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Abstract. This paper presents a new methodology for the automatic calculation of the most important parameters of
a kinematic chain, namely redundancy, connectivity and degrees-of-control. To the authors’ knowledge, this is the first
algorithm that accurately calculates redundancy, connectivity and degrees-of-control in all cases, without exceptions.
This paper starts by reviewing previous works on the connectivity, degrees-of-control and redundancy calculation of
a kinematic chain, identifying the sources of some flaws and showing counterexamples for the algorithms proposed in
the literature. Moreover, new definitions ofconnectivityand degrees-of-controlare introduced, which do not conflict
with the previous definitions found in the literature. Thesenew definitions have an algorithmically oriented form and
identify a systematic procedure for the calculation of these parameters. Based on these definitions, a new algorithm
is proposed, which overcomes the deficiencies of the previous algorithms. Connectivity and redundancy may be used
to classify kinematic chains according to the constraints required. In this way, a natural application of the algorithm
proposed is in the process of enumeration of kinematic chains, namelynumber synthesis, where an automatic procedure
is needed to select the best kinematic chains for a determined task, among a large number of chains generated.
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1. Introduction

The choice of the kinematic topology of a mechanism usually depends on the designer’s experience and capability. In
practice, some fundamental properties of the kinematic chains, such as number of links, number of kinematic pairs, type
of joints, and end-effector mobility, are parameters fixed at the earliest stage of the project.

However, the kinematic topology could be chosen through a more systematic approach by taking into account all the
constraints that derive from the desired characteristics,such as the kind of task required, the environment, the number of
degrees of freedom, the possible redundancy, and so on.

The enumeration of kinematic chains, also known asnumber synthesis, has been used for at least the past four decades,
e.g. (Davies and Crossley, 1966), as a means of finding better mechanisms for some predefined purpose. In practice,
however, enumeration can be difficult to implement since thenumber of kinematic chains generated is often too large to
manually consider the individual merits of each chain. For this reason, the concepts ofconnectivityandvarietycan be used
to classify kinematic chains according to the constraints required (Tischler et al., 1995), (Tischler et al., 1998), (Tischler
et al., 2001). Other concepts, created and adapted in (Belfiore and Di Benedetto, 2000), such asdegrees-of-controland
redundancy, are also important to this individuation process.

One of the main problems of the enumeration of kinematic chains is the selection of suitable robot manipulators.
This problem is particularly complex for parallel manipulators especially when redundancy is involved. In these cases,
redundancy is one of the most important parameters and givesuseful support in the first conceptual phase of the design of
the manipulator.

In the field of parallel robots for machine-tools, redundancy has been used to increase the workspace of the robot
(such as in the Eclipse parallel robot (Ryu et al., 1998)) andto deal with singularities. Another form of redundancy is the
concept of modular robots (Yang et al., 1999) where additional actuators allow the adaption of the geometry of the robot
according to the task to be performed.

Redundant robots are used in confined spaces, in order to avoid collisions (Simas et al., 2003) and redundancy is
an important parameter in cooperative robots (Dourado, 2005), with the application of virtual chains (Campos et al.,
2005), (Campos et al., 2003).

The two main results of this paper are: a redefinition of the concepts ofconnectivityanddegrees-of-controlin an
algorithmic form as discussed in Section 5. and a new algorithm to obtain the parameters of a kinematic chain.

Section 6. presents our algorithm for the calculation of degrees-of-control, connectivity and redundancy, entirely based
on the previous definitions, which overcomes the deficiencies of the algorithms found in the literature.

To to the authors’ knowledge, this is the first algorithm thataccurately calculates connectivity and redundancy in all
cases, without exception.

2. Basic definitions

Let us first introduce some basic definitions for kinematic chains.
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Figure 1: Closed-loop kinematic chain withM = 5. For links 1 and 4:K14 = 3, C14 = 3, R14 = 0. For links 1 and 5:
K15 = 4, C15 = 3, R15 = 1

Definition 1 The number ofdegrees of freedom, or mobility of a kinematic chain is the number of independent parame-
ters required to completely specify the configuration of thekinematic chain in the space, with respect to one link chosen
as the reference.

