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Abstract. Electrical Impedance Tomography allows to monitor the lungs under forced ventilation and it is a non invasive
procedure. It uses electrical potentials of electrodes attached to the thorax, when electrical current is imposed on some
electrodes. The measurements allow estimating the electrical resistivity distribution inside the thorax, which, in turn, can
be related to the lungs state. The present work evaluates the use of Linear Programming (LP) as a method to search
images in Electric Impedance Tomography. Linear Programming is used to solve an ill-conditioned linear system in the
Sensitivity Matrix algorithm, imposing restrictions in the solution space. These restrictions reduce the solution space
to a closed region, with clinical and physical meaning. The tests were performed using numerically simulated data
and experimental data. The images using Linear Programming are compared to images obtained using Lower Upper
Triangular Decomposition (LU Decomposition). The use of LP and restrictions of the solution space generated images
with better spacial solution, better resistivity resolution and more uniform sensitivity in the center of the domain compared
to the use of the LU Decomposition and a small regularizing term
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1. INTRODUCTION

The necessity to visualize the interior of a domain whose access with devices like micro-cameras is difficult, im-
practicable, or impossible, led to the development of methods of estimation of images based in the variations of electric
properties of the domain. Such methods are currently used in a variety of applications that involve from the control of
industrial processes to the aid in medical diagnostics. Electrical Impedance Tomography (EIT) is well known among the
different methods.

EIT can monitor the lungs in a continuous and non invasive way during the forced ventilation. In this technique the
domain is discretized using a finite element mesh, electrodes are placed in the border of the domain, known currents
are injected and electric potentials are measured through these electrodes. The electric potentials measurement makes
possible to estimate the distribution of resistivity or conductivity in the interior of the domain. In medical diagnosis, EIT
are being applied in different areas, such as the monitoring of cerebral blood flow and blood volume changes [9], study of
cerebral haemodynamics in the newborn for many years [7] and detection and monitoring of apnea and edema [12].

Some industrial applications of the EIT are the monitoring of the solid distribution inside hidrociclone
[11], images of industrial flows, volumetric flow’s alterations in oil and gas [3], measures of material’s distribution in two
phases flows [4], images of volcanic magma [8] and detection of antitank mines [2].

In EIT, it is common to speak about the Forward Problem and Inverse Problem. In the forward problem the electric
properties of the domain are defined, the currents injected and the structure of the model is known beforehand. The
objective is to calculate the electric potentials in the electrodes. To calculate the electric potential in the electrodes is
necessary to solve "Eq (1)"

[Y ]{V } = {C} (1)

where [Y(ρ)] ∈ <m×m is the matrix of global rigidity in function of resistivity {ρ} ∈ <n and {V(ρ)} ∈ <m is a matrix
of corresponding voltages to each current pattern injected. The term current pattern is defined as the way how the current
is injected, equally the term voltage pattern is defined as the way how the voltage is measured. In the literature, various
works present different forms to inject current and to measure potentials, in the present work the patterns method jump an
electrode was adopted.

To solve a "Eq (1)" is necessary to eliminate the singularity of the rigidity matrix, the article Comparing reconstruction
algorithms for electrical impedance tomography [13] describes the procedure to eliminate the singularity of the rigidity
matrix.

In the inverse problem the potentials in the electrodes are known as well as the currents, the structure of the model
and it aims to know the electric properties distribution. For the solution of the inverse problem, exists in the literature the
absolute methods and the methods that generate images of variation of the electrical properties.

For the absolute methods, the images are in absolute values of resistivity, as example it is cited topological Optimiza-
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tion Method [6], The Newton Raphson Method [1] and variants of the Filter of Kalman [10]. In the methods that generate
images of variation of the electric properties, the images are the difference between two values of absolute resistivities,
or either, the equivalent to an absolute value in a reference system whose zero has been translated to any chosen point as
zero, as an example is cited Sensitivity Matrix method which is implemented in the present work.

Variations of the resistivity distribution are the result of the solution of a linear system of the type [A]{x} = {b}. The
objective of the present work is to evaluate the performance of the Linear Programming (LP) in the solution of the linear
system, from the point of view of numerical errors propagation and the easiness to restrict the solution to the region of
interest.

This paper is organized as follows, in section II the mathematical formulation of the domain is presented, also the
modeling of the domain and the electrodes by means of the Finite Elements Method (FEM). In section III Sensitivity
Matrix is described which is implemented to solve the inverse problem. The use of the Linear Programming in EIT and
the implementation of this technique in the Sensitivity Matrix is shown in section IV. In section V it is explained the data
utilized for testing LP. The results with the different generated data are shown in section VI and finishing in section VII
the results are discussed.

