tip of the interface. 
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The mass fraction of the liquid 2 left on the tube wall can be evaluated using the mass conservation principle for the 
liquid 2 in a control volume containing the tip of the interface and attached to it. Figure (4) shows this control volume 
and the sketch of the velocity profiles at inlet and outlet plane as seen from a reference frame attached to tip of the 
interface. The mass flow rate of the liquid 2 through the control surface upstream of the drop is equal to 2 *

0R uπ  and 

through the control surface downstream the tip of the interface is ( )2 2
0 bR R Uπ − , *u and U  being the average 

velocities of the liquid 2 at the two planes with respect to the moving frame of reference. 
The average velocity with respect to the moving frame of reference *u can be evaluated as a function of the 

average velocity with respect to a fixed frame of reference, uUu −=* . Applying the mass conservation principle for 

the displaced liquid on control volume of the Figure 4, 2 *
0R uπ = ( )2 2

0 bR R Uπ − , the mass fraction m  is obtained in 

terms of the average velocities. 
 

2

0

1 bD U um
D U

  −= − = 
 

 (25) 

  
For a Newtonian liquid displacement of a non inertial incompressible Newtonian liquid, the relevant dimensionless 

parameters that govern the problem are the Capillary number ( )Ca  and Viscosity ratio ( )Nµ . The Capillary number 

and viscosity ratio are given by 
 

2UCa µ
σ

≡  (26) 

 

2

1

Nµ
µ
µ

≡  (27) 

On the other hand, when the displaced liquid is non –Newtonian, the Ca is, again, calculated by Equation (26), but, 
Nµ  must be redefined. It is necessary to choose a characteristic viscosity of the problem. For this purpose the viscosity 

function is evaluated at the characteristic deformation rate of the flow which is in this problem RUc /=γ& , where R is 
the capillary radius. Hence, the viscosity ratio for the power-law fluid is given by 

 

2 2
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N
UK
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η
µ µ
η −= =

 
 
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 (28) 

 
The rheological dimensionless parameter is the power-law index n.  
In order to validate the present work, the results are compared with the experiments from Taylor (1961) and Cox 

(1962) and numerical solution obtained by Souza et al (2006) for gas-liquid displacement. These results are shown in 
Figure (5). The agreement is quite good over the range of capillarity numbers explored. Figure (6) shown the effect of 
behavior index, n, on the fraction of mass, m, deposited on the tube wall as a function of capillary number ( in a 
logarithm scale) for fixed viscosity ratio, 8=ηN . This figure shows a comparison between three kind of displacing 
materials, a Newtonian liquid, a shear-thinning liquid with n = 0.52 and a shear-thickening liquid with n=1.6. It can be 
seen that m increases as behavior index is incremented. Figure (7) shows a similar analysis for another fixed value of 
viscosity ratio, 4=ηN , and for the same range of power-law index, 6.152.0 ≤≤ n . 

 A comparison between Fig. (6) and Fig. (7) indicates that the non-Newtonian effects are more pronounced  at 
small viscosity ratio and at high capillary numbers. Reducing the capillary number the fraction of mass tends to 
zero and all the curves tends to the Newtonian one. The observations for the viscosity ratio can be explained by the 
fact that a decreased on the viscosity ratio can be interpreted as an increasing on the characteristic viscosity of the 
injected material. Hence, the non-Newtonian properties become more pronounced. On the other hand, an increasing 
of viscosity ratio implies a relative reduction of the characteristic viscosity of the injected material and, therefore, 
the non-Newtonian properties become less important. The limit case is for ∞→ηN   that means the characteristic 
viscosity approaching zero and hence the non-Newtonian properties plays no influence.  



Figure (8) shows flow patterns configuration near the tip of the interface for two values of capillary numbers 
and power-law index at fixed viscosity ratio, 4=ηN . The main conclusion here is the fact that the shear thinning 
behavior of the injected material tends to reduce the recirculation on the displaced liquid. 
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Figure 5 – Fraction of mass deposited on the tube wall as a function of the capillary number. Experimental and 
Numerical predictions for the case that 42 10Nµ = × . 
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Figure 6 – Fraction of mass deposited on the tube wall as a function of capillary number for fixed 

viscosity ratio and different values of power-law index. 
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Figure 7 – Fraction of mass deposited on the tube wall as a function of capillary number for fixed viscosity ratio and 

different values of power-law index.  
 

 
 

Figure 8 – Stream line patterns near the tip of the interface: comparison between Newtonian and pseudoplastic materials
for a fixed viscosity ratio, 4=ηN . 

 
 
 

5. CONCLUSIONS  
 
An axisymmetric model of the flow near the upstream liquid-liquid interface of a long drop penetrating through a 

liquid in a capillary tube was presented. The presence of the interface makes the problem complex, since the domain in 
which the differential equations are integrated is unknown a priori. A fully coupled formulation was used and the 
differential equations were solved via the Galerkin finite element method. 

Recent articles are found in the literature which analyze liquid displacement in tubes. However, these are limited to 
gas-liquid displacement or to liquid-liquid displacement at rather small capillary Numbers and for two Newtonian 
fluids. Thus, the main contribution of the present work was to investigate the influence of the power-law index, n, of the 
displacing liquid and the non-Newtonian viscosity ratio on the fraction of mass deposited on the tube wall. The 
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predictions showed an increase of fractional mass, m, with increase of power-law index, n. In addiction, the results 
indicated a more pronounced non-Newtonian effect at small non-Newtonian viscosity ratio. Finally, the predictions 
suggest that decreasing the power-law index of the displacing liquid the recirculation on the displaced one tends to be 
reduced. 
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