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Abstract. In an attempt to accurately model nonlinear systems, a wide variety of techniques have been developed, such 
as the Volterra series, Wiener models, Hammerstein models, and others. Such approaches have had limited success in 
industry, due primarily to their complexity. Recently, artificial neural networks have generated considerable interest as 
alternative nonlinear modeling tool. B-spline neural network (BSNN), a type of basis function neural network, is 
trained by gradient-based methods, which may fall into local minimum during the learning procedure. To overcome 
the problems encountered by the conventional learning methods, differential evolution (DE)  an evolutionary 
computation methodology  can provide a stochastic search to adjust the control points of a BSNN is proposed. The 
potentialities of DE are its simple structure, easy use, convergence property, quality of solution and robustness.  In this 
paper, we propose a DE approach to train a BSNN. The numerical results presented here indicate that the DE is 
effective in building a good BSNN model for nonlinear identification of an experimental nonlinear yo-yo motion 
control system. 
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1. INTRODUCTION  
 
Artificial neural networks (or neural networks) are originally inspired by biologic neural networks’ functionality that 

may learn complex functional relations through a limited number of training data. Artificial neural networks may serve 
as black-box models of nonlinear multivariable dynamic systems and may be trained using process measured data 
(Mcloone et al., 1998; Narendra and Parthasarathy, 1990). The usual neural network consists of multiple simple 
processing elements, called neurons, interconnections among them and the weights attributed to the interconnections. 
The relevant information of such methodology is stored in the weights. 

In recent years, researchers (Liu et al., 1998; Sarimveis et al., 2003; Kukojl and Levi, 2004) have proposed a varied 
spectrum of methodologies for identification and nonlinear forecasting based upon neural networks to deal with 
nonlinear dynamic systems.  

A relevant approach is to find the best approximation with respect to certain class of basis functions for neural 
networks representation. In this case, there are many possible choices of basis functions, such as radial basis function, 
associate memory networks, wavelets, and B-spline. The main advantage of the B-spline functions over other radial 
functions e.g., the Bezier curve, is the local control of the curve shape, as the curve only changes in the vicinity of a few 
control points that have been changed (Newmann and Sproull, 1979). A B-spline neural network (BSNN) consists of 
the piecewise polynomials with a set of local basis functions to model an unknown function for which a finite set of 
input-output samples are available. The performance of the identification depends on an optimization algorithm for the 
training procedure of the BSNN in order to avoid any possible local minima and also of the BSNN configuration. 

In this context, the development of training methods and improvements for BSNN is an emergent research area. 
Several metaheuristics have been developed in recent years to improve the performance and set up the parameters of the 
BSSN design and also fuzzy systems approaches (Chu and Tomizuka, 1995; Logghe and Wang, 1997; Starrenburg et 
al., 1996; Saranli and Baykal, 1998; Ruano and Azevedo, 1999; Zhang and Knoll, 1999; Yiu et al., 2001; Reay, 2003).  

Recently, as an alternative to the conventional mathematical approaches based on gradient information (Chan et al., 
1998), modern bio-inspired optimization techniques such as evolutionary algorithms (Wang et al., 2002; Coelho and 
Krohling, 2006) paradigms have received much attention by many researchers due to their ability to find an almost 
global optimal solution. 

During the past decade, a novel evolutionary algorithm, Differential Evolution (DE), has been proposed and 
attracted increasing attention (Storn and Price, 1995; Storn, 1997). Unlike the simple genetic algorithms that use binary 
coding for representation, candidate solutions in DE are represented as individuals based on floating-point numbers. DE 
is firstly initialized with a population of random solutions. At each generation, the target population is perturbed with a 
mutant factor, and the crossover operator is then introduced to combine the mutated population with the target 
population so as to generate a trial population. Then the selection operator is applied to compare the objective values of 
both competing populations, namely, target and trial populations. The better individuals of the two populations become 



members of the population for the next generation. This process is repeated until a predefined stopping condition 
occurs. Due to its simple concept, easy implementation and quick convergence, DE has been successfully applied to a 
variety of unconstrained continuous optimization problems (Huang et al., 2007). 