The mobility of a kinematic chain, withn links andg single degree of freedom joints, may be calculated by the general
mobility criterion (Hunt, 1978) applied to a set ofn links andg single degree of freedom joints:

M = λ(n − g − 1) + g (1)

whereλ is the order of the screw system to which all the joint screws belong.
For instance, the mobility of the planar closed-loop kinematic chain shown in Figure 1 is, using equation (1),M = 5.

Definition 2 (Hunt, 1978) TheconnectivityCij between two linksi andj of a kinematic chain is the relative mobility
between linksi andj.

In other words, the connectivity can be defined as the number of degrees of freedom (DoF) between two specific links
in a kinematic chain. The concept ofjoint in the bag equivalence, introduced in (Phillips, 1984), is also useful for the
conceptual definition of connectivity. According to such equivalence, all the interposing links and joints between two
links i andj may be considered as hidden inside a flexibleblack bag. This bag can be regarded as an equivalent unknown
joint between linksi andj, and the DoF of this equivalent joint is a measure of the connectivity between the two joints.

It should be remembered that the DoF of any single joint cannot be greater than the maximum degrees of freedom
of a rigid body in the system considered, usually referred toas thedimension of the screw systemλ. Consequently, the
connectivity is upper-bounded by the value ofλ. Therefore, it will be less than or equal to 3 in the case of plane or
spherical screw systems (λ = 3) and it will be less than or equal to 6 in the general case of thegeneral spatial motion
(λ = 6).

In (Belfiore and Di Benedetto, 2000) another important concept is introduced:degrees-of-control.

Definition 3 (Belfiore and Di Benedetto, 2000) Thedegrees-of-controlKij between two linksi and j of a kinematic
chain is the minimum number of independent actuating pairs needed to determine the relative position between the two
links i andj, possibly leaving some other link-relative position undetermined as whenKij is less than the mobilityM .

Based on the definition of degrees-of-control and connectivity, the definition of redundancy may now be introduced.

Definition 4 TheredundancyRij between two linksi andj of a kinematic chain is the difference between the number of
degrees of controlKij and the connectivityCij between these links.

From these definitions the matricesR, C andK do not have to be independently evaluated. It is important tonote that
the concept of degrees-of-control introduced in (Belfiore and Di Benedetto, 2000) allows the calculation of the redundancy
directly from connectivity and degrees-of-control, as stated in the following lemmas (Belfiore and Di Benedetto, 2000)

Lemma 5 If Kij is greater thanλ, thenCij = λ, otherwiseCij will be equal toKij .

Lemma 6 The redundancyRij is given as the difference betweenKij andCij : R = K − C.

The above properties are invariantly relative to the permutation of indices:ij ↔ ji; therefore, a convenient way
of representing the full set of degrees-of-control, connectivities and redundancies of a kinematic chain is by symmetric
matrices.
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As an example, the concepts of connectivity, degrees-of-control, and redundancy are applied to a planar, closed-loop
kinematic chain with eight links and eight simple 1-DoF kinematic pairs as shown in Figure 1. Let us consider links1 and
4: their degrees-of-control isK1,4 = 3, i.e. three independent actuators must be used in order to determine the relative
position between the two links. The connectivity between the same pair of links isC1,4 = 3, i.e. the two links have full
mobility (the relative mobility is equal to the order of the screw systemλ where all the joint screws belong). Finally, the
redundancy between links1 and4 is R1,4 = 0. If we choose link1 as the frame and link4 as the end-effector, the parallel
manipulator derived from the kinematic chain has no degree of redundancy. Consider now links1 and5 of the kinematic
chain in Figure 1. The degrees-of-control between these twolinks isK1,5 = 4 and their connectivity isC1,5 = 3, because
it is upper-bounded by the value ofλ; therefore, the redundancy isR1,5 = 1. One conclusion is that choosing link1 as the
frame and link5 as the end-effector, or vice-versa, we obtain a redundant parallel manipulator from the kinematic chain.