2. Finite Element Model

Having a domain with unknown electric properties, EIT allows estimate his distribution of resistivity, given the excita-
tion of the system consisting in current imposed in the contour of the domain and the electrical potentials are measured in
regions of the contour of the domain. It is known that different tissues of the human body have different electrical prop-
erties, the relations that govern the iterations between the electricity and the magnetism are summarized in the Maxwell’s
equations.

The Maxwell’s equations can be simplified in the following elliptic partial differential equation:

∇ · (1
ρ
∇V ) = 0 in Ω (2)

where ρ is the electrical resistivity, V is the electrical potential and Ω is the domain in study. The "Eq (2)" is also known
as forward problem, the solution of this equation determines the electrical potentials that are used in the implementation of
the algorithms. The solution of the forward problem can be determined with the knowledge of the conditions of Newmann
and Dirichlet on the surface of the domain ∂Ω. To be able to apply the conditions of Newmann and Dirichlet the domain
Ω was discretized using the finite elements method (FEM).

The domain of interest Ω is discretized in a mesh of m nodes and n triangular elements (triangular elements of three
nodes), the electrical potential in each element is approximated by a function of linear interpolation that depends on the
electric potential values on nodes of the element. The electric potential is described by a finite dimensional space and
the problem of finding the nodal electric potentials, {V }, turns into an algebraic problem or the following linear system
of equations: where {V } is the vector of nodal electric potentials, {I} is the vector of nodal electric currents and [K] is
the matrix of global rigidity in function of electrical resistivity. With the electrodes placed in the surface of the domain,
the effect of the contact impedances electrode-skin must be taken into account. In this work, we considered the complete
electrode model [5] to represent these effects. The considered model generates a matrix [Ye

i ] and a vector Ie correspondent
to each electrode placed in the surface of the domain ∂Ω, the new matrix and the new vector are added in [K] and {I},
respectively. The matrix [Ye

i ] is

[Ye
i ] =

ab

3tρ




1 1
2 0 − 3

2
2 1

2 −3
sim 1 − 3

2
6


 (3)

It is assumed that the potential in the metallic part of the electrode is equal, the thickness of the interface of the
electrode t is smaller that the width of the electrode a (t ¿ a).

Adding the matrix of the electrode model in the matrix of global rigidity, we obtain the following system: (1)", we
obtain the following system:

[KT ]{VT } = {IT } (4)

Once the electric potential of a reference node is chosen, the system can be solved for the vector {VT }, a non-linear
function of the resistivity distribution.
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3. Sensitivity Matrix

A domain Ω that represents a distribution resistivity not-uniform ρ(x, y) is discretized using FEM. Under these hy-
potheses, it can define the transformation hj : (ρ, I) −→ {vj} for vector {vj} (vector of nodal electrical potentials for
which current pattern), j = 1, . . . , p (p number of current patterns)

{vj(ρ)} = hj(ρ) = [Y (ρ)]−1{Ij} (5)

where {Ij} ∈ <m is the current pattern injected.
From the "Eq. (5)", can be concluded that the vectors of nodal voltages are nonlinear functions of the distribution of

resistivity in the domain. Applying series of Taylor and truncating the series from the linear term and around a distribution
ρ0, we obtain:

{vj(ρ)} ≈ {vj(ρ0)}+
∂hj |(ρ0)

∂ρ
[ρ− ρ0] =⇒ {vj(ρ)} − {vj(ρ0)}︸ ︷︷ ︸

{∆V}

=
∂hj |(ρ0)

∂ρ︸ ︷︷ ︸
Hj

[ρ− ρ0]︸ ︷︷ ︸
{∆ρ}

(6)

Calculating the partial derivative of the transformation hj with respect the resistivity of each element for

Hj(ρ0) =
∂hj |(ρ0)

∂ρ
= −[Y ]−1 ∂ [Y ]

∂ρ
[Y ]−1[Ij ] (7)

Hj(ρ0) =
[
−[Y ]−1 ∂[Y ]

∂ρ1
[Y ]−1{Ij} − [Y ]−1 ∂[Y ]

∂ρ2
[Y ]−1{Ij} · · · − [Y ]−1 ∂[Y ]

