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Abstract. The purpose of this paper is to assess the applicability of Artificial Neural Networks (ANN) and Adam’s 
equation in the modeling of fatigue failure in polymer composites, more specifically in Glass Fiber Reinforced Plastic  
(GFRP). In the application of the model using ANN we show the feasibility of obtaining good results with a small 
number of S-N curves. The other model used involves applying empirical equations known as Adam’s equations. A  
comparative study on the application of the aforementioned models is developed based on statistical tools such as  
correlation coefficient and mean square error. For this analysis we used composite materials in the form of laminar 
structures with distinct stacking sequences,  which are  applied industrially in the  construction of  large reservoirs. 
Reinforcements  consist  of  mats  and  bidirectional textile  fabric  made  of  E-glass  fibers  soaked  in  unsaturated 
orthophthalic polyester resin. These were tested for six different stress ratios: R =1.43, 10, -1.57, -1, 0.1 and 0.7. The 
results showed that although ANN modeling is in the initial phase, it has great application potential.
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1. INTRODUCTION

During a project involving structures and equipment submitted to cyclical loads in which composites are used as 
prime material, a large number of fatigue tests are often needed to obtain a certain level of confidence in the material. 
This is done mainly because little is known about the dynamic load response of these materials,  thus making them 
unpredictable, as compared to conventional materials (Lee et al. 1999).

From the tests, we obtain the S-N curves (stress amplitude versus number of cycles) that are used in constructing 
Constant-Life  Fatigue  Diagrams,  which  are  of great  importance  for  the study  and applicability  of  these  materials. 
However, these diagrams, when built with a small number of  S-N curves, underestimate or overestimate the current 
behavior of the composite, thus demonstrating the ever-increasing need to perform more tests for more accurate results 
(Philippidis, 2002).

Several studies (Subramanian et al., 1995; Philippidis et al., 2002; Wahl et al., 2002, Harris, 2003; Adam et al., 
1989) have developed empirical  models for fatigue behavior prevention of composite materials, related to both  S-N 
curves and failure diagrams, such as Goodman’s Diagram. These models have advantages and disadvantages in terms of 
applicability, and must be used considering statistical factors such as correlation coefficient (r).

The  recent  use  of  Artificial  Neural  Networks  (ANN)  for  analyzing  the  fatigue  behavior  of  composites 
(Vassilopoulos et al., 2007; El-Kadi et al., 2002; Al-Assaf et al. 2001) has proven the effectiveness of this technique, 
but the results obtained in the literature are still in their infant stage and much remains to be done.

The purpose of this paper is to model the fatigue behavior of two composite materials using Adam’s equation and 
ANN architecture, compare the results and verify the feasibility of applying ANN in the analysis of fatigue behavior in 
composites. Furthermore, the error between the two models will be verified, considering a lower than conventional data 
set, where a data set with three and four S-N curves will be used to obtain the Constant-Life Fatigue Diagram curves.

We used two industrially manufactured composite laminates, made of orthophthalic polyester resin reinforced with 
E-glass fibers. Reinforcement is in the form of mats and bidirectional textile fabric. The mathematical modeling of these 
data was performed by first analyzing the S-N curves and then constructing a Goodman’s Diagram using the equation 
proposed by Adam (Adam et al., 1989) and in the case of ANNs using the architecture proposed by the authors (Freire 
Jr. et al., 2005). In addition to fatigue tests, static uniaxial tensile and compression tests of the two laminates were also 
performed.