For a better understanding of the importance of the concept of connectivity let us consider Figure 2. Figure 2a
represents an open kinematic chain with mobilityM = 8, but the connectivity between any two links does not exceed 2.
Consequently the relative mobility between any two linksi andj cannot be greater than 2. Figure 2b represents a closed
kinematic chain with mobilityM = 3, but the connectivity between any two links does not exceed 2. From these two
simple examples, it is evident that connectivity, not mobility, determines the ability of an output link to perform a task
relative to a frame.
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Figure 2: Kinematic chains with maximum connectivity between links of 2i.e.Cij ≤ 2 ∀i, j

3. Graph Formulation

In this section, some fundamental concepts of graph theory (Tsai, 2001) are introduced. They are essential for topo-
logical analysis and number synthesis of mechanisms. It is important to remember that the topology of a mechanism can
be uniquely identified by its graph representation, where links and joints of the mechanism are represented, respectively,
by the vertices and edges of the graph.

3.1 Definitions

A graphG consists of a set of verticesV connected by a set of edgesE. We call a graph withv vertices ande edges a
(v,e) graph. Each edge of a graph connects two vertices calledend points. An edge is specified by its end points; that is,
eij denotes the edge connecting verticesi andj. An edge is said to beincidentto a vertex if the vertex is an end point of
that edge. The two end points of an edge are said to beadjacent. Two edges are adjacent if they are incident to a common
vertex.

A sequence of alternating vertices and edges, beginning andending in a vertex, is called awalk. A walk is called a
pathif all the vertices, and therefore all the edges, are also distinct. Thelengthof a path is defined as the number of edges
between the beginning and ending vertices. If each vertex appears once, with the exception of the beginning and ending
vertices, which in this case are the same, the path forms acircuit or cycle.

When a direction is assigned to every edge of a graph, the graph is said to be adirected graph; if no direction is
assigned, the graph is said to be anundirected graph.

A subgraphof G is a graph obtained by removing a number of edges and/or vertices fromG. The removal of a vertex
from G implies the removal of all the edges incident to that vertex,whereas the removal of an edge does not necessarily
imply the removal of its endpoints although it may result in one or two isolated vertices.

Two vertices are said to beconnected, if there exists a path from one vertex to the other. Note thattwo connected
vertices are not necessarily adjacent. A graph G is said to beconnectedif every vertex inG is connected to every other
vertex by at least one path.

An undirected graph is said to bebiconnected(Manber, 1989) if there are at least two vertex disjoint paths from every
vertex to every other vertex. Abiconnected componentis defined as a maximal subset of edges such that its induced
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subgraph is biconnected (namely, there is no subset that contains it and induces a biconnected graph) (Manber, 1989). A
connected graph can be partitioned into biconnected components (in (Manber, 1989) an algorithm to find all biconnected
components of an undirected subgraph is presented).

If every pair of distinct vertices in a graph is connected by one edge, the graph is called acomplete graph. A tree is a
connected graph that contains no circuits.

A spanning treeT , is a tree containing all the vertices of a connected graphG. Clearly,T is a subgraph ofG. With
reference to a spanning tree, the edge setE of G can be decomposed into two disjoint subsets, calledarcsandchords. The
arcs ofG consist of all the elements ofE that form the spanning treeT , whereas the chords consist of all the elements of
E that are not inT . The union of the arcs and chords constitutes the edge setE.

In general, the spanning tree of a connected graph is not unique. The addition of a chord to a spanning tree forms,
one and precisely one, circuit. A collection of all the circuits with respect to a spanning tree forms a set ofindependent
loopsor fundamental circuits. The fundamental circuits constitute a basis for the circuit space. Any arbitrary circuit of the
graph can be expressed as a linear combination of the fundamental circuits using the operation ofmod 2, i.e. , 1 + 1 = 0.

4. Critical review of connectivity calculation

The importance of the connectivity is emphasised in (Hunt, 1978), (Tischler et al., 2001), (Tischler et al., 1995),
(Liberati and Belfiore, 2006), (Belfiore and Di Benedetto, 2000) and others, which drives the efforts to find an algorithm
for the numerical calculation of connectivity. In this section, a critical review of the past contributions to the connectivity
calculation is presented, and the limits of the various methods are analyzed.

