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Abstract. This paper presents a new methodology for the automatiatzlon of the most important parameters of
a kinematic chain, namely redundancy, connectivity andesegof-control. To the authors’ knowledge, this is thd firs
algorithm that accurately calculates redundancy, conividgtand degrees-of-control in all cases, without exomsi
This paper starts by reviewing previous works on the cornvigGtdegrees-of-control and redundancy calculation of
a kinematic chain, identifying the sources of some flaws &oaving counterexamples for the algorithms proposed in
the literature. Moreover, new definitions ebnnectivityand degrees-of-contradre introduced, which do not conflict
with the previous definitions found in the literature. Thesev definitions have an algorithmically oriented form and
identify a systematic procedure for the calculation of thparameters. Based on these definitions, a new algorithm
is proposed, which overcomes the deficiencies of the pewtgorithms. Connectivity and redundancy may be used
to classify kinematic chains according to the constraimguired. In this way, a natural application of the algorithm
proposed is in the process of enumeration of kinematic chaamelynumber synthesjsvhere an automatic procedure

is needed to select the best kinematic chains for a detechtésk, among a large number of chains generated.
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1. Introduction

The choice of the kinematic topology of a mechanism usuafyethds on the designer’s experience and capability. In
practice, some fundamental properties of the kinematimshauch as number of links, number of kinematic pairs, type
of joints, and end-effector mobility, are parameters fixetha earliest stage of the project.

However, the kinematic topology could be chosen through eeragstematic approach by taking into account all the
constraints that derive from the desired characterissiesh as the kind of task required, the environment, the nuwibe
degrees of freedom, the possible redundancy, and so on.

The enumeration of kinematic chains, also knownasber synthesi®ias been used for at least the past four decades,
e.g.(Davies and Crossley, 1966), as a means of finding better anésths for some predefined purpose. In practice,
however, enumeration can be difficult to implement sincentinaber of kinematic chains generated is often too large to
manually consider the individual merits of each chain. Rariteason, the conceptsadnnectivityandvarietycan be used
to classify kinematic chains according to the constraiatpired (Tischler et al., 1995), (Tischler et al., 1998)s¢hler
et al., 2001). Other concepts, created and adapted in (BeHiod Di Benedetto, 2000), such gegrees-of-contrahnd
redundancyare also important to this individuation process.

One of the main problems of the enumeration of kinematicreha the selection of suitable robot manipulators.
This problem is particularly complex for parallel manipiois especially when redundancy is involved. In these ¢cases
redundancy is one of the most important parameters and gsefal support in the first conceptual phase of the design of
the manipulator.

In the field of parallel robots for machine-tools, redundahas been used to increase the workspace of the robot
(such as in the Eclipse parallel robot (Ryu et al., 1998))tardkal with singularities. Another form of redundancy is th
concept of modular robots (Yang et al., 1999) where addafiantuators allow the adaption of the geometry of the robot
according to the task to be performed.

Redundant robots are used in confined spaces, in order td asbisions (Simas et al., 2003) and redundancy is
an important parameter in cooperative robots (Dourado5208ith the application of virtual chains (Campos et al.,
2005), (Campos et al., 2003).

The two main results of this paper are: a redefinition of thecepts ofconnectivityand degrees-of-contrain an
algorithmic form as discussed in Section 5. and a new algortb obtain the parameters of a kinematic chain.

Section 6. presents our algorithm for the calculation ofdeg-of-control, connectivity and redundancy, entirelgdd
on the previous definitions, which overcomes the deficienaf¢he algorithms found in the literature.

To to the authors’ knowledge, this is the first algorithm theturately calculates connectivity and redundancy in all
cases, without exception.

2. Basic definitions

Let us first introduce some basic definitions for kinematiaiah.



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasilia, DF

Figure 1: Closed-loop kinematic chain witli = 5. For links 1 and 4:K14 = 3, C14 = 3, R14 = 0. For links 1 and 5:
Kis=4,Ci5=3,Ri5=1

Definition 1 The number oflegrees of freedonor mobility of a kinematic chain is the number of independent parame-
ters required to completely specify the configuration ofkimematic chain in the space, with respect to one link chosen
as the reference.