2. EXPERIMENTAL PROCEDURE

The laminates used in this study were industrially manufactured by the hand-lay-up process in the form of 1.0 m2 

plates. Unsaturated orthophthalic polyester resin was used as prime material and E-glass fiber reinforcement in the form 
of mats (5 cm, 450 g/m2) and bidirectional textile fabric (450 g/m2). Thus, two plates were manufactured, one with 10
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 and the other with 12 layers,  thickness of 7.0 and 10.0 mm, respectively and with the following stacking sequences:

[M /T /M /T /M ]S Stacking sequence of the 10 layer laminate C10
[M /T /M /T /M / M /T / M /T / M /T /M ] Stacking sequence of the 12 layer laminate C12

The symbols M and F refer to the mat and E-glass fiber bidirectional textile fabric, respectively. C10 and C12 refer 
to the 10 and 12-layer laminates, respectively. The symbol “s” refers to the symmetry of the material in relation to layer 
distribution; laminate C10 is symmetrical whereas laminate C12 is not.

Preliminary  volumetric  density  and  calcination  tests  were  conducted  on the two laminates  to  obtain  the fiber 
volume percentage, which was 24.6% for the C10 laminate and 24.9% for the C12 laminate. It can be observed that the 
two laminates have roughly the same fiber percentages. Thus, it can be considered that any variation in mechanical 
properties occurring between them is only a result of a variation in their stacking sequence and the number of layers.

The plates were sectioned using a diamond cutter (DIFER D252), to avoid a possible “tearing away” of the fibers or 
any other type of damage to the test bodies. The dimensions of the test bodies for the uniaxial tensile test followed 
ASTM D 3039 (1990) norms, whereas those for uniaxial compression and fatigue were based on a study by Mandell et 
al. (1997). All the test bodies were rectangularly sectioned and in a predetermined laminate direction with the following 
dimensions: 200 x 25 mm for the uniaxial tensile and fatigue tests, and 100 x 25 mm for the uniaxial compression tests.  
The useful lengths (gauge) are 127 mm for the uniaxial tensile and fatigue test bodies with R – 0.1 and 0.7, 40 mm for 
the fatigue test bodies with R – 1.43, 10, -1.57 and -1 and 35 mm for the uniaxial compression test bodies. For each 
stress  ratio  the tests  were  conducted  under  constant  amplitude  stress,  in  which,  3  test  bodies  were  used  for each 
maximum load value chosen,  for a total  of 175 test  bodies  at  the end of the testing.  All the tests  were conducted 
considering high cycle fatigue.

For the uniaxial tensile tests we used a Universal PAVITEST testing machine and for compression and fatigue tests 
we used an MTS-810. A displacement velocity of 1.0 mm/min was used in the tensile and compression tests and a 
frequency of 5 Hz in the fatigue tests. All the tests were conducted at ambient temperature (25 °C)  with a relative air 
humidity of 50%.

The power law will be applied to obtain the S-N curves of the laminates under study and is presented in equation 1.

logmax=A−B⋅[ logN ]
P                                                                                                                        (1)

In the above equation, A, B and P are constants that must be obtained during the adjustment of the equations to the 
data, N is the number of failure cycles of the material and σmax is the maximum cyclic stress component applied to the 
material. The values of constants A, B and P for each stress ratio given by equation 2 are shown in table 1, in which σultt 

is the ultimate stress value and σultc is the ultimate compression value. It should be pointed out that the calculation made 
to obtain these constants was for a 50% failure probability using the least squares method to arrive at these values.

Table 1. Constants obtained for equation 1 (power law) and the correlation coefficient (r) of each stress ratio for the two 
laminates studied (C10 and C12).

R
Laminate C10

A B P r
Laminate C12

A B P
r

1,43 2,23 0,00513 1,64 0,922 2,26 0,00458 2,04 0,972
10 2,23 0,00893 1,91 0,985 2,26 0,0255 1,57 0,994

-1,57 2,23 0,0407 1,35 0,991 2,26 0,0615 1,29 0,994
-1 2,06 0,0279 1,63 0,990 2,05 0,0330 1,68 0,993
0,1 2,06 0,00195 2,84 0,985 2,05 0,0163 1,78 0,991

0,7 2,21 0,0619 0,953 0,949 2,05 0,00512 2,12 0,966

For the modeling of Goodman’s  Diagram constant  life curves,  we used the equation proposed by Adam et al. 
(1989), presented in equation 2.
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In the above equation, σa represents the component of cyclical stress amplitude (maximum stress minus minimum 
stress divided by two);  σmed represents the component of mean cyclical stress (maximum stress plus minimum stress 
divided by two);  σultT is the ultimate stress value; σultC is the  ultimate compression value;  u,  f and v are the constants 
obtained during the adjustment of the curve to the data.



