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Abstract. Optimization problems are widely encountered in various fields of mechanical engineering. Sometimes such 
problems can be very complex due to the actual and practical nature of the objective function or the model constraints. 
During the history of science of computational intelligence, many evolutionary algorithms and swarm intelligence 
approaches were proposed having more or less success in solving various mechanical engineering optimization 
problems. In this context, the Particle Swarm Optimization (PSO) is a bio-inspired optimization mechanism based on 
the metaphor of social behavior of birds flocking and fish schooling in search for food. In PSO each member is seen as 
a particle, and each particle is a potential solution to the problem under analysis. In this context, each particle which 
moves through the space of the problem has a randomized velocity associated to it. Inspired by the classical PSO 
method and quantum mechanics theories, this work presents a new Quantum-behaved PSO (QPSO) approach using 
Gaussian probability distribution function. The simulation results demonstrate good performance of the QPSO 
approaches in solving a benchmark problem of tension/compression spring design. 
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1. INTRODUCTION  

 
Global optimization problems over continuous spaces arise throughout the scientific community in engineering 

design. The global optimization of nonlinear, non-convex and non-differential functions is still an open challenge for 
researchers since an analytical optimal solution is difficult to obtain even for relatively simple application problems. 

In the recent four decades, many modern heuristic techniques have been proposed to meet this challenge. These 
methods are more flexible than the classical ones in dealing with a wide spectrum of problems because they do not 
require function properties such as differentiability or continuity any more. The well known heuristic search methods 
include genetic algorithms (Michalewicz, 1992), simulated annealing (Aarts and Korst, 1989), Nelder Mead simplex 
method (Wright, 1995), evolution strategies (Gomes and Saavedra, 2002), evolutionary programming (Fogel, 1994), 
differential evolution (Storn and Price, 1995), particle swarm optimization (PSO) (Kennedy et al., 2001), immune 
systems (Castro and Timmis, 2002), and others. 

In this context, PSO is a stochastic population (a group of possible solutions to a problem) based optimization 
algorithm, firstly introduced by Kennedy and Eberhart in 1995 (Kennedy and Eberhart, 1995; Eberhart and Kennedy, 
1995). PSO has shown to be an efficient, robust and simple optimization through individual improvement plus 
population cooperation and competition, which is based on the simulation of simplified social models, such as bird 
flocking, fish schooling, and the swarming theory. Nowadays PSO has gained much attention and wide applications in 
various fields (Kennedy et al., 2001). 

In PSO algorithm, each member of the population is called a ‘‘particle’’, and each particle ‘‘flies’’ around in the 
multidimensional search space with a velocity, which is constantly updated by the particle’s own experience and the 
experience of the particle’s neighbours or the experience of the whole swarm. PSO starts with the random initialization 
of a swarm of particles in the search space and works on the social behavior of the particles in the swarm. Therefore, it 
finds the global best solution by simply adjusting the trajectory of each individual towards its own best location and 
towards the best particle of the swarm at each time step. However, the trajectory of each individual in the search space 
is adjusted by dynamically altering the velocity of each particle, according to its own flying experience and the flying 
experience of the other particles in the search space (Pan et al., 2006).  

The advantages of PSO are that it is rapidly converging towards an optimum, simple to compute and easy to 
implement. However, PSO does exhibits some disadvantages: it sometimes is easy to be trapped in local optima, and the 
convergence rate decreased considerably in the later period of evolution; when reaching a near optimal solution, the 
algorithm stops optimizing, and thus the accuracy the algorithm can achieve is limited. 

Recently, the concepts of quantum mechanics and physics have motivated the generation of optimization methods, 
see Hogg and Portnov (2000), Protopescu and Barhen (2002) and Bulger et al. (2003). Inspired by the particle swarm 
optimization (PSO) and quantum mechanics theories, this work presents a new Quantum-behaved PSO (QPSO) 
approach with Gaussian operator (G-QPSO) to solve the optimization problems over continuous spaces. The 
optimization of engineering design evaluated here is the design of a tension/compression spring. This problem consists 



of minimizing the weight of a tension/compression spring subject to constraints on minimum deflection, shear stress, 
surge frequency, limits on outside diameter and on design variables. The design variables are the mean coil diameter, 
the wire diameter and the number of active coils. 

