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Abstract. Manipulators with parallel architecture have inherent advantages in some applications with respect to serial 
manipulators, like high stiffness, accurate positioning and high movement velocities. Therefore, they address great 
interest in some industrial applications and medical fields. The volume of the workspace is one of the most important 
aspects during the manipulator project because it determines the geometrical limits of the task that can be performed. 
In this work an optimization procedure is proposed to maximize the workspace volume for CaPaMan (Cassino Parallel 
Manipulator) structure considering different geometries such as parallelepiped, sphere and cylinder as objective 
function. The design variables are obtained from the manipulator structure, taking into account constraints such as 
joint limits and link interference, providing a feasible optimal solution. The proposed methodology can be extended to 
consider the design of different robotic architectures.  
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1. INTRODUCTION  
 

The parallel manipulators in general, address great interest because they show better stiffness and payload capacity 
with respect to the serial architectures and can operate at high velocities and accelerations. Furthermore, the errors in 
the joints are not additive which contributes for its overall accuracy. Due to their characteristics they have been studied 
extensively both from theoretical and practical viewpoints whose prototypes have been conceived and built together 
with the development of theoretical investigations on kinematics and dynamics. The attention are focused to a number 
of possible industrial applications such as manipulation (Stewart, 1965), packing (Clavel, 1988), assembly and 
disassembly machines (Pierrot et al., 1991), motion simulation (Ceccarelli, 1997), milling machines (Coelho et al., 
2001). However, they have some disadvantages such as small workspace and the complexity of their forward 
kinematics.  

For evaluating performances of parallel manipulators most of the work has been done regarding to the workspace. 
For the parallel robot the constant-orientation workspace, the reachable workspace and the dexterous workspace can be 
defined, all of them can be represented in 3-D Cartesian space (Merlet, 1994).  

Optimization methodologies have long been applied to mechanism synthesis in order to obtain high performances 
and suitable mechanism dimensions. Several performance criteria could be taken into account for design purposes, as 
for example workspace, singularities, stiffness, and dexterity. 

Obtaining high performances requires the choice of suitable mechanism dimensions especially as there is much 
larger variation in the performances of parallel architectures according to the dimensions than for classical serial ones. 

Indeed, with the development of manipulators for performing a wide range of tasks, the introduction of performance 
indices or criteria, which are used to characterize the manipulator, has, became very important. A number of different 
optimization criteria for manipulators may be appropriate depending on the resources and general nature of tasks to be 
performed. Consequently, one of the problems facing the designer is how to choose performance criteria and justify the 
optimality of different designs (Tsai and Huang, 2000).   

Few researchers have addressed the optimization of the workspace of manipulators. In fact, it is one of the most 
important properties because workspace determines geometrical limits on the task that can be performed. Most of works 
are related to maximize the position workspace (Gosselin and Guillot, 1991), or try to obtain a position workspace as 
close as possible to a prescribed one (Boudreau and Gosselin, 1998), taking into account singularities            
(Schonherr, 2000). A formulation for optimum design of the CaPaMan architecture is presented in Ottaviano and 
Ceccarelli (2001), in order to obtain designed parameters of a robot whose position workspace is suitably prescribed. 
Another work focuses the optimization of the orientation workspace of CaPaMan (Ottaviano and Ceccarelli, 2002). 
Orientation workspace is probably the most difficult characteristic of a manipulator to determine and represent. 

In this paper is presented a formulation for optimum design of parallel structures and this methodology is applied on 
CaPaMan (Cassino Parallel Manipulator) architecture, a 3-DOF spatial parallel manipulator, in order to obtain design 
parameters of a robot whose position and orientation workspaces are suitably prescribed.  

The proposed approach is focused on workspace characteristics, particularly the size of position and orientation 
workspaces of CaPaMan. 

The workspace of parallel kinematic mechanisms has in general a complex volume shape. Discretization algorithms 
are usually used to determine workspace of manipulators. They consist in discretizing the 3-dimensional space, solving 
the Inverse Kinematics for each point, and verifying the constraints that limit the workspace (Oliveira, 2006). Such 

mailto:jcmendes@mecanica.ufu.br


discretization algorithms are used by most of researchers: they are general and can be applied to any type of 
architecture. The proposed algorithm is based on a suitable approximation of position and orientation workspaces. In 
particular Ottaviano and Ceccarelli (2001) use a suitable parallelepiped volume to prescribe the size and shape of 
position and orientation capabilities. In this paper we consider another geometries like cylinder and sphere. 