3. PROCEDURES FOR CREATING THE ANN MODEL

To create the mathematical model, we used the multiple-layer perception network trained by a backpropagation 
algorithm, with an architecture consisting of two input neurons (mean stress and number of cycles) and one output 
neuron (stress amplitude), in order to end up with a function that satisfied the condition shown in equation 3.

a= f med , N                                                                                                                                                 (3)

In which  σa is the stress amplitude applied (maximum stress minus minimum stress divided by  two),  σmed is the 
mean stress (maximum stress plus minimum stress divided by two) and N is the number of cycles in which the material 
fractured.

We worked with a hidden layer with 2 to 30 neurons, all with bias and sigmoid activation function in the hidden 
neurons  and  linear  function  in  the output  neuron.  The  backpropagation  training  algorithm was  used  based  on the 
momentum rule (Haykin, 2001).

Network training was based on  S-N  curve data,  using equation 1. The power law has been used in studies  by 
Philippidis et al., 2002, and Read et al., 1995.

A schematic diagram showing ANN training and the resulting ANN model is presented in figure 1. In this figure, T 
represents the number of functions (S-N curves obtained from equation 1) used for  ANN training,  A the number of 
functions used,  e the error between the desired response and the current  ANN response and w the matrix of synaptic 
weights of the ANN.

Figure 1. (a) ANN training method. (b) Model obtained from ANN training.

The values chosen for the current constant and the learning rate were 0.7 and 0.1, respectively. It is worth noting 
that these values are constant across all training epochs.

For ANN training we used two training sets, 3R (R -10, -1.57 and 0.1), 4R (R -10, -1.57, -1 and 0.1). These training 
sets were chosen to improve data distribution within the loading regions, using as criterion the number of test bodies 
used.  During  training  we  observed  RMS (equation  4)  behavior  of  the  total  data  set  in  order  to  verify  ANN 
generalization.

RMS=
1

2⋅Q 
⋅∑

1

Q

∑
i=1

m

d i−zi
2                                                                                                                      (4)

In the above equation RMS is the root mean square, Q represents the size of the data set, m the number of output 
neurons  (for  this  study  m  = 1),  di and  zi are  the  desired  responses  and  the  current  response  of  the  output knot, 
respectively.

The data are normalized both in the input neurons and output neuron; in the case of mean stress, normalization is 
done considering its  signal  (see figure 2).  The purpose of this change in normalization was to achieve better  data 
distribution and facilitate ANN learning (Haykin, 2001).



Figure 2. Diagram showing the ANN simulation model.

The range of analysis of the number of cycles in this study was between 102 and 107, given that the experimental 
data analyzed encompass this number of cycles. In addition to the data obtained from the S-N curves, we used the static 
test values in the training in order to facilitate ANN generalization.

The software used to implement all the algorithms used in this study was MATLAB.

4. RESULTS AND DISCUSSIONS

4.1. UNIAXIAL TENSILE AND COMPRESSION TESTS

Table 2 shows the results of the mechanical properties obtained in uniaxial tensile and compression tests for the two 
stacking sequences used. The results obtained for these two laminates are quite similar, for example ultimate stress, 
which is roughly 115 MPa for the two composite laminates. It is important to point out that the elastic moduli were 
measured in the direction of the applied load.

Given that the fiber percentages are practically the same, the introduction of 2 more layers (1 M and 1 T) did not 
cause great changes in the static mechanical response of the laminates.