The mobility of a kinematic chain, with links andg single degree of freedom joints, may be calculated by theigén
mobility criterion (Hunt, 1978) applied to a setwoflinks andg single degree of freedom joints:

M=Xn—-g—1)+g 1)

where) is the order of the screw system to which all the joint screalsig.
For instance, the mobility of the planar closed-loop kingmehain shown in Figure 1 is, using equation (14,= 5.

Definition 2 (Hunt, 1978) TheconnectivityC;; between two links and j of a kinematic chain is the relative mobility
between linkg and ;.

In other words, the connectivity can be defined as the nunftaegrees of freedom (DoF) between two specific links
in a kinematic chain. The concept int in the bag equivalencentroduced in (Phillips, 1984), is also useful for the
conceptual definition of connectivity. According to suchurglence, all the interposing links and joints between two
links i andj may be considered as hidden inside a flexidgek bag This bag can be regarded as an equivalent unknown
joint between links andj, and the DoF of this equivalent joint is a measure of the cotivigy between the two joints.

It should be remembered that the DoF of any single joint cabegyreater than the maximum degrees of freedom
of a rigid body in the system considered, usually referredstthedimension of the screw system Consequently, the
connectivity is upper-bounded by the value of Therefore, it will be less than or equal to 3 in the case ohelar
spherical screw systems (= 3) and it will be less than or equal to 6 in the general case ofj#reeral spatial motion
(A = 6).

In (Belfiore and Di Benedetto, 2000) another important cphieintroduceddegrees-of-control

Definition 3 (Belfiore and Di Benedetto, 2000) Thegrees-of-contrak’;; between two links and j of a kinematic
chain is the minimum number of independent actuating paesded to determine the relative position between the two
links ¢ andj, possibly leaving some other link-relative position uredetined as wherk;; is less than the mobility/.

Based on the definition of degrees-of-control and conniégtihe definition of redundancy may now be introduced.

Definition 4 Theredundancy?;; between two links andj of a kinematic chain is the difference between the number of
degrees of contrak(;; and the connectivitg’;; between these links.

From these definitions the matric&s C' and K’ do not have to be independently evaluated. It is importanote that
the concept of degrees-of-controlintroduced in (Belfiore Bi Benedetto, 2000) allows the calculation of the redunegta
directly from connectivity and degrees-of-control, agesian the following lemmas (Belfiore and Di Benedetto, 2000)

Lemma 5 If K;; is greater tham\, thenC;; = A, otherwiseC’;; will be equal toK;;.
Lemma 6 The redundancy;; is given as the difference betwegn; andC;;: R = K — C.

The above properties are invariantly relative to the peatiort of indices:ij « ji; therefore, a convenient way
of representing the full set of degrees-of-control, cotimigies and redundancies of a kinematic chain is by symimetr
matrices.
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As an example, the concepts of connectivity, degrees-nfroh and redundancy are applied to a planar, closed-loop
kinematic chain with eight links and eight simple 1-DoF kiretic pairs as shown in Figure 1. Let us consider linksd
4: their degrees-of-control i&’; 4 = 3, i.e. three independent actuators must be used in order to deteithe relative
position between the two links. The connectivity betweenghme pair of links i€'; 4 = 3, i.e. the two links have full
mobility (the relative mobility is equal to the order of therew systen\ where all the joint screws belong). Finally, the
redundancy between linksand4 is R; 4+ = 0. If we choose linkl as the frame and link as the end-effector, the parallel
manipulator derived from the kinematic chain has no degfeedundancy. Consider now linksand5 of the kinematic
chain in Figure 1. The degrees-of-control between thesdimks is K1 5 = 4 and their connectivity i€, 5 = 3, because
it is upper-bounded by the value dftherefore, the redundancyig 5 = 1. One conclusion is that choosing litlas the
frame and link5 as the end-effector, or vice-versa, we obtain a redundaatipemanipulator from the kinematic chain.