Due to the complexity of position and orientation workspaces evaluation of the robot parallel structure, this 
workspace has been simplified by using two defined geometries volumes, one that contain the position and another 
containing orientation workspaces. 
 
2. DESCRIPTION OF CAPAMAN ARCHITECTURE 
 

CaPaMan (Cassino Parallel Manipulator) is composed by a fixed plate FP that is connected to a movable plate MP 
by means of three leg mechanisms. Each of these is composed by an articulated parallelogram AP, a prismatic joint SJ 
and a connecting bar CB, Fig.1 (a). CB may translate along the prismatic guide of SJ keeping its vertical posture while 
the BJ allows the MP to rotate in the space. Each AP plane is rotated of π/3 with respect to the neighbor one. A built 
prototype is shown in Fig.1 (b). Design parameters of a k leg mechanism (k = 1, 2, 3) are identified through: ak, which 
is the length of the frame link; bk, which is the length of the input crank; ck, which is the length of the coupler link; dk, 
which is the length of the follower crank; hk, which is the length of the connecting bar. The kinematic variables are: αk, 
which is the input crank angle and sk, which is the stroke of the prismatic joint. The size of MP and FP are given by rp 
and rf, respectively, where H is the center point of MP, O is the center point of FP, Hk is the center point of the k BJ and 
Ok is the middle point of the frame link ak, Fig.1 (a). MP is driven by the three leg mechanisms through the 
corresponding articulation points H1, H2, H3, so that the device is a 3 DOF spatial mechanism. In order to describe the 
motion of MP with respect to FP a world frame OXYZ has been assumed as fixed to FP and a moving frame HXPYPZP 
has been fixed to MP. Particularly, OXYZ has been fixed with Z-axis orthogonal to the FP plane, X-axis as coincident 
with the line joining O to O1, and Y-axis to give a Cartesian reference frame. The moving frame HXPYPZP has been 
fixed in an analogous way to the movable plate MP with ZP orthogonal to the MP plane, XP axis as coincident to the line 
joining H to H1 and YP to give a Cartesian frame. Table 1 gives the dimensions of the built prototype of CaPaMan, Fig.1 
(b). 
  

  
 

                              (a)                                                         
 

Figure 1. (a) Architecture and design parameters o
 

Table 1. Sizes of design parameters o
 

ak=ck
(mm) 

bk=dk
(mm) 

hk
(mm) 

200.00 80.00 96.00 
 

From kinematic analysis of CaPaMan the position (x, y, z
given by Ceccarelli (1997): 
                                         (b) 

f CaPaMan.  (b) A built prototype of CaPaMan.  

f the built prototype of CaPaMan. 

rp=rf
(mm) 

αk
(deg) 

Skmax
(mm) 

109.50 45;135 50.00 

) of point H of the MP and the MP orientation (ψ, θ, ϕ) are 
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where the (yk, zk) coordinates are: 
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The optimization problem enable to obtain the design parameters ak =ck,  bk =dk, hk, for three legs and rp for the MP 

of CaPaMan when the size and shape of orientation and position workspace are suitably prescribed (Ceccarelli, 1997). 

3. A FORMULATION FOR AN OPTIMUM DESIGN 

In this section is discussed the objective to be optimized that consists of the computation of the workspace volume 
though different geometries.  

In a previous paper Ottaviano and Ceccarelli (2001) was presented a formulation for an optimum design for 
CaPaMan architecture when the workspace is suitably prescribed. A formulation that uses the volume of a geometric 
parallelepiped is presented where a fixed volume is a goal to be achieved through a classical nonlinear programming 
methodology. The applied strategy considers the workspace volume and a local optimization. 

A similar formulation for an optimum design of the same architecture was presented in Ottaviano and Ceccarelli 
(2002), considering that the orientation workspace is suitably specified. By using a nonlinear programming 
methodology, the workspace orientation was considered.  