Table 2. Mechanical Properties of laminates C10 and C12.

10 Layer Laminate 12 Layer Laminate

Modulus of Elasticity of Tensile (GPa) 4,81 4,50
Modulus of Elasticity of Compression (GPa) 4,27 4,79

Ultimate Stress of Tensile (MPa) 116,7 115,3

Ultimate Stress of Compression (MPa) 171,3 181
Maximum Strain of Tensile (%) 2,45 2,54

Maximum Strain of Compression (%) 4,07 3,92

4.2. FATIGUE TESTS: S-N CURVES

The  S-N curves obtained for laminates  C10 and  C12 are represented in figures 3 and 4. The lowest normalized 
stress values were for  R = -1 and  R =  -1.57. These results  were expected, since for these cases the highest  stress 
amplitudes in the laminate are applied as compared to the results of stress ratio for the same number of failure cycles. 
Similarly, the highest normalized stress values are found for R = 0.7 and R = 1.43, since the stress amplitudes applied 
for these stress ratios are very small as compared to the same number of failure cycles.

With respect to the graphs, it is important to note that the arrow symbol indicates that the test bodies were tested up 
to the number of cycles indicated, without fracturing. Furthermore,  σmax or  σmin and  σultT or  σultC were used in these 
graphs, depending on the type of stress ratio applied. That is, for R = 1.43 and R = 10, we used minimum stress (σmin) 
and the ultimate stress of compression (σultC), while for R = -1, R = -0.1 and R = 0.7, we used maximum stress (σmax) 

and ultimate stress (σultT). These variations were included in these graphs to enable a comparison of the results obtained 
for each stress ratio (R).



Figure 3. S-N curves of material C10, experimental data and model obtained by the power law.

Figure 4. S-N curves of the material C12, experimental data and model obtained by the power law.

4.3. MODELING OF GOODMAN’S DIAGRAM FROM ADAM’S EQUATION

Goodman’s Diagram was constructed from the results obtained by the S-N curves. The constant life curves were 
modeled by equation 2 for laminates C10 and C12. These diagrams are shown in figures 4 and 5.  Through these graphs 
one can see the importance of the tests for R = -1.57, since it was for this stress ratio that the highest stress amplitude 
values applied to the laminates were obtained for all the constant life curves analyzed, considering, of course, the same 
number of failure cycles. Thus, R = -1.57 has the largest safety region in terms of fatigue behavior of these materials. 
Because  of  this  behavior,  it  can be affirmed  that  the  two composite  laminates  have  greater  capacity  to  withstand 
variable cyclical loads (stress-compression) with a predominance of compression.

For R = 1.43, 0.1 and 0.7 in figures 4 and 5, it can be observed that the equation 2 curves approximate satisfactorily  
the results of the S-N curves (equation 1); however,  there is a slightly more pronounced difference for the other stress 
ratios.

It is interesting to note that each constant life curve (for 103, 104, 105 and 106) of Goodman’s Diagram shown in 
figures 4 and 5 are obtained using the results of the six S-N curves. If one wished to obtain the same findings using a 
lower number of results, they would likely be unsatisfactory. This is because each S-N curve represents only one point 
to be used to obtain constants for Adam’s equation, for example, when there are only three  S-N curves there will be 
only three points for obtaining each constant life curve, which would result in an unsatisfactory value.



Figure 4. Goodman’s Diagram modeled from Adam’s equation, obtained for laminate C10.

Figure 5. Goodman’s Diagram from Adam’s equation, obtained for C12.

Thus, in order to demonstrate quantitatively the importance of the number of S-N curves in mathematical modeling 
using Adam’s equation, we verified the variation in the root mean square and in the correlation coefficient for the data 
sets applied in ANN training, which will be commented on in the next item, to obtain the constant life curves of Adam’s 
model. The correlation coefficient (r) and root mean square (RMSTOT) for these data sets are shown in table 2.