For a better understanding of the importance of the conckepbenectivity let us consider Figure 2. Figure 2a
represents an open kinematic chain with mobilify= 8, but the connectivity between any two links does not exceed 2
Consequently the relative mobility between any two linksdj cannot be greater than 2. Figure 2b represents a closed
kinematic chain with mobilityM = 3, but the connectivity between any two links does not exceelirdm these two
simple examples, it is evident that connectivity, not mibpidetermines the ability of an output link to perform akas
relative to a frame.

(b)
Figure 2: Kinematic chains with maximum connectivity beéndinks of 2i.e.C;; < 2 Vi, j

3. Graph Formulation

In this section, some fundamental concepts of graph thélmgi(2001) are introduced. They are essential for topo-
logical analysis and number synthesis of mechanisms. iitj@rtant to remember that the topology of a mechanism can
be uniquely identified by its graph representation, whetsliand joints of the mechanism are represented, resplgctive
by the vertices and edges of the graph.

3.1 Definitions

A graphG consists of a set of verticds connected by a set of edge’s We call a graph with vertices and edges a
(v,e) graph. Each edge of a graph connects two vertices caliddpoints An edge is specified by its end points; that is,
e;; denotes the edge connecting verticesid;. An edge is said to becidentto a vertex if the vertex is an end point of
that edge. The two end points of an edge are said tapgcent Two edges are adjacent if they are incident to a common
vertex.

A sequence of alternating vertices and edges, beginningadithg in a vertex, is calledwalk. A walk is called a
pathif all the vertices, and therefore all the edges, are algindis Thelengthof a path is defined as the number of edges
between the beginning and ending vertices. If each vertpgas once, with the exception of the beginning and ending
vertices, which in this case are the same, the path foramsait or cycle

When a direction is assigned to every edge of a graph, thengsapaid to be alirected graph if no direction is
assigned, the graph is said to bewardirected graph

A subgraplof G is a graph obtained by removing a number of edges and/ocesiiomG. The removal of a vertex
from G implies the removal of all the edges incident to that vertexereas the removal of an edge does not necessarily
imply the removal of its endpoints although it may result mear two isolated vertices.

Two vertices are said to bmnnectedif there exists a path from one vertex to the other. Note tivatconnected
vertices are not necessarily adjacent. A graph G is said tmbrectedf every vertex inG is connected to every other
vertex by at least one path.

An undirected graph is said to béconnectedManber, 1989) if there are at least two vertex disjoint pdtbm every
vertex to every other vertex. Aiconnected componert defined as a maximal subset of edges such that its induced
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subgraph is biconnected (namely, there is no subset th&iosrit and induces a biconnected graph) (Manber, 1989). A
connected graph can be partitioned into biconnected coamisiin (Manber, 1989) an algorithm to find all biconnected
components of an undirected subgraph is presented).

If every pair of distinct vertices in a graph is connected hg edge, the graph is calleccamplete graphA treeis a
connected graph that contains no circuits.

A spanning tre€l’, is a tree containing all the vertices of a connected gi@piClearly,T" is a subgraph ofs. With
reference to a spanning tree, the edgédsef G can be decomposed into two disjoint subsets, catedandchords The
arcs ofG consist of all the elements @ that form the spanning trég, whereas the chords consist of all the elements of
E that are notirff”. The union of the arcs and chords constitutes the edge.set

In general, the spanning tree of a connected graph is nouanitjhe addition of a chord to a spanning tree forms,
one and precisely one, circuit. A collection of all the citswith respect to a spanning tree forms a seindependent
loopsor fundamental circuitsThe fundamental circuits constitute a basis for the cigpaice. Any arbitrary circuit of the
graph can be expressed as a linear combination of the fundahe@&cuits using the operation ofod 2i.e.,1+ 1 = 0.