4.1 Contribution of Tischler et al.

The concept of variety of a kinematic chain and its first definition is introduced in (Tischler et al., 1995). The relation
between variety and connectivity is presented through a series of conjectures, which are referred to in (Tischler et al.,
1995) as propositions and corollaries.

Variety is a useful property for determining the relative connectivities within a chain and also for selecting actuated
pairs. Variety may also be used to classify kinematic chainsaccording to the constraints required (Tischler et al., 2001).
The definition of variety as proposed in (Tischler et al., 1995) is:

Definition 7 A kinematic chain isVariety V if it does not contain any loop, or subset of loops, with a mobility less than
M − V , but does contain at least one loop, or subset of loops, whichhas a mobility ofM − V .

In (Tischler et al., 1995) the relationship between varietyand connectivity is summarised through a series of proposi-
tions, originally stated as conjectures, in the absence of counter-examples despite lacking formal proofs.

Conjecture 8 (Tischler et al., 1995) If a varietyV kinematic chain has a mobility less than, or equal to, the order of the
screw system,i.e. if M ≤ λ, any two links of the chain, separated by at leastM − V joints, have a relative connectivity
C ≥ M − V .

Corollary 9 If a variety V kinematic chain has a mobility greater than theorder of the screw system that generally
prevails,i.e. if M > λ, then any two links, separated by at leastλ − V joints, have relative connectivityC ≥ λ − V .

Corollary 10 Two links separated by a minimum ofg single-freedom joints, whereg < M − V andg < λ − V , have a
relative connectivityC = g.

The formal proof for conjecture 8 is given by the authors in (Martins and Piga Carboni, 2006) an a new algorithm for
variety calculation is presented there (Martins and Piga Carboni, 2006).

4.2 Contribution of Shoham and Roth

Another important contribution to the automatic calculation of connectivities in a kinematic chain is found in (Shoham
and Roth, 1997). Therein, a correspondence between kinematic chains and graphs is adopted and the connectivity matrix
is introduced. A counter-example for the algorithm proposed by Shoham and Roth is presented in (Belfiore and Di
Benedetto, 2000).

4.3 Contribution of Belfiore and Di Benedetto

A pure topological treatment of the problem of connectivitycalculation is presented in (Belfiore and Di Benedetto,
2000). A new algorithm, referred to as thetopological method, for the automatic calculation of degrees-of-control,
connectivity and redundancy is proposed, derived from the method in (Shoham and Roth, 1997). A counterexample for
the algorithm proposed in (Belfiore and Di Benedetto, 2000) is presented in (Liberati and Belfiore, 2006).
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4.4 Contribution of Liberati and Belfiore

A new algorithm aiming at correctly detecting partial mobility chains and calculating their mobilities is introduced
in (Liberati and Belfiore, 2006). The method is based on the concept ofgradual freezing of the circuits, introduced
in (Mruthyunjaya and Raghavan, 1984) to determine whether alink of a chain is a separation link. A counter-example for
this algorithm is presented in (Piga Carboni and Martins, 2007).

4.5 Contribution of Piga Carboni and Martins

New definitions of connectivity, degrees-of-control and variety are introduced in (Martins and Piga Carboni, 2006) and
(Piga Carboni and Martins, 2007). These new definitions, notconflicting with the previous ones, have an algorithmically
oriented form, and identify a systematic procedure for the calculation of these parameters. A new algorithm is proposed
which overcomes the deficiencies of the previous algorithms, and permits the calculation degrees-of-control, connectivity,
redundancy and variety of a kinematic chain.

5. Redefined concepts

Of all the definitions presented in section 2., probably the most difficult to calculate is connectivity. The concept of
connectivity is relatively easy to understand; however, Definition 2 does not provide a systematic procedure to obtain its
value.

The need for a constructive method to obtain the connectivity prompted the authors to redefine connectivity and
degrees-of-control in an algorithmically orientated form. These new definitions, listed below, are inspired by previous
publications on connectivity, specifically (Shoham and Roth, 1997), (Belfiore and Di Benedetto, 2000), and (Liberati and
Belfiore, 2006).