In this paper, a DE approach to train a BSNN is proposed. Numerical results for identification of the nonlinear 
dynamics of an experimental yo-yo motion system show the feasibility and effectiveness of the proposed approach. 

The remainder of this paper is organized as follows. In section 2, the fundamentals of BSNN are presented, while 
section 3 explains the concepts of DE optimization method. Section 4 presents the simulation results for identification 
of experimental nonlinear yo-yo motion control system. Lastly, section 5 outlines our conclusion and future research. 

 
 

2. B-SPLINE NEURAL NETWORK 
 

BSNN is introduced as a class of one-hidden-layer feedforward neural networks composed of B-spline functions. 
Each basis function is composed of q polynomial segments. There exists a simple and stable recursive relationship for 
evaluating the membership of a B-spline basis function of order k, 
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where )(⋅j
qN  is defined as the j-th univariate basis function of order q and jλ  the j-th knot and Ij is the j-th interval. 

The output of neural network is given by 
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where xk and kô  are the inputs and output of network, respectively, wj is the weight attached to the j-th basis function 

and )(⋅j
qN  is given by the recursive form (2). The index j is associative with the region of local support 

)()( jqj x λλ ≤≤− , whereas the index q indicates the order of the basis functions. 

The quality of approximation depends on the placement of knots of B-spline functions. The objective of 
optimization of BSNNs by DE is determination of the knots of each B-spline basis functions. In particular, the number 
of basis functions here were determined by trials. 

 
 
3. DIFFERENTIAL EVOLUTION APPROACH FOR BSNN TRAINING 

 
Unlike other evolutionary algorithms, differential evolution (DE) does not make use of some probability distribution 

function in order to introduce variations into the population. Instead, DE uses the differences between randomly 
selected vectors (individuals) as the source of random variations for a third vector (individual), referred to as the target 
vector. Trial solutions are generated by adding weighted difference vectors to the target vector. This process is referred 
to as the mutation operator where the target vector is mutated. A recombination (or crossover) operator is then applied 
to produce an offspring which is only accepted if it improves on the fitness of the parent individual (Salman et al., 
2006).  
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The variant implemented here of DE was the DE/rand/1/bin. The pseudo code of DE used in the present study is 

given in Fig. 1 (Angira and Babu, 2006). 
 
Let P a population of size NP,  xj the j-th individual of dimension D in population P 

Input of parameters setup  

       Dimension, D; 

       Bounds of optimization variables (potential solutions), x: lower (xi) and upper (xi), i = 1,…, D 

       Population size, NP ≥ 4;  

       Mutation factor, fm; 

       Crossover rate, CR; 

       Stopping criterion of maximum number of generations, tmax; 

       Generation counter t = 1; 

 

Step 1: Initialize the population P = { x1, x2, x3, …, xNP} using uniformly  

            distributed random numbers randi in range [0,1] as 

                 For each individual j ∈ P 

                     xi 
j(t) = lower (xi) + randi ⋅ { upper (xi) - lower (xi) }, i = 1,…, D 

                 End For each 

 

      Step 2:  Evaluate the fitness value fj , j = 1,…, NP, of each individual in population P.  

 

Step 3:  While the stopping criterion tmax is not satisfied do 

                      For All j ≤ NP 

                     Randomly select r1, r2, r3 ∈ (1,..., NP),   j ≠ r1 ≠ r2 ≠ r3 

                     Randomly select irand ∈ (1,..., D) 

                           For All i ≤ D 

                                    xi
’(t) = xi

r3 (t) + fm ⋅ { xi
r1 (t) - xi

r2 (t) }   if (random[0,1) < CR  or  i = irand 

                                    xi
’(t) = xi

j(t)   otherwise 

                           End For All i 

                           If   f (xi
’(t))  ≤  f (xi

j(t)) Then xi
j(t) = xi

’(t); f (xi
j(t)) = f (xi

’(t)); 

                      End For All j 

                      Update the generation counter, t = t + 1; 

                 End While 

Figure 1. Pseudo code of DE. 