Table 2. Correlation Coefficient and root mean square obtained when comparing between Adam’s model data and those 
of S-N curves for each set used to obtain the constants.

Data Set
Correlation Coefficient (r) Root Mean Square (RMSTOD)

C10 C12 C10 C12

3R 0,9771 0,6035 0,000939 0,0010

4R 0,9816 0,9787 0,000598 0,000633

Todos 0,9877 0,9853 0,000276 0,000253

hese results show that both the correlation coefficient and the root mean square achieve satisfactory results for at 
least 4 S-N curves. This problem exacerbates in some cases to the point of yielding totally unsatisfactory results, as can 
be observed for laminate C12 modeled with set 3R, where r is 0.6.



Thus, this empirical model presented by Adam does not have the capacity to predict results, contrary to what occurs 
with a well-trained ANN, as will be shown below.

4.4. MODELING OF GOODMAN’S DIAGRAM USING ANN’s

From the training sets explained in item 3, we trained a three-layer neural network architecture using a technique 
known as cross validation.

This  technique  analyzes  the  RMS (root  mean  square)  of  the  training  set  (RMSTRA)  and of  the  total  data  set 
(RMSTOT) for each training epoch, so that at the end of training the synaptic weights of the network are chosen at the 
lowest value of RMSTOT.

The cross-validation results obtained during training showed that for all the training sets, the RMSTOT and RMSTRA 

curves displayed the following behavior: 1) the  RMS curves follow one another, showing similar values; 2) the two 
curves  separate  after  a  determinate  number  of  training  epochs;  at  this  point  a  minimum  RMS  value  is  obtained 
(RMSMIN), which is the lowest value obtained for the RMSTOT curve during the entire training. After obtaining RMSMIN, 
the training set curve (RMSTRA) continues to fall while the total data set curve (RMSTOT) rises or stabilizes.

Figure 6 illustrates an example of  RMSTOT and  RMSTRA curves as a function of the number of training epochs 
analyzed.

Figure 6. RMS curves obtained during ANN training with 27 hidden neurons and with training set 3R for laminate C12 
(R -10, -1.57 and 0.1).

Table 3 shows the values for RMS and r (correlation coefficient) for the best results obtained for each training set. 
The results show that the increase in the number of S-N curves facilitates network learning, thus yielding results with a 
lower RMSTOT value.

When comparing the results of table 3 with those obtained by Adam’s equation (table 2) one can observe that the 
Neural  Network yields  more  accurate  results.  For example,  when  RMSTOT values  obtained in  C10-4R  training  are 
compared, it can be observed that the value obtained for Adam’s equation is 0.0006 whereas for the Neural Network the 
value is 0.0003, a percentage variation of 50%.

Table 3. Best results obtained for each training set (the ANNs used between 2 and 30 hidden neurons and were trained 
up to 5000 epochs).

Composite 
Material

Training Set
Training Set Total Data Set

EMQTRE rTRE EMQTOD rTOD

Hidden 
Neurons

Training Epochs

C10
3R 0,00049 0,990 0,00048 0,987 23 287
4R 0,00031 0,993 0,00030 0,992 9 1721

C12
3R 0,00037 0,989 0,00040 0,986 27 289
4R 0,00027 0,992 0,00029 0,989 20 3577

From the Neural Networks trained with  training sets 4R presented in table 3, Goodman Diagrams were constructed 
for laminates C10 (figure 7) and C12 (figure 8).



Figure 7. Goodman’s Diagram obtained through the Neural Network with 9 hidden neurons trained with training set 4R 
(R -10, -1.57, -1 and 0.1) for laminate C10, with 1720 training epochs.

Figure 8. Goodman’s Diagram obtained through the Neural Network with 20 hidden neurons trained with training set 
4R (R – 10, -1.57, -1 and 0.1) for laminate C12, with 3577 training epochs.