The new definitions are not in conflict with the previous definitions found in the literature, such as Definitions 2-3.
Instead, alternatives way of defining the degrees-of-control and the connectivity are presented, which identify a systematic
procedure for the calculation of these parameters.

Definition 11 In a kinematic chain represented by a graphG, the connectivity between two linksi andj is

Cij = min : {Dmin[i, j], M, M
′

min
, λ} (2)

whereDmin[i, j] is the minimum distance between verticesi and j of G, M is the mobility of the kinematic chain con-
sidered,M

′

min
is the minimum mobility closed-loop biconnected subchain of G containing verticesi andj, andλ is the

order of the screw system.

Definition 12 In a kinematic chain represented by a graphG, the degrees-of-control between two linksi andj is

Kij = min : {Dmin[i, j], M, M
′

min} (3)

The definition ofredundancyis based on the concepts of degrees-of-control and connectivity, as previously introduced
in (Belfiore and Di Benedetto, 2000).

Definition 13 In a kinematic chain represented by a graphG, the redundancy between two linksi andj is the difference
betweenKij andCij

Rij = Kij − Cij (4)

A direct consequence of Definitions 11 and 12 is

Cij = min : {Kij , λ} (5)

Following Definition 11, 12 and 13, a new methodology for connectivity, degrees-of-control and redundancy calcula-
tion of a kinematic chain is proposed. The algorithm, based on the complete correspondence between kinematic chains
and graphs, may be divided into three main parts.

In the first part, a graph representation of the kinematic chain is adopted and the incidence and adjacency matrix of the
graph are built. The mobility and the number of fundamental circuits of the graph are evaluated. The minimum distance
matrixDmin between each pair of links is calculated.
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As stated in Definition 11, connectivity and redundancy values depend also on the mobility of the biconnected sub-
chains of the kinematic chain examined. Hence, the second part of the algorithm is the enumeration of all possible
closed-loop connected subchains.

In the last part, each biconnected subchain (more precisely, each biconnected subgraph) is analyzed, and the mobility
evaluated. Each biconnected subchain is checked for properness and the algorithm stops if an improper subchain (see
Section 5.1 ) is found. An improper kinematic chain is a kinematic chain where at least one biconnected subchain has
mobility M ′ ≤ 0.

Otherwise, based on Definition 11, 12 and 13, connectivity and redundancy are finally calculated.

5.1 Improper kinematic chains

An improper kinematic chain is a kinematic chain where at least one biconnected subchain has mobilityM∗ ≤ 0.
As an example of an improper kinematic chain, consider the kinematic chain in Figure 3a and its corresponding graph in
Figure 3b. For the subchain formed by links 1-2-3-4-5-6-7-8-9, the mobility isM∗ = 0 and the links act as a rigid body.
A further inspection permits the identification of this subchain as a Baranov chain, or Baranov truss (Manolescu, 1979).

Improper chains are of no interest in pure kinematic analysis; therefore, the algorithm stops displaying an output
message identifying the biconnected subchainG∗ ⊂ G with mobility M∗ ≤ 0.
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Figure 3: Improper planar kinematic chain withM = 1 and partial mobility (V = 1) because it contains a Baranov
subchainG∗ 1-2-3-4-5-6-7-8-9
(evidenced in dashed line)

6. Proposed algorithm for variety and connectivity calculation

Based on the previous definitions and theorems, let us examine the steps of the algorithm proposed. Let a kinematic
chain withg joints andl edges be represented by its graphG.

1. Calculate the mobilityM of the kinematic chainM = g −λν whereλ is the order of the screw system andν is the
number of independent circuits;ν is obtained using Euler’s equation or by inspection.

2. Build the minimum distance matrixDmin, whose elementDmin[r, s] is the minimum distance between verticesr

ands.

3. Build the incidence matrixAa of the graphG.

4. Build the adjacency matrixAj of the graphG.

5. Enumerate all the circuits of the graphG: (a simple method is suggested in (Seshu and Reed, 1961)),i.e. consid-
ering the vector space of the circuits of the graph generatedby the basisBf of fundamental circuits. Alternative
algorithms are proposed in (Liu and Wang, 2006), (Johnson, 1975), (Gibbs, 1969), (Honkanen, 1978) which permit
a faster execution, because the sets of disjoint circuits are not generated.