4. Critical review of connectivity calculation

The importance of the connectivity is emphasised in (Hu@#8, (Tischler et al., 2001), (Tischler et al., 1995),
(Liberati and Belfiore, 2006), (Belfiore and Di Benedetto)@pand others, which drives the efforts to find an algorithm
for the numerical calculation of connectivity. In this deat a critical review of the past contributions to the coctivaty
calculation is presented, and the limits of the various imés$tare analyzed.

4.1 Contribution of Tischler et al.

The concept of variety of a kinematic chain and its first d&bniis introduced in (Tischler et al., 1995). The relation
between variety and connectivity is presented through i@seff conjectures, which are referred to in (Tischler et al.
1995) as propositions and corollaries.

Variety is a useful property for determining the relativennectivities within a chain and also for selecting actuated
pairs. Variety may also be used to classify kinematic chagt®rding to the constraints required (Tischler et al.,1300
The definition of variety as proposed in (Tischler et al., 3)98:

Definition 7 A kinematic chain i&/ariety V if it does not contain any loop, or subset of loops, with a fitytdess than
M — V, but does contain at least one loop, or subset of loops, whésha mobility of\/ — V.

In (Tischler et al., 1995) the relationship between varatg connectivity is summarised through a series of proposi-
tions, originally stated as conjectures, in the absencewfier-examples despite lacking formal proofs.

Conjecture 8 (Tischler et al., 1995) If a variety” kinematic chain has a mobility less than, or equal to, thecof the
screw system,e.if M < A, any two links of the chain, separated by at led&t— V" joints, have a relative connectivity
C>M-V.

Corollary 9 If a variety V kinematic chain has a mobility greater than treler of the screw system that generally
prevails,i.e.if M > A, then any two links, separated by at least V joints, have relative connectivity > A — V.

Corollary 10 Two links separated by a minimum@single-freedom joints, whewe< M — V andg < A — V, have a
relative connectivity” = g.

The formal proof for conjecture 8 is given by the authors iraflihs and Piga Carboni, 2006) an a new algorithm for
variety calculation is presented there (Martins and Pigd@Qd, 2006).

4.2 Contribution of Shoham and Roth

Another important contribution to the automatic calcuatdof connectivities in a kinematic chain is found in (Shoham
and Roth, 1997). Therein, a correspondence between kireohatins and graphs is adopted and the connectivity matrix
is introduced. A counter-example for the algorithm progbbg Shoham and Roth is presented in (Belfiore and Di
Benedetto, 2000).

4.3 Contribution of Belfiore and Di Benedetto

A pure topological treatment of the problem of connectiv@jculation is presented in (Belfiore and Di Benedetto,
2000). A new algorithm, referred to as th@pological methodfor the automatic calculation of degrees-of-control,
connectivity and redundancy is proposed, derived from tethod in (Shoham and Roth, 1997). A counterexample for
the algorithm proposed in (Belfiore and Di Benedetto, 208@résented in (Liberati and Belfiore, 2006).
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4.4 Contribution of Liberati and Belfiore

A new algorithm aiming at correctly detecting partial mdaikchains and calculating their mobilities is introduced
in (Liberati and Belfiore, 2006). The method is based on thecept ofgradual freezing of the circuitsntroduced
in (Mruthyunjaya and Raghavan, 1984) to determine whetliakaf a chain is a separation link. A counter-example for
this algorithm is presented in (Piga Carboni and Martin§720

4.5 Contribution of Piga Carboni and Martins

New definitions of connectivity, degrees-of-control andety are introduced in (Martins and Piga Carboni, 2006) and
(Piga Carboni and Martins, 2007). These new definitionscanflicting with the previous ones, have an algorithmically
oriented form, and identify a systematic procedure for @lewdation of these parameters. A new algorithm is proposed
which overcomes the deficiencies of the previous algorittamd permits the calculation degrees-of-control, cornviggt
redundancy and variety of a kinematic chain.