 

4. DESCRIPTION OF THE EXPERIMENTAL APPARATUS AND IDENTIFICATION RESULTS 
 
4.1. Description of the Yo-Yo Motion Control System 

 
Yo-yo playing is considered a representative example of open-loop unstable control problems that involve 

intermittent dynamic environments. Stable control of yo-yo playing relies on a proper phase relationship between the 
controller’s action and the motion of the yo-yo (Jin and Zacksenhouse, 2003). 

The development of automatic control systems that efficiently control a yo-yo represents a significant challenge for 
the development of electromechanical designs (Hashimoto and Toshiro, 1996; Zlajpah and Nemec, 2003). One of the 



main difficulties is the lack of sensors to obtain the motion measure of the toys. Another difficulty is the lack of 
mathematical models of this measurement device type, which justifies the use of the BSNNs to identify the dynamic 
behavior of a yo-yo motion in a real system. 

The control system prototype employed in this work uses a yo-yo, and a Direct Current (DC) motor for its motion 
presents nonlinearity and complex behavior. A block diagram of the described system and a photograph of the system 
are presented in Fig. 2 (Herrera et al., 2006).  

 

    
                    (a) yo-yo motion system                                                              (b) sensor module 

Fig. 2. Photograph of yo-yo motion system and its devices. 
 
 

The components of this prototype are divided into software and hardware modules, where (Coelho and Herrera, 
2007): 
� Control module (software): consists of the implementation of control techniques, such as PID (proportional-integral-

derivative) control, fuzzy logic control, and PI (Proportional-Integral) adaptive controllers integrated into a 
computer with communication with the yo-yo system using an I/O interface; 

� Sensor module (hardware / firmware): the sensors employed include the digital electronic circuits (power 
amplification), A/D and D/A converters, and the micro controller running firmware; 

� Actuator module (hardware / firmware): consists of DC motors integrated to the Sensor module, electronic circuits 
and micro controller running firmware; 

� Sensor sub-module: made up of 16 infrared LEDs (Light-Emitting Diodes) able to inform the position of the yo-yo. 
 
The prototype modules are composed of hardware and firmware and are connected to the same printed circuit board, 

called the control board. The control board contains two hardware modules and communicates with a personal computer 
through the RS-232 I/O interface. All the components used for the yo-yo system are off the shelf items to keep the cost 
minimal.  

 
4.2. Simulation Results of Nonlinear Identification using BSNN and DE optimization 

 
The mathematical model employed in this work to represent the yo-yo motion system is a NARX (Nonlinear 

AutoRegressive with eXogenous inputs). In this case, the NARX model with series-parallel conception is used for one-
step-ahead prediction of the BSNN system.  

A computer with a data acquisition board for generating the control signal (identification in closed-loop using a 
proportional controller design) and position value of the yo-yo was used to obtain system measurements. In the 
identification procedure based on the BSNN model, 290 samples of input (tension applied to the DC motor) and output 
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(position of yo-yo) were collected with a time sampling of 40ms (see Fig. 3). The tension value corresponds to the 
maximum value configuration of the driver in PWM (Pulse Width Modulation) control of a DC motor.   

 

 
Fig. 3. Yo-yo motion system input and output data. 

 
 

Experiments for the estimation phase (training phase) of the mathematical model of the yo-yo motion system are 
carried out using samples 1 to 150. For the validation phase, the BSNN model uses the input and output signals of 
samples 151 to 290. The system identification by BSNN model based on DE optimization is appropriate if a 
performance index is in permissible values for the user’s needs.  In this case, the fitness function for maximization 
proposes using DE and is given by the harmonic mean of multiple correlation indices of estimation (training) and 

validation phases. The fitness function (to be maximized) is calculated using the expression of 2
estR  given by:  
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where 2
estR  is the multiple correlation index of the estimation phase, y(t) is the output of the real system, )t(ŷ  is the 

output estimated by the BSNN, and y  is the mean value of the system’s output. For the validation phase (verification 

of generalization capability) of optimized BSSN is employed the 2
valR  index give by 
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where 2
valR  is the multiple correlation index of the validation phase. When the value 2R =1.0 (estimation or validation 

phases), it indicates an overfitting phenomenon, i.e. a model error exists. A 2R  value between 0.9 and 1.0 is considered 
sufficient for applications in designs of identification and model-based controller.   