6. A matrixB is generated, in which the columns are the edges of the graph,and the rows are all the circuits of graph
G.

7. Enumerate all the biconnected subgraphs of graphG (every biconnected subgraph corresponds to a closed-loop
subchain). We can consider the linear combinations of the rows of matrixB, using Boolean algebra. In this way, a
large number of subgraphs are considered (i.e.non biconnected subgraphs are included). In fact, for the connectivity
determination we need to consider biconnected subgraphs only; therefore, a biconnectivity test is useful to discard
non biconnected subgraphs.
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8. Copy graphG into graphG′.

9. Iterate steps 9.1-9.7 for each subgraphGk of graphG:

9.1 identify the vertices which belong to the subgraph represented by the row of matrixB examined (use the
incidence matrixAa)

9.2 Calculate the mobility of the subgraphMk.

9.3 If Mk ≤ 0 then exit the algorithm because an improper subchain exist.

9.4 If Mk ≤ M continue from the following step, ifMk > M consider a new subgraph

9.5 Build the subgraphGk, composed of the edges and vertices identified.

9.6 Build the complete graphKGk of Gk.

9.7 For every edget − h of KGk perform the following steps:

9.7.1 Find every pair of verticesr ands of G that corresponds to the end of the edget − h of KGk

9.7.2 IfMk < Dmin[r, s] then add toG′ a virtual edge of weight equal toMk.

10. Calculate a new matrixD′

min
of the minimum distance between the vertices of graphG′.

11. Build the connectivity matrixC and redundancy matrixR in such a way that the elementC[i, j] = D′

min
[i, j] and

R[i, j] = 0 if D′

min
[i, j] ≤ λ. Otherwise,i.e. if D′

min
[i, j] > λ, C[i, j] = λ andR[i, j] = D′

min
[i, j] − λ.

6.1 Application

Let us apply the algorithm to the kinematic chain of Figure 4a. It is a planar kinematic chain withλ = 3 andM = 2.
Considering the corresponding graphG in Figure 4b, let us apply Steps 2 and 3 of the algorithm.
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Figure 4: Planar kinematic chain withM = 2 andλ = 3 and its corresponding graph

The minimum distance matrixDmin and the incidence matrixAj are:

Dmin =





















1 2 3 4 5 6 7

1 0 2 3 2 1 1 2
2 2 0 1 2 3 1 2
3 3 1 0 1 2 2 3
4 2 2 1 0 1 3 2
5 1 3 2 1 0 2 1
6 1 1 2 3 2 0 1
7 2 2 3 2 1 1 0





















(6)

and

Aa =





















a b c d e f g h

1 1 1 0 0 0 0 0 0
2 0 0 0 0 1 1 0 0
3 0 0 0 0 0 1 1 0
4 0 0 0 0 0 0 1 1
5 0 1 1 0 0 0 0 1
6 1 0 0 1 1 0 0 0
7 0 0 1 1 0 0 0 0





















(7)
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Figure 5: Minimum spanning tree of GraphG with a set of fundamental circuits

Considering (Step 5) the minimum spanning tree of Figure 5, two fundamental circuits are found in graphG.
The matrixBf of the fundamental circuits is obtained applying the methodproposed in (Seshu and Reed, 1961).

Bf =

[

a b c d e f g h

1 1 1 0 0 1 1 1 1
2 0 0 1 1 1 1 1 1

]

(8)

Now matrixB (Step 6) is obtained, where each row represents a circuit of the graph.

B =





a b c d e f g h

1 1 1 0 0 1 1 1 1
2 0 0 1 1 1 1 1 1
3 1 1 1 1 0 0 0 0



 (9)

Consider all linear combinations of the rows of matrixB using Boolean algebra. A new matrixBs is obtained, where
the string at the beginning of each row indicates the linear combination of the three rows of matrixB.