∂ρn
[Y ]−1{Ij}

]
, j = 1, . . . , p (8)

where [Hj ] ∈ <p×n is called Sensitivity Matrix,
To find the resistivity from the equation "Eq (7)" it is necessary to define the following performance index

IP =
1
2

(
[H]|ρ0{∆ρ} − {∆Vm}

)T (
[H]|ρ0{∆ρ} − {∆Vm

)
+ α{∆ρ}T [F ]T [F ]{∆ρ} (9)

where [F ] ∈ <n is a regularization matrix and α is a regularization parameter. It is necessary to determine the
resistivity variation that minimizes the difference between the measured voltage and the calculated voltage, for such
objective is necessary derived the performance index with respect {∆ρ} and to equal to zero

∂IP

∂∆ρ
= 0 =⇒ [H]|Tρ0

(
[H]|ρ0{∆ρ} − {∆Vm}

)
+ α[F ]T [F ]{∆ρ} = 0 (10)

Grouping terms in the "Eq (10)" we obtain the expression of interest

(
[H]|Tρ0

[H]|ρ0 + α[F ]T [F ]
)
{∆ρ} = [H]|Tρ0

{∆Vm} (11)

4. Using Linear Programming to Electrical Impedance Tomography

Linear Programming (LP) is used in TIE in the solution of linear systems of the type [A] {~x} = {b} taking advantage
of the fact that it is possible to impose restrictions in the variables {~x}.

The problem of identifying the resistivity distributions inside of the thorax has natural restrictions, resistivity cannot be
negative and cannot exceed a characteristic maximum value of a biological tissue. These restrictions become the convex
space solution, simplifying the solution of the inverse problem.

To solve the linear system is necessary to rewrite the classic LP problem. An arbitrary vector is chosen {~x0} ∈ <n

and then is proceeded to determine the vector {~e} ∈ <n as {~e} = [A]{~x0} − {b}.
The original system of restrictions in the form [A]{~x} = {b} is rewritten as presented in the following equation

[A]{~x} − {b}+ δ{~e} = 0 (12)
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The original problem is reformulated of the following form form

Minimize δ

Subject to
[A]{~x} − {b}+ δ{~e} = 0 (13)
{~xmin} ≤ {~x} ≤ {~xmax}

0 ≤ δ ≤ ε

when δ ≈ 0, the solution vector {~x} satisfies [A]{~x} = {b}.
Examining the "Eq (11)", it represents a linear system in the form [A]{x} = {b}, then by comparison we can identify

our matrix [A] and vectors {x} and {b}

[A]{x} = {b} =⇒
(

[H]|Tρ0
[H]|ρ0 + α[F ][T ][F ]

)

︸ ︷︷ ︸
[A]

{∆ρ}︸ ︷︷ ︸
{x}

=
(

[H]|Tρ0
{∆Vm}

)

︸ ︷︷ ︸
{b}

(14)

Applying the previously mentioned procedure for the Sensitivity Matrix, we obtain

Minimizar δ

Sujeito a(
[H]|Tρ0

[H]|ρ0 + α[F ]T [F ]){∆ρ} − ([H]|Tρ0
{∆Vm}

)
+ δ{~e} = 0 (15)

∆ρmin ≤ ∆ρ ≤ ∆ρmax

0 ≤ δ ≤ ε

Where

{~e} =
(

[H]|Tρ0
[H]|ρ0 + α[F ]T [F ]){∆ρa}

)
−

(
[H]|Tρ0

{∆Vm}
)

The imposition of limits in the "Eq (14)" is having in account a prior information, the value of resistivity found for the
algorithm has that to be positive for the case of tank and the object, then the value zero is fixed for the inferior limit and
the value for the superior limit can be fixed for the maximum value of resistivity that can be found, for ours study case
this value is the resistivity of the object. For medical applications, the resistivities inside the thorax [14], they are positive
values that vary since 4Ωm for the heart (muscle) even 1× 105Ωm for the present air in the lungs. Leaving of this known
information as a prior, is possible to impose the limits in the variable to get medical images.

5. Simulated and Experimental data

The numerical phantom used to generate the simulated data consists of a circular domain with a 2D mesh. The
resistivity distribution is known as a prior. Two sets of data are generated, one set will be called basal and the other
set will be called with-object. To generate the basal set of simulated electrical potentials, the resistivity distribution is
uniform. To generate the set with-object of simulated electrical potentials, the resistivity distribution of the domain is
uniform except for a cylindrical region, called object, that has a higher resistivity.