The above discussed papers are summarized in Ceccarelli and Ottaviano (2000), where the workspace positioning 
and orientation are considered simultaneously. All the approaches use the parallelepiped as reference geometry. 

In the present paper these analysis are extended in two different ways: the proposed geometry and the optimization 
procedure. 

For analysis purposes the workspace volume can be approximated by the smallest solid Vp, containing the 
workspace. Thus, the design problem is to find the size of design parameters such that the workspace volume Vp, which 
is a numerical approximation of the real volume, is as close as possible to a prescribed volume V, Fig. 2 (a), (b) and (c). 
 
 
 
 
 
 



3.1 The objective function 
 
The objective will be described by considering different geometries, that is, by parallelepiped, by cylindrical, and by 

spherical geometries. 
The objective that describes the volume to be achieved through parallelepiped geometry is given by the equation 
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where x, y and z represent the half length of each side of the solid, as shown in Fig. 2.  

 

 
                         (a)                                                            (b)                                                             (c) 

 
Figure 2. (a) The parallelepiped geometry , (b) cylindrical geometry and (c) spherical geometry . 

 
This formulation is motivated by the formulation proposed in Ceccarelli and Ottaviano (2000). Here, the solid is 

supposed to be centered at the origin of the Cartesian planes, and therefore preserves symmetry regarding the reference 
plane. 

The objective function for the analysis through the cylindrical geometry, Fig. 2 (b), is given by  
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At last, to consider the spherical geometry, Fig. 2(c), the following objective function is proposed: 
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where 22 yx +=ρ ; 222 zyxr ++=  , V is the required volume and the x, y and z variables are given by Eqs. (1), 
(2) and (3), respectively. 

The above formulation is used to analyze the positioning in the workspace. To consider the orientation by means of 
parallelepiped geometry, the objective functions is given by 
 

( )( )( ) 2

4
222

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

o

k

V
E

f
θψϕ

                         (13) 

 
When considering the cylindrical geometry, the objective function is given by 
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where )( 22 ψϕρ += ko E , Vo is the required volume to be achieved, and ψ, θ,  and ϕ  are given by Equations (4), (5) 
and (6) respectively. The proposed formulation allows the use of a scale factor Ek, and computes a squared difference.  

Finally, the spherical geometry of the orientation workspace is represented through the equation 
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where )( 222 θψϕ ++= ko Er . 

3.2. Multiobjective Programming Approach 

In problems with multiple criteria one deals with a design variable vector x, which satisfies all constraints and makes 
as small as possible the scalar performance index that is calculated by taking into account the m components of an 
objective function vector f(x). This goal can be achieved by the vector optimization problem: 

 

Ω∈x
min{ f(x) | h(x)=0, g(x) ≤ 0 }                    (16) 

 
where Ω ⊂ Rn is the domain of the objective function (the design space), h(x) and g(x) represent the equality and 
inequality constraints, respectively. 

An important feature of such multiple criteria optimization problems is that the optimizer has to deal with objective 
conflicts (Deb, 2001). Other authors discuss the so-called compromise programming, because there is no unique 
solution to the problem (Eschenauer et al., 1990). 

With the aim to evaluate the performance of different objectives (position and orientation), for each of the proposed 
geometries the optimization is performed. Weighting objectives is one of the most usual (and simple) substitute models 
for multiobjective optimization problems. It permits a preference formulation that is independent from the individual 
minimum for positive weights. 

For the first geometry, the parallelepiped, the scalar objective function is defined as 
 

4211 fff par γγ +=                  (17) 
 
In a similar way, the objectives 
 

5221 fffcyl γγ +=                  (18) 
 

and  
 

6231 fffsph γγ +=                  (19) 
 

define the cylindrical and spherical geometries. 
 
Based on the built prototype, the associated constraints are given by 
 

040 <−x ; 040 <−y ; 0180 <−z           (20) 
 

0100 <°−ϕ ; 0100 <°−ψ ; 0230 <°−θ ;          (21) 
 

kpk bra −− 32 ≤ 0                 (22)

         
0>kb ;   ; ;             (23) 0>kh 0>ka



 
Equation (20) defines de bound constraint in x, y and z. These values are allowed to be positive or negative, since the 

center of the considered geometry is positioned in the origin of the Cartesian reference system. The analogous variables 
that define the orientation are constrained by Equation (21). Equation (22) is a physical constraint that avoids collision 
between the legs of the manipulator basis. Equation (23) is a constraint to ensure positive values of the design 
parameters. 