The rest of the paper is organized as follows: section 2 describes the features of classical PSO for continuous 
optimization, while section 3 explains the QPSO method. Section 4 describes the procedure of constraints handling 
based on penalties. Section 5 then details a case study of engineering design and the simulation results are presented. 
Lastly, section 6 outlines the conclusion and future research.  

 
 

2. CLASSICAL PARTICLE SWARM OPTIMIZATION 
 

The proposal of PSO algorithm was put forward by several scientists who developed computational simulations of 
the movement of organisms such as flocks of birds and schools of fish. Such simulations were heavily based on 
manipulating the distances between individuals, i.e., the synchrony of the behavior of the swarm was seen as an effort to 
keep an optimal distance between them.  

In theory, at least, individuals of a swarm may benefit from the prior discoveries and experiences of all the members 
of a swarm when foraging. The fundamental point of developing PSO is a hypothesis in which the exchange of 
information among creatures of the same species offers some sort of evolutionary advantage. PSO is a relatively new 
population-based heuristic optimization technique. It has been widely applied to optimization problems for simplicity 
and capability of finding fairly good solutions rapidly. 

PSO is basically developed through simulation of bird flocking in two-dimension space (see Figure 1). The position 
of each agent (particle) is represented by XY axis position and the velocity is expressed by vx (the velocity of X axis) and 
vy (the velocity of Y axis). Modification of the agent position is realized by the position and velocity information (El-
Zonkoly, 2006). 

 
Figure 1. Concept of modification of a searching point of a particle by PSO. 

 
In general terms, the PSO approach represents each potential solution of the target function by particles directly. 

Each particle has its own position and velocity, with initial values set randomly. Then, all particles ‘‘fly’’ through the 
solution space and update their positions until they find the optimal solution. During this iterative process, each 
particle’s velocity is adjusted according to its own experience and social cooperation (Xiang et al., 2007). 

The procedure for implementing the global version of PSO is given by the following steps: 
 
Step 1. Initialization of swarm positions and velocities: Initialize a population (array) of particles with random 

positions and velocities in the n dimensional problem space using uniform probability distribution function. 
 
Step 2. Evaluation of particle’s fitness: Evaluate each particle’s fitness value. 
 
Step 3. Comparison to pbest (personal best): Compare each particle’s fitness with the particle’s pbest. If the current 

value is better than pbest, then set the pbest value equal to the current value and the pbest location equal to the current 
location in n-dimensional space. 

 
Step 4. Comparison to gbest (global best): Compare the fitness with the population’s overall previous best. If the 

current value is better than gbest, then reset gbest to the current particle’s array index and value.  
 
Step 5. Updating of each particle’s velocity and position: Change the velocity, vi, and position of the particle, xi, 

according to equations (1) and (2): 
 

))()((    ))()(()()1( 21 txtpUdctxtpud ctvwtv igiiii −⋅⋅+−⋅⋅+⋅=+                                      (1) 
 

 )1)()1( +⋅∆+=+ (tvttxtx iii                                                     (2) 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

 
where w is the inertia weight; i=1,2,…,N indicates the number of particles of population (swarm); t=1,2,…tmax indicates 

the iterations, [ ]Tiniii v,...,v ,v v 21=  stands for the velocity of the i-th particle, [ ]Tiniii x,...,x ,x x 21=  stands for the position 

of the i-th particle of population, and [ ]Tiniii p,...,p ,p p 21= represents the best previous position of the i-th particle. 
Positive constants c1 and c2 are the cognitive and social components, respectively, which are the acceleration constants 
responsible for varying the particle velocity towards pbest and gbest, respectively.  Index g represents the index of the 
best particle among all the particles in the swarm. Variables ud and Ud are two uniformly-distributed random numbers 
between 0 and 1. Equation (2) represents the position update, according to its previous position and its velocity, 
considering 1=∆t . 

 
Step 6. Repeating the evolutionary cycle: Return to Step 2 until a stop criterion is met, usually a sufficiently good 

fitness or a maximum number of iterations (generations). 
 