The experimental data was obtained from a cylindrical container with 30 electrodes attached to its boundary with 35
mm high and 10mm wide (the thickness of each electrode is not necessary for the algorithm). The electrodes are equally
spaced along the container’s boundary, which was filled up to 35 mm with a 0.3g/L saline solution (NaCl). Its resistivity
is approximately 17Ωm. The inner diameter of the container is 300mm. The object, a glass cillinder, has 32mm of
diameter and resistivity close to 106Ωm.

To obtain the electrical potentials in the electrodes, a pair of them was electrically excited following the current pattern
seen in the section 1.. Then, the relative potentials were measured, except for those which share current carrying electrodes,
due to hardware limitations. The pair of electrodes used for current injection was successively changed until a satisfactory
number of observations was obtained, providing the necessary data for the estimation of an image. Thirty current patterns
were applied.

6. Results

To obtain the simulated data it was used a phantom with uniform resistivity in a cylindrical domain and a cylindrical
inclusion placed in two different positions. The first position of the object is 0.11m off the center "Fig.1(a) " and the
second position of the object is at the center of domain "Fig.1(b) ". The resistivity of the object was 100Ωm. The other
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elements of the domain had 10Ωm of resistivity. The initial estimate of resistivity was 10Ωm for the elements and the
initial electrode parameters were 0, 02Ωm2. The injected current was 2mA. The meshes to solve the inverse problems
are shown in "Fig.2(b) and "Fig.3(b) ". The meshes to solve the direct problems are shown in "Fig.2(a)" and "Fig.3(a) ".

(a) (b)

Figure 1. Object located at (a) the boundary (b) the center

(a) (b)

Figure 2. Finite elements meshes to solve the (a) forward and (b) inverse problem, inclusion close to the boundary

(a) (b)

Figure 3. Finite elements meshes to solve the (a) forward and (b) inverse problem, inclusion close to the center

To obtain experimental data, the object was located in two positions, near the border and in the center of the cillindrical
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vessel. The adopted electrode parameters were 0.02Ωm2 and the initial resistivity of the saline solution was 20.0Ωm. The
injected current was 2mA peak in amplitude and 125kHz in frequency. The finite elements mesh used to solve the inverse
problem is shown in the "Fig.4 "

Figure 4. Finite elements mesh to solve the inverse problem with experimental data

The images obtained using simulated data are in figure 6.and figure 6.. The regularization parameter was α = 1.0e−2

when the object is 0.11m off the center and α = 1.0e−2 when the object is at the center.
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Figure 5. Variation of resistivity when the object is 0.11m off the center of the domain, units in ∆ρ[Ωm], and α = 1.0e−2

(a) with LP and (b) LU Decomposition



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

−0.1
−0.05

0
0.05

0.1
0.15

−0.1
−0.05
0

0.05
0.1

0

10

20

30

40

50

60

(a)

−0.1
−0.05

0
0.05

0.1
0.15

−0.1
−0.05
0

0.05
0.1

0

5

10

15

20

25

(b)

Figure 6. Variation of resistivity when the object is at the center of the domain, units in ∆ρ[Ωm], and α = 1.0e−2 (a)
with LP and (b) LU Decomposition

The images obtained using experimental data are shown in figure 6.and 6.. The regularization parameter was α = 1.0e−3
when the object is 0.11m off the center and α = 1.0e−2 when the object is at the center.
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Figure 7. Variation of resistivity when the object is 0.11m off the center of the domain ∆ρ[Ωm] and α = 1.0e−3 (a) with
LP and (b) LU Decomposition
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Figure 8. Variation of resistivity in the center of the tank ∆ρ[Ωm] and α = 1.0e−3 (a) with LP and (b) LU Decomposition

The resistivity of the saline is expected to be near 20Ωm for the tests with experimental data. The resistivity of the
object was estimated 20% lower than the expected resistivity when the object is close to the boundary.
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7. Final Comments

The image obtained using Linear Programming to solve the linear system presented higher resistivity distribution,
higher resolution in space, with a satisfactory diameter and good position of the object. The image obtained using LU De-
composition and Tikhonov regularization to solve the linear system presented smaller resistivity distribution and smaller
spatial resolution than using Linear Programming.

The improvement of the images using LP is partially due to the imposition of restrictions in the variables that reduce
the solution space, whithout using a laplacian regularizing term, which penalizes high frequency spatial content. Another
reason for improvement of the images using LP is the smaller numerical error propagation during the computation of the
solution of linear systems.
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