5. Redefined concepts

Of all the definitions presented in section 2. probably thlestdifficult to calculate is connectivity. The concept of
connectivity is relatively easy to understand; howevefjid@n 2 does not provide a systematic procedure to obtain i
value.

The need for a constructive method to obtain the connegtivibmpted the authors to redefine connectivity and
degrees-of-control in an algorithmically orientated forithese new definitions, listed below, are inspired by pnevio
publications on connectivity, specifically (Shoham andR@B97), (Belfiore and Di Benedetto, 2000), and (Liberati an
Belfiore, 2006).

The new definitions are not in conflict with the previous défims found in the literature, such as Definitions 2-3.
Instead, alternatives way of defining the degrees-of-obatrd the connectivity are presented, which identify acysitic
procedure for the calculation of these parameters.

Definition 11 In a kinematic chain represented by a grapghthe connectivity between two linkandj is

Cij = min : {Dyinli, j], M, M, 5, A} @)

where D, i, 7] is the minimum distance between verticesd j of G, M is the mobility of the kinematic chain con-
sidered,M;,, is the minimum mobility closed-loop biconnected subch&ifi oontaining vertices andj, and X is the

order of the screw system.

Definition 12 In a kinematic chain represented by a gra@hthe degrees-of-control between two lirilend j is

Kij = min : {Dmin[i’j]v M, MI;lin} (3

The definition offedundancys based on the concepts of degrees-of-control and corigctis previously introduced
in (Belfiore and Di Benedetto, 2000).

Definition 13 In a kinematic chain represented by a graghthe redundancy between two linkand j is the difference
betweenk;; andCj;

Rij = Kij — Cj; (4)

A direct consequence of Definitions 11 and 12 is

Cij = min : {Kij, )\} (5)

Following Definition 11, 12 and 13, a new methodology for cectivity, degrees-of-control and redundancy calcula-
tion of a kinematic chain is proposed. The algorithm, bagethe complete correspondence between kinematic chains
and graphs, may be divided into three main parts.

In the first part, a graph representation of the kinematigcisaadopted and the incidence and adjacency matrix of the
graph are built. The mobility and the number of fundamentalits of the graph are evaluated. The minimum distance
matrix D,,,;, between each pair of links is calculated.
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As stated in Definition 11, connectivity and redundancy galdepend also on the mobility of the biconnected sub-
chains of the kinematic chain examined. Hence, the secortdopshe algorithm is the enumeration of all possible
closed-loop connected subchains.

In the last part, each biconnected subchain (more precisath biconnected subgraph) is analyzed, and the mobility
evaluated. Each biconnected subchain is checked for prepgiand the algorithm stops if an improper subchain (see
Section 5.1) is found. An improper kinematic chain is a kiaéimchain where at least one biconnected subchain has
mobility M’ < 0.

Otherwise, based on Definition 11, 12 and 13, connectivityraadundancy are finally calculated.

5.1 Improper kinematic chains

An improper kinematic chain is a kinematic chain where ast@ame biconnected subchain has mobility < 0.
As an example of an improper kinematic chain, consider therkitic chain in Figure 3a and its corresponding graph in
Figure 3b. For the subchain formed by links 1-2-3-4-5-6-9-8he mobility isM* = 0 and the links act as a rigid body.
A further inspection permits the identification of this shbm as a Baranov chain, or Baranov truss (Manolescu, 1979).
Improper chains are of no interest in pure kinematic angjytsierefore, the algorithm stops displaying an output
message identifying the biconnected subcli@nc G with mobility M* < 0.

(b)

Figure 3: Improper planar kinematic chain witi = 1 and partial mobility ¥ = 1) because it contains a Baranov
subchainG* 1-2-3-4-5-6-7-8-9

(evidenced in dashed line)

6. Proposed algorithm for variety and connectivity calculdion

Based on the previous definitions and theorems, let us exatiénsteps of the algorithm proposed. Let a kinematic
chain withg joints andl edges be represented by its gra&ph

1. Calculate the mobilitp/ of the kinematic chaid/ = g — Av where) is the order of the screw system anés the
number of independent circuits;is obtained using Euler’s equation or by inspection.