It can be observed in figures 7 and 8 that, much the same as the results obtained with Adam’s equation (figures 4 
and 5), there is a more pronounced difference in the curves for stress ratios 10, -1.57 and 0.1; however, in some of the 
constant life curves the error is less for the Neural Network than for Adam’s equation.

It is always worth remembering that the Goodman Diagrams presented in Figures 7 and 8 were constructed using 
only 4 S-N curves in the Neural Network training. These results, together with data from other studies (Freire Jr et al., 
2005)  show the great  potential  of  neural  networks  for  analyzing  fatigue  behavior  in composite  materials,  without 
forgetting  that  much more  can still  be done,  given the innumerable  types  of  training  algorithms  and architectures 
possible in neural network applications.

It must be emphasized that the pre-processing of data, using constants common to all composite materials, such as 
static constants (ultimate stress of tensile and of compression), makes this architecture and its training valid for any 
composite material, and according to the results, they model the fatigue behavior of these materials satisfactorily.

To compare the results of Adam’s equation and those of the Neural Network, both obtained with 4 S-N curves, the 
graphs in figure 9 were drawn for laminate composites (a) C10 and (b) C12 ( it is important to mention that the graphs 
in figure 9 and 10 were drawn considering only the maximum and minimum values of the constant life curves, that is, 

103 and 106; this was done to facilitate the comparison of the results). These graphs show that, mainly for the constant 
life curves of 106 and for stress ratio region  R = 1.43 and 0.7, Adam’s equation did not produce good results. This 
behavior was expected, given that the data of these stress ratios were not used in the modeling. One can observe the 
benefit of Neural Network training, since satisfactory results were obtained using only 4 S-N curves not only for the 
data presented to the network but also for those not presented.



(a)                                                                                           (b)
Figure 9. Comparison of the modeling results obtained by Adam’s equation (with 4 S-N curves) and by the Neural 
Network (with 4 S-N curves) for the constant life curves of 103 and 106 cycles, for laminates C10 (a) and C12 (b).

To compare the results obtained between Adam’s equation and the Neural Network, we constructed the Goodman 

Diagrams shown in figure 10 for constant life curves of 103 and 106 cycles, using in this case all the S-N curves for the 
modeling of Adam’ equation. The purpose of this new analysis was to verify which model was the most suitable for 
analyzing fatigue behavior in a qualitative manner.

(a)                                                                                              (b)
Figure 10. Comparison of the modeling results obtained by Adam’s equation (all the S-N curves) and by the Neural 

Network (4 S-N curves) for the constant life curves of 103 and 106 cycles, for laminates C10 (a) and C12 (b).

Figure 10 shows that there is a tendency, mainly for laminate  C12, for the Neural Network model to yield better 
results for R =10 and -1.57 than Adam’s model, always remembering that the Neural Network training only considered 
4 S-N curves, whereas Adam’s equation used all the results of the 6 S-N curves.

5. CONCLUSIONS

From the results obtained in static tests, it can be concluded that the stacking sequence of the material and the 
number of layers had little significant influence on most of mechanical properties, such as ultimate stress and modulus 
of elasticity measured in the load direction.

The results of fatigue tests show the importance of conducting tests for stress ratio  R = -1.57, since  the highest 
stress amplitudes applied in the two composite laminates were found here, with results compared for the same number 
of failure cycles, as shown in the Goodman Diagrams.

The modeling of Goodman’s Diagram can be done using Adam’s equation, but a large number of tests of  S-N 
curves are required to ensure good representativity  of fatigue  failure.  This does not  occur for the Neural  Network 
modeling  of  Goodman’s  Diagram.  In  this  case  excellent  results  were  obtained  for  a  much  smaller  universe  of 
experimental data.

Neural network training proved to be the more efficient of the two models, given the need for fewer experimental 
data, that is, fewer tests, since more accurate results were obtained in preventing fatigue failure in the two composites..
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