All the computational programs were run on a 3.2 GHz Pentium IV processor with 3 MB of RAM. In each case 
study, 50 independent runs were made for each of the optimization methods involving 50 different initial trial solutions 
for each optimization method. The setup of classical DE approaches used was the following: 
• DE(1): classical DE using a constant mutation factor given by fm = 0.4 and a crossover rate of CR = 0.8; 



• DE(2): DE using a linear reduction of fm with initial and final values of 0.8 and 0.3, respectively; 
• DE(3): DE using a linear increase of fm with initial and final values of 0.3 and 0.8, respectively. 
• DE(4): DE using  fm generated randomly with uniform distribution in range [0.4; 1.0]; 

 
In these case studies, the population size NP was 20 and the stopping criterion tmax was 50 generations for the DE 

approaches. The three chosen vectors of BSNN’s input were [ u(t-1);  y(t-2); y(t-1) ].  The space searches for knots of 
each B-spline basis functions are [-1.0; 1.0]. Simulation tests using 5 knots in each input of BSNN were realized.  

Table 1 presents the simulation results (best of 50 experiments with 50 generations for each run) for DE in 
optimization of BSNN using 5 knots. As indicated in Table 1, the results of the optimized BSNN present precision and 
provide an appropriate experimental mathematical model for the yo-yo motion system. 

 

Table 1. Results obtained in estimation and validation phases by the maximization of 2
estR using DE approaches  

(it is adopted the solution vector with best 2
estR  after the accomplishment of 50 runs) 

Optimization 
Method 

2
estR  

DE type maximum mean minimum standard 
deviation 

DE(1) 0.9503 0.9442 0.8237 0.0213 
DE(2) 0.9524 0.9412 0.8237 0.0237 
DE(3) 0.9525 0.9429 0.8237 0.0214 
DE(4) 0.9515 0.9413 0.8237 0.0220 

 
 
For the case study of the BSNN optimization, there is a consistent performance pattern across tested approaches 

with similar results in terms of 2
estR . The DE(1) presents the best mean of fitness function as shown in Table 1. 

However, the DE(3) approach presents better results in relation to the maximum fitness than the classical DE(1), DE(2) 
and DE(4). The best results shown in Figure 3 represent the BSNN (using DE(3)) with 5 knots for each network input.  

 
 

     
(a) real (process) output and estimated output 
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(b) error signal 

Fig. 4. Best result of 2
estR  using BSNN with 5 knots for each input and optimization based on DE(3) (see Table 1). 

 
 

5. CONCLUSION AND FUTURE RESEARCH 
 
BSNNs are universal approximators, nonlinear functions approximated by these approximators have been widely 

developed for many practical applications. Moreover, many researches combining neural networks have been developed 
to improve the efficiency of nonlinear system identification. Traditionally, neural networks are trained by using 
gradient-based methods, which may fall into a local minimum during the learning process. Unfortunately, such 
techniques also suffer from difficulties, such as, the choice of starting guess and convergence.  

DE is an evolutionary algorithm that uses a rather greedy and less stochastic approach to problem solving than do 
the EAs. DE combines simple arithmetical operators with the classical operators of recombination, mutation and 
selection to evolve from a randomly generated starting population to a final solution. In this work, DE optimization 
method to adjust the control points of a BSNN was proposed.  

The preliminary experimental results indicate that the DE approaches presented very nice performances in 
identification of an experimental nonlinear yo-yo motion control system. 

The future work of this study includes a comparative study between the DEC approaches and conventional training 
methods like Levenberg-Marquardt, gradient descent, Kalman filter, and quasi-Newton in BSNN training. 
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