 
3. QUANTUM-BEHAVED PARTICLE SWARM OPTIMIZATION 
 

Many researchers have devoted to improving PSO performance in various ways and developed many interesting 
variations. In terms of classical mechanics, a particle is depicted by its position vector xi and velocity vector vi, which 
determine the trajectory of the particle. The particle moves along a determined trajectory in Newtonian mechanics, but 
this is not the case in quantum mechanics. In quantum world, the term trajectory is meaningless, because xi and vi of a 
particle can not be determined simultaneously according to uncertainty principle. Therefore, if individual particles in a 
PSO system have quantum behavior, the PSO algorithm is bound to work in a different fashion (Sun et al., 2004; Sun et 
al., 2005). 

In the quantum model of a PSO called here QPSO, the state of a particle is depicted by wavefunction ψ(x, t) 
(Schrödinger equation) (Schweizer, 2001; Levin, 2002), instead of position and velocity. The dynamic behavior of the 
particle is widely divergent form that of that the particle in classical PSO systems in that the exact values of xi and vi 
cannot be determined simultaneously. In this context, the probability of the particle’s appearing in position xi from 
probability density function |ψ(x,t)|2, the form of which depends on the potential field the particle lies in Liu et al. 
(2005). 

Employing the Monte Carlo method, the particles move according to the following iterative equation (Sun et al., 
2004; Sun et al., 2005; Liu et al., 2005): 
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where β is a design parameter called contraction-expansion coefficient (Sun et al., 2005); u and k are values generated 
according to a uniform probability distribution in range [0,1]. 

The global point called Mainstream Thought or Mean Best (Mbest) of the population is defined as the mean of the 
pbest positions of all particles and it given by 
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where N represents the population size of particles. In this case, the local attractor (Clerc and Kennedy, 2002) to 
guarantee convergence of the PSO presents the following coordinates: 
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where c1 and c2 are the cognitive and social components, respectively; pk,j (pbest) represents the best previous j-th 
dimension of the k-th particle and pg,i represents the j-th dimension of the best particle (gbest) of the population.  

The procedure for implementing the QPSO is given by the following steps (Coelho, 2007a, 2007b): 
 

Step 1. Initialization of swarm positions: Initialize a population (array) of particles with random positions in the n 
dimensional problem space using a uniform probability distribution function. 

 
Step 2. Evaluation of particle’s fitness: Evaluate the fitness value of each particle. 



 
Step 3. Comparison to pbest (personal best): Compare each particle’s fitness with the particle’s pbest.   If the 

current value is better than pbest, then set the pbest value equal to the current value and the pbest location equal to the 
current location in n-dimensional space. 
 

Step 4. Comparison to gbest (global best): Compare the fitness with the population’s overall previous best.  If the 
current value is better than gbest, then reset gbest to the current particle’s array index and value.  

 
Step 5. Updating of global point: Calculate the Mbest using equation (4). 
 
Step 6. Updating of particles’ position: Change the position of the particles where c1 and c2 are two random 

numbers generated using a uniform probability distribution in the range [0, 1].   
 
Step 7.  Repeating the evolutionary cycle: Loop to Step 2 until a stop criterion is met, usually a sufficiently good 

fitness or a maximum number of iterations (generations). 
 
 
3.1  QPSO with Gaussian operator 
 

Various approaches using Gaussian, Cauchy and exponential probability distributions to generate random numbers 
to updating the velocity equation of classical PSO have been proposed (Kennedy, 2003; Secrest and Lamont, 2003; 
Krohling and Coelho, 2006).  In this paper, following the same line of study, we present novel operator in QPSO using 
random numbers based on Gaussian probability distribution.  

The design of methods to improve the convergence of QPSO is a challenging issue in the continuous optimization 
applications. A novel QPSO approach based on Gaussian distribution is proposed here.  

Generating random numbers using Gaussian distribution sequences with zero mean and unit variance for the 
stochastic coefficients of QPSO may provide a good compromise between the probability of having a large number of 
small amplitudes around the current points (fine tuning) and a small probability of having higher amplitudes, which 
may allow particles to move away from the current point and escape from local minima. 

In this work, firstly, random numbers are generated using the absolute value |⋅| of the Gaussian probability 
distribution with zero mean and unit variance, i.e., |N(0,1)|, and then mapped to a truncated signal given by 
G=0.33 |N(0,1)|. The QPSO approach combined with Gaussian mutation operator (G-QPSO) is described as follows: 
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where Gu, G1 and G2 are signals given by 0.33 |N(0,1)|. In this proposed G-QPSO approach, the parameter u of equation 
(3) is modified by the equation (6) and the parameters c1 and c2 of equation (5) are modified by the equation (7). 
 