2. Build the minimum distance matrii,,,;,, whose elemenb,,,;,[r, s] is the minimum distance between vertices
ands.

3. Build the incidence matrix, of the graphG.
4. Build the adjacency matrid; of the graphG.

5. Enumerate all the circuits of the graph (a simple method is suggested in (Seshu and Reed, 19&1¥onsid-
ering the vector space of the circuits of the graph genefayetie basisB; of fundamental circuits. Alternative
algorithms are proposed in (Liu and Wang, 2006), (Johnsers), (Gibbs, 1969), (Honkanen, 1978) which permit
a faster execution, because the sets of disjoint circuitiat generated.

6. A matrix B is generated, in which the columns are the edges of the gamplthe rows are all the circuits of graph
G.

7. Enumerate all the biconnected subgraphs of gi@every biconnected subgraph corresponds to a closed-loop
subchain). We can consider the linear combinations of the if matrix B, using Boolean algebra. In this way, a
large number of subgraphs are consideredrifon biconnected subgraphs are included). In fact, for theectivity
determination we need to consider biconnected subgraphstbarefore, a biconnectivity test is useful to discard
non biconnected subgraphs.
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8.
9.

10.
11.

Copy graphG into graphG’.

Iterate steps 9.1-9.7 for each subgréhhof graphG:

9.1 identify the vertices which belong to the subgraph repméed by the row of matri8 examined (use the
incidence matrix4,)

9.2 Calculate the mobility of the subgraph.

9.3 If M}, < 0 then exit the algorithm because an improper subchain exist.

9.4 If M;, < M continue from the following step, i#/;, > M consider a new subgraph

9.5 Build the subgrapty;,, composed of the edges and vertices identified.

9.6 Build the complete grapR G, of Gi,.

9.7 For every edge— h of KG, perform the following steps:

9.7.1 Find every pair of verticesands of GG that corresponds to the end of the edgeh of KGy,
9.7.2 If M}, < Duin|r, 8] then add ta&’ a virtual edge of weight equal t/,.

Calculate a new matrik’

min

of the minimum distance between the vertices of gréph

Build the connectivity matrix’ and redundancy matri® in such a way that the eleme@fi, j| = D}, [, j] and
Rli,j] = 0if D/ ;.[i, 7] < A. Otherwisej.e.if D/ . [i,7] > A, Cli,j] = AandR]i, j] = D/ ..[7, 7] — A\

min min

6.1 Application

Let us apply the algorithm to the kinematic chain of Figure & a planar kinematic chain with = 3 and M = 2.
Considering the corresponding gra@hn Figure 4b, let us apply Steps 2 and 3 of the algorithm.

@) (b)
Figure 4: Planar kinematic chain witf = 2 and\ = 3 and its corresponding graph

The minimum distance matrik,,,;, and the incidence matrid; are:

1 2 3 4 5 6 7
10 2 3 2 1 1 2]
212 01 2 3 1 2
313101 2 2 3
Dpn= 412 2 1 0 1 3 2 (6)
511 3 2 1 0 2 1
6|1 1 2 3 2 0 1
712232 11 0]
and
a b c d e f g h
11 1.0 00 0 0 0]
210 0001 1 00
310 0000 1 10
A,= 410 0 0 00 0 1 1 7)
510 1.1 0 0 0 0 1
6|1 00 1 1 0 0 O
71001 100 0 0]
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Figure 5: Minimum spanning tree of Graghwith a set of fundamental circuits

Considering (Step 5) the minimum spanning tree of Figures6,fundamental circuits are found in gragh
The matrixB; of the fundamental circuits is obtained applying the methiagbosed in (Seshu and Reed, 1961).

a b c d e f g h
111001 1 11
Br=9lo0o1 11111 8)

Now matrix B (Step 6) is obtained, where each row represents a circuieagtaph.

a b ¢c d e f g h
1(1 1.0 0 1 1 1 1

B= 20 0 1 1 1 1 1 1 (9)
311 1 1 1 0 0 0 0

Consider all linear combinations of the rows of matihusing Boolean algebra. A new matii; is obtained, where
the string at the beginning of each row indicates the lineantnation of the three rows of matrix.