Bs =

























a b c d e f g h

0 + 0 + 0 0 0 0 0 0 0 0 0
1 + 0 + 0 1 1 0 0 1 1 1 1
0 + 1 + 0 0 0 1 1 1 1 1 1
0 + 0 + 1 1 1 1 1 0 0 0 0
1 + 1 + 0 1 1 1 1 1 1 1 1
1 + 0 + 1 1 1 1 1 1 1 1 1
0 + 1 + 1 1 1 1 1 1 1 1 1
1 + 1 + 1 1 1 1 1 1 1 1 1

























(10)

The rows of matrixBs represent all possible subgraphs of graphG; in fact, some subgraphs are repeated,e.g.the last
four rows. It should be noticed that keeping repeated subgraphs does not affect the algorithm, but diminishes considerably
the efficiency due to extra and unnecessary calculation. Forthe connectivity calculation, only biconnected subgraphs
should be examined; hence a biconnectivity test needs to be applied to the subgraphs to be examined. In matrixBs all
independent biconnected subgraphs (Step 7) are represented by rows 2, 3, 4 and 5, as sketched in Figure 6.

Considering the incidence matrixAa of graphG (which relates vertices to edges), as in Equation 7, for eachset of
edges of a subgraphGk (a row of matrixBs), it is possible to identify the set of vertices which belongto the same
subgraphGk. It is now possible to calculate the mobility of the subgraphusing the mobility equation.

Consider now a copyG′ of graphG. Applying to each subgraph of graphG the Step 9.1 - 9.7, we add virtual edges
to graphG′ where necessary. A useful representation for graphG′ is given by the adjacency matrixAj ; a virtual edge of
weightW between verticesi andj of graphG′ may be added simply by settingAj [i, j] = W . The adjacency matrixAj

of graphG′ with all virtual edges added is:

Aj =





















1 2 3 4 5 6 7

1 0 0 2 0 1 1 1
2 0 0 1 0 2 1 0
3 2 1 0 1 0 0 2
4 0 0 1 0 1 2 0
5 1 2 0 1 0 1 1
6 1 1 0 2 1 0 1
7 1 0 2 0 1 1 0





















(11)
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(d) row 5 (M = 2)

Figure 6: All different subgraphs ofG as identified by lines 2, 3, 4 and 5 of matrixBs

As we found that the biconnected subgraph in Figure 6c, corresponding to row 4 of matrixBs, has mobilityM = 1.
Finally (Steps 10 - 11), the minimum distance matrixD′

min
of graphG′ can be calculated, and the connectivity matrix

of the kinematic chain in Figure 4a is evaluated as:

C =





















1 2 3 4 5 6 7

1 0 2 2 2 1 1 1
2 2 0 1 2 2 1 2
3 2 1 0 1 2 2 2
4 2 2 1 0 1 2 2
5 1 2 2 1 0 1 1
6 1 1 2 2 1 0 1
7 1 2 2 2 1 1 0





















(12)

and the redundancy matrixR is null. In short, we have a kinematic chain with no redundancy at all, and connectivity
shown in Equation (12).

7. Conclusion

A new definition ofconnectivityanddegrees-of-controlhas been introduced. These new definitions, not conflicting
with the previous ones found in literature, are built in an algorithmically orientated form, and identify a systematic
procedure for the calculation of these parameters.

Based on these definitions, a new methodology for the calculation of connectivity and redundancy is proposed. The
new algorithm may be applied to kinematic chains with full mobility (variety V = 0) and partial mobility (V 6= 0).
The full set of connectivities, degrees of control and redundancies is calculated. The algorithm may be easily extended
to partial mobility kinematic chains (chains with cut edgesor cut vertices) applying the algorithm to the biconnected
components.

Considering the mobility of all possible subchains, the connectivity is correctly evaluated in the kinematic chains
where previous algorithms had some flaws.

The algorithm here proposed is a valid solution for kinematic chains with a small number of independent loops, other-
wise the number of subchains may increase dramatically, andthe computational time required to perform the analysis may
be excessively long. However, to the authors’ knowledge, this is the first algorithm that accurately calculates connectivity
and redundancy in all cases, without exception.
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