 
3.3 The optimization algorithm 

 
When dealing with nonlinear and non convex objective functions, direct search approached is a suitable tool. There 

are several strategies, as those proposed by Bunday and Garside (1987), Gill et al. (1981), Hook and Jeeves (1969), the 
genetic algorithms (Goldberg, 1989), Differential Evolution (Storn and Price, 1997) (Price et al., 2005), and the 
evolutionary algorithms (Rechenberg, 1973) (Voigt, 1992) (Viana and Steffen Jr, 2006), among others. 

The Differential Evolution is a heuristic method which utilizes a parameter vector as a population for each 
generation. This vector does not change during the minimization process. The initial population is chosen randomly. By 
using the default options, it is assumed a uniform probability distribution for all random decisions. The main idea 
proposed by the method is a scheme for generating trial parameter vectors. The new vectors are generated by adding the 
weighted difference vector between two population members to a third member. If the resulting vector yields a lower 
objective function value than a previous population member, the newly generated vector replaces the comparing vector. 

In contrast, a classical nonlinear programming method requires information about the gradient of the objective 
function, and provides a local minimum at a low computational cost. 

Aiming to obtain the best of each methodology, in this paper a hybrid strategy is adopted. At first, a Differential 
approach is applied to each problem. The design obtained from this process is then used as initial guess for a nonlinear 
programming based algorithm. 
 
4. NUMERICAL RESULTS 
 
 According the original purpose of the weighting objectives (Deb, 2001), the relation 121 =+γγ  must hold. To 
analyze the importance of each objective in the overall performance index, different values for 1γ and 2γ where 
considered. 
 Where performed 300 runs for each geometry, with ii −== 1, 21 γγ , for i=0.1, 0.2, …0.9. Therefore, 2700 
numerical problems where solved by the optimization process. In the first phase of the process, a heuristic optimization 
was performed through the Differential Evolution strategy. Then, the obtained solution was used as initial guess for a 
Quadratic Sequential Programming strategy.  

The 3 best results obtained by using the parallelepiped geometry are summarized in Table 2. One contribution of the 
present strategy is that the same optimal design is achieved when different weight parameters are considered. 

 
Table 2. Optimal results for parallelepiped. 

 
Objective value bk[mm] hk [mm] rp [mm] ak [mm] 

0 16.74281 153.3647 42.88132 115.0596 
0.000001 30.26156 146.1346 38.88597 74.18182 
0.000001 29.91899 152.7558 137.7999 417.5149 

 
By comparing the optimal values of the table, is remarkable that there are different designs with a similar index 

performance. This result leads to conclude that there are several geometries that satisfy the required value of the 
performance index. The statistical information is presented in Table 3. 

 
Table 3. Statistical analysis of optimal results for Parallelepiped. 

 
Parallelepiped bk [mm] hk[mm] rp [mm] ak [mm] 

Average 49.2183 94.2645 95.4948 232.367 
Standard deviation 41.8397 53.5875 66.2927 196.963 

 
The smallest objective value is zero that means the required volume was fulfilled. The largest objective value is 

0.578393 in the worst case. A feature of the processed data is a relative large standard deviation. It empathizes that there 
are several distinct designs that lead to the optimal required volume. This is a common behavior of the problem, and 
happens due the intrinsic complexity of the structure. 
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The optimal geometry, obtained when using the configuration bk = 16.74281; hk = 153.3647; rp = 42.88132;            
ak = 115.0596, is presented in Figure 3(a). The corresponding orientation is shown in Figure 3(b). 

 

 
    

 (a)                                                                                      (b) 
 

Figure 3. (a) Optimal positioning geometry for parallelepiped. (b) Optimal orientation geometry for parallelepiped.  
 
Should be pointed out that many designs take to similar results. From the geometrical point of view, the main 

difference between different results is the change in the corresponding scale.  
In the following, the 3 best results obtained by using the cylindrical geometry are summarized in Table 4. 