 
4. A PENALTY METHOD FOR CONSTRAINTS-HANDLING 
 

The search space in constrained optimization problems consists of two kinds of solutions: feasible and unfeasible. 
Feasible points satisfy all the constraints, while unfeasible solutions violate at least one of them. Therefore, the solution 
or set of solutions obtained as the final result of an optimization method must necessarily be feasible, i.e., they must 
satisfy all constraints. 

During the past decade, optimization algorithms combining evolutionary computation and constraint-handling 
techniques have shown to be effective to solve constrained optimization problems. For constrained optimization, the 
penalty function method has been regarded as one of the most popular constraint-handling technique so far, whereas its 
drawback lies in the determination of suitable penalty factors, which greatly weakens the efficiency of the method 
(Himmelblau, 1972; Rao, 1996). In this case, the constrained problem is transformed into an unconstrained one by 
penalizing the constraints and building a single objective function, which in turn is minimized using an unconstrained 
optimization algorithm. Over the last few decades, several methods have been proposed for constraints handling in 
evolutionary algorithms and swarm intelligence approaches. These methods can be grouped into four categories: 
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methods that preserve the feasibility of solutions, penalty-based methods, methods that clearly distinguish between 
feasible and unfeasible solutions, and hybrid methods (Michalewicz and Schoenauer, 1996). 

In this work, PSO, QPSO and G-QPSO handle the constraints using the concept of stationary penalty functions (that 
penalize infeasible solutions). That is, one tries to solve an unconstrained problem in the search space S using a 
modified fitness function, such as: 
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where penalty(x) is zero if no constraint is violated, and is positive otherwise. The penalty function is usually based on a 
distance measured to the nearest solution in the feasible region F or on the effort to repair the solution.  

The methodology proposed for constraint handling is divided into two steps. The purpose of the first step is to find 
solutions for the decision variables that lie within user-defined upper (ub) and lower (lb) bounds, i.e., ] ,[ lbbux ∈ . 
Whenever a lower bound or an upper bound restriction is not satisfied, a repair rule is applied, according to equations 
(9) and (10), respectively:  
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where ]1,0[∈w  is a user-defined parameter and ]1,0[rand  is a uniformly distributed random value between 0 and 1. In 
this work, a w equals to 0.005 is adopted. 

In the second step decision variables are considered inequalities (gi(x) ≤ 0).  In this work we minimize the objective 
function, so the equation of the objective function is rewritten as: 
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where q is a positive constant  (arbitrarily set to 50,000), n is the number of constraints, and r is the number of 
constraints gi(x) that were not satisfied. 
 
5. A CASE STUDY AND ANALYSIS OF OPTIMIZATION RESULTS 
 
5.1 Description of case study: Minimization of the weight of a tension/compression spring 

 
This problem was described by Arora (1989) and Belegundu (1982) and it consists of minimizing the weight of a 

tension/compression spring subject to constraints on minimum deflection, shear stress, surge frequency, limits on the 
outside diameter, and on design variables. The design variables are the mean coil diameter D (x1), the wire diameter d 
(x2), as shown in Figure 2, and also the number of active coils N (x3). 

 

 
Figure 2. Tension/compression string used in case study. 

 

The design optimization problem involves three continuous variables and four nonlinear inequality constraints, 
such that 
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The following ranges of the design variable were used: 3.125.0 1 ≤≤ x , 0.205.0 2 ≤≤ x , and 152 3 ≤≤ x  (Ray and 

Liew, 2003).  
 
5.2 Simulation results 

 
To study the performance of the PSO, QPSO and G-QPSO approaches, an example of well-studied continuous 

optimization problem of minimizing the weight of a tension/compression spring were solved and the best results 
obtained through the optimization approaches in 30 trials were compared with those reported in the literature.  

PSO, QPSO and G-QPSO methods were implemented using Matlab 6.5 to run on a PC compatible with Pentium IV, 
a 3.2 GHz processor and 2 GB of RAM. A total of 4,000 cost function evaluations were made with each optimization 
approach in each run. 