0+0+0
1+0+0
0+14+0
0+0+1
1+1+0
1+0+1
O+1+1
1+1+1

(10)

R )RR, ORF, O Q
i e e e i e e I i e R ]
— = = OO0
=== O O Q)
— ROk RO
= =) R O Rk O Y%
—_ === O RO W
= N e ==~

[

The rows of matrixB; represent all possible subgraphs of gréghn fact, some subgraphs are repeated,the last
four rows. It should be noticed that keeping repeated sythgrdoes not affect the algorithm, but diminishes conshilgra
the efficiency due to extra and unnecessary calculation.ticonnectivity calculation, only biconnected subgraphs
should be examined; hence a biconnectivity test needs tppléeed to the subgraphs to be examined. In maiixall
independent biconnected subgraphs (Step 7) are reprddsnitews 2, 3, 4 and 5, as sketched in Figure 6.

Considering the incidence matrix, of graphG (which relates vertices to edges), as in Equation 7, for satlof
edges of a subgrap@i;, (a row of matrix B,), it is possible to identify the set of vertices which belaiogthe same
subgraphG. It is now possible to calculate the mobility of the subgraghng the mobility equation.

Consider now a cop¥’ of graphG. Applying to each subgraph of graghthe Step 9.1 - 9.7, we add virtual edges
to graphG’ where necessary. A useful representation for gi@pis given by the adjacency matrik;; a virtual edge of
weightTV between verticesand; of graphG’ may be added simply by setting;[4, j] = W. The adjacency matri®;
of graphG’ with all virtual edges added is:

1 2 3 45 6 7
1o 0 2 0 1 1 1]
210 01 0 210
312101 00 2
Aj= 410 0101 20 (11)
511 2 01 01 1
611 102 101
7110201 1 0
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(©)rowd (M =1) (d)yrow5 M = 2)
Figure 6: All different subgraphs @¥ as identified by lines 2, 3, 4 and 5 of matui

As we found that the biconnected subgraph in Figure 6¢, spording to row 4 of matrix8, has mobilityM = 1.
Finally (Steps 10 - 11), the minimum distance maiti¥;,, of graphG’ can be calculated, and the connectivity matrix
of the kinematic chain in Figure 4a is evaluated as:

1 2 3 45 6 7
1702 2 2 1 1 1]

212 01 2 2 1 2
312101 2 2 2
C=412 2101 2 2 (12)
511 2 2 1 0 1 1
611 1 2 2 10 1
71122211 0]

and the redundancy matrR is null. In short, we have a kinematic chain with no redungaatall, and connectivity
shown in Equation (12).

7. Conclusion

A new definition ofconnectivityanddegrees-of-contrdhas been introduced. These new definitions, not conflicting
with the previous ones found in literature, are built in agogithmically orientated form, and identify a systematic
procedure for the calculation of these parameters.

Based on these definitions, a new methodology for the caloalaf connectivity and redundancy is proposed. The
new algorithm may be applied to kinematic chains with fullbility (variety V' = 0) and partial mobility { # 0).

The full set of connectivities, degrees of control and rethnties is calculated. The algorithm may be easily extended
to partial mobility kinematic chains (chains with cut edgescut vertices) applying the algorithm to the biconnected
components.

Considering the mobility of all possible subchains, theramiivity is correctly evaluated in the kinematic chains
where previous algorithms had some flaws.

The algorithm here proposed is a valid solution for kinemeltiains with a small number of independent loops, other-
wise the number of subchains may increase dramaticallytrencbmputational time required to perform the analysis may
be excessively long. However, to the authors’ knowledgs,ifithe first algorithm that accurately calculates conmiggt
and redundancy in all cases, without exception.
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