 
Table 4. Optimal results for Cylinder. 

 
Objective value bk [mm] hk [mm] rp [mm] ak [mm] 

0 15.36028 174.9813 16.45805 26.29341 
0 17.47014 136.3981 44.65914 119.7679 
0 15.60572 173.3254 110.6967 352.264 

 
As in the preceding case, is remarkable that there are different designs with the same index performance. The 

statistical information is presented in Table 5. 
 

Table 5. Statistical analysis of optimal results for Cylinder. 
 

Cylinder bk [mm] hk [mm] rp [mm] ak [mm] 
Average 36.83547 93.28925 83.70154 216.288 

Standard deviation 36.56697 42.87543 66.14095 201.3851 
 
In this set of experiments was also observed a relative large standard deviation. Therefore, is possible to conclude 

that for this geometry, there are several distinct designs that lead to the optimal required volume. 
By using this geometry, the smallest objective value is zero and the largest objective value is 0.751899. The optimal 

geometry, obtained when using the configuration bk = 17.47014; hk = 136.3981; rp = 44.65914 and ak = 119.7679, is 
presented in Figure 4(a). The corresponding orientation is shown in Figure 4(b). 

 
 
 



 
   

(a)                                                                                             (b) 
 
Figure 4. (a) Optimal positioning geometry for cylinder. (b) Optimal orientation geometry for cylinder. 

 
In the following, the 3 best results obtained by using the spherical geometry are summarized in Table 6. 

 
Table 6. Optimal results for sphere. 

 
Objective  value bk [mm] hk [mm] rp [mm] ak [mm] 

0 145.1331 25.88811 203.2356 413.7825 
0 137.3821 104.1929 190.8649 386.4302 
0 154.4617 112.1805 214.5954 434.4778 

 
In the following, Table 7 presents statistical information about the optimal results. As a remark, for this geometry 

the choice between different designs that lead to similar performance index also exists. 
 

Table 7. Statistical analysis of optimal results for sphere. 
 

Sphere bk [mm] hk [mm] rp [mm] ak [mm] 
Average 44.80083 31.36688 50.64686 85.8492 
Standard deviation 59.55588 20.0241 78.67626 158.9529 

 
The optimal geometry, obtained when using the configuration bk = 145.1331; hk = 25.88811; rp = 203.2356;           

ak = 413.7825, is presented in Figure 5(a). The smallest objective value is zero and the largest objective value is 
0.01966. The corresponding orientation is shown in Figure 5(b). 
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                                             (a)                                                                                           (b) 

 
Figure 9. (a) Optimal positioning geometry for sphere. (b) Optimal orientation geometry for sphere. 

 
Although the larger variation of the design parameters value presented on Tables 2, 4 and 6 one can observe that 

using the sphere as an objective workspace function, the performance of the optimization process is improved. It can be 
found by the smaller value of the worst case, when compared with those of other geometries. 
 
5. CONCLUSION 

 
In this paper a contribution about the optimal design of a CaPaMan parallel robotic structure is presented. 
Initially, the subject of parallel robotic structures, the concept of workspace positioning and orientation, and a 

review about some existing methodologies to obtain the optimal design are considered. 
The presented formulation extends previous works, since it considers the use of different geometries to obtain the 

required volume. Therefore, one contribution of this paper is the analysis of the influence about distinct geometries in 
the optimal design. Another contribution is the use of a hybrid optimization strategy to obtain a global optimum. 

Through a large number of numerical tests is possible to conclude that the weight factors do not affects significantly 
the optimum design.  

Therefore, this methodology is useful to establish the optimal design. Due the good results achieved, the authors 
believe that the strategy can also be useful to consider other decision criteria, e.g., singularities and stiffness, when 
computing the optimal design. 

As a result, the method was shown to be appropriate in exploring the highly nonlinear nature of the structure, once it 
finds several solutions with similar performance index. 

Finally, due to the good performance presented by the numerical experiments, the authors believe that this 
methodology can also be useful to consider other decision criteria, e.g., singularities and stiffness, when computing the 
optimal design, and also can be efficiently used to analyze different parallel robotic structures. 
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