In all the experiments, to start the PSO, QPSO and G-QPSO approaches, the setup parameters used were: number of 
particles (swarm population size): 20, and stop criterion: 200 generations. The classical PSO uses also the inertia weight 
with a linear reduction equation with initial and final values of 0.7 and 0.4, respectively.  

Table 1 summarizes the simulation results obtained by applying the PSO, QPSO and g-QPSO approaches. Table 2 
shows the statistics for the 30 independent runs, including the best objective value found, mean, standard deviation, and 
worst value (maximum) found.  

The best mean from the 30 runs was f(X)=0.0102631 using QPSO. The worst solution (mean of 30 runs) found was 
f(X) = 0.0120383 using classical PSO, and the best solutions obtained were f(X)= 0.0098832 using G-QPSO. The best 
result obtained in this study by G-QPSO for the case study is compared with results reported in the literature and are 
presented in Table 3. The best solution from the 30 runs obtained by G-QPSO is better than the best solution previously 
reported in the literature for five other optimization approaches.  

 
Table 1. Results of optimization approaches. 

Optimization Method Mean Time Objective Function in 30 Runs 
Tested Approaches of Each Run 

(in sec) 
Worst 

(Maximum) 
Best 

(Minimum) 
Mean  Median Standard 

Deviation 
PSO 0.7 0.0120383 0.0099499 0.0108238 0.010661 0.000547 

QPSO 1.1 0.0109443 0.0098971 0.0102631 0.010202 0.000264 
G-QPSO 1.3 0.0109388 0.0098832 0.0103043 0.010284 0.000260 

 
Table 2. Best results of the PSO, QPSO and G-QPSO approaches. 

Design Variables Parameters PSO QPSO G-QPSO 
x1  D 0.0500000 0.0500000 0.0500000 
x2 d 0.3724629 0.373906 0.3744313 
x3 N 8.6854992 8.587813 8.5586635 
g1 eq. (13) -2.9980·10-4 -5.8819·10-4 -1.2596·10-3 
g2 eq. (14) -5.0166·10-3 -1.3422·10-3 -4.9356·10-5 
g3 eq. (15) -4.8282 -4.8490 -4.8531 
g4 eq. (16) -0.7184 -0.7174 -0.7171 

f(X) eq. (12) 0.0099499 0.0098971 0.0098832 
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Table 3. Comparison of results for the case study. 

Design 
Variables 

Parameters Arora 
(1989) 

Belengundu  
(1982) 

Coello (2000) Ray and 
Saini (2001) 

Ray and  
Liew (2003) 

Proposed  
G-QPSO 

x1 D 0.053396 0.0500000 0.051480 0.050417 0.0521602 0.0500000 
x2  d 0.399180 0.3159000 0.351661 0.321532 0.3681587 0.3744313 
x3  N 9.185400 14.250000 11.632201 13.979915 10.648442 8.5586635 
g1 eq. (13) 0.000019 -1.2672·10-3 -3.3366·10-3 -1.925·10-3 -7.4527·10-9 -1.2596·10-3 
g2 eq. (14) -0.000018 -0.1490 -0.1357 -0.1556 -0.1314 -4.9356·10-5 
g3 eq. (15) -4.123842 -3.9383 -4.0263 -3.8994 -4.0758 -4.8531 
g4 eq. (16) -0.698283 -0.7561 -0.7312 -0.7520 -0.7198 -0.7171 

f(X) eq. (12) 0.0127302737 0.01273027 0.0127047834 0.0130602 0.012669249 0.0098832  
 
 
6. CONCLUSION AND FUTURE RESEARCH 
 

Inspired by the PSO and quantum mechanics theories, this work presents a new G-QPSO approach with Gaussian 
operator to solve a constrained optimization problem. Simulated experiments for the optimization of a mechanical 
design show that the G-QPSO approach displays a satisfactory performance, with respect to both the quality of its 
evolved solutions and the computational requirements.  

The new G-QPSO method improves the performance of both convergence and results’ precision to solving a well-
studied continuous optimization problem of minimizing the weight of a tension/compression spring. The potential 
performance of G-QPSO indicates that it could be a viable optimization approach for nonlinear optimization.  

The aim of future research is to investigate the use of G-QPSO combined with other computational intelligence 
methodologies, such as fuzzy systems and artificial neural networks for constrained nonlinear optimization problems.  
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