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Abstract. Electrical impedance tomography (EIT) is a noninvasive monitoring technique to produce images that
represent the cross-sectional distribution of the electrical resistivity within an object (for instance the human thorax) from
measurements on its boundary. Mathematically, the absolute resistivity distribution estimation is a nonlinear ill-posed
inverse problem. This paper presents a probabilistic reconstruction algorithm based on Simulated annealing method
for the solution of the absolute EIT inverse problem. The advantage of this algorithm is that no evaluation of function
derivatives is needed and it has the possibility to escape from local minimum. This work contributes to the development of
image estimation algorithms applied to monitor mechanical ventilation of lungs. Using simulated data, the localization
of object, the size of object and the resistivity of the object are well inside the accuracy of EIT obtained by classical
methods. However, using experimental data, the spatial resolution of the object is not good. Only a box restriction of the
solution space were imposed. A regularization technique is necessary to obtain images with higher spatial resolution. In
both, numerically simulated and experimental tests, the computational effort is large. This results show feasibility of the
proposed algorithm.
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1. INTRODUCTION

Electrical Impedance Tomography (EIT) is a noninvasive technique used to produce images that represent the cross-sec-
tional electrical resistivity distribution (or conductivity) within a domain (for instance the human thorax) from electrical
measurements made through electrodes distributed on its boundary. A low amplitude alternated electrical current is
applied by two or more electrodes with a constant intensity and the difference of electrical potential generated (voltage) is
measured in all the rest of the electrodes equally spaced. The way of injecting currents and reading electrical potentials are
called current patterns and electrical potential patterns, respectively. The pair of electrodes used in the current injection is
changed successively until enough number of observations allows the estimation of an image. The image is the resistivity
distribution with Maximum a Posteriori Probabilityon.

EIT is an innovative monitoring tool for applications in the fields of medicine, geophysical, environmental science
and non-destructive materials tests. Some examples of medical applications of the EIT are the detection of pulmonary
embolism [2, 3, 4], monitoring of apnea [5], monitoring of brain function [6], monitoring of heart function and blood flow
[7] and the detection of breast cancer [8].

It is a noninvasive technique without collateral effect. The cost of the electronic hardware is relatively unexpensive.
No radiation is used and the equipment is portable. The drawback of this technique is its low spatial resolution, which is
related with the number of used electrodes.

The Resistivity distribution search can be made with the aid of models that depend or not on the time, generating static
or dynamic methods. The static methods are used when the electrical properties of the domain do not vary significantly
during the time necessary for data collection. When faster changes of the electrical properties happen, the dynamic effects
must be taken into account, a dynamic method must be used. EIT methods can further classified: difference imaging and
absolute imaging. In difference imaging two electrical potentials data sets are measured corresponding to two different
target resistivity distributions. Based on the difference between these measurements, the difference of the resistivity
distributions can be estimated. In absolute imaging the estimation is based on a single data set of electrical potential
measurements, and the aim is to estimate the absolute resistivity distribution.

On the other hand, the problem of EIT is seriously complicated by the non-linearity of the governing equation.
Only boundary measurements are available. The EIT inverse problem is ill-posed and ill-conditioned. The boundary
measurements are relatively insensitive to changes of resisitivity near the center of the domain. Some regularization
techniques are required. These techniques allow the inclusion of prior information, which is known information about the
resistivity distribution in the domain.

An EIT system has hardware to apply currents and then measure electrical potential and software to estimate resistivity
images. The estimation problem is divided in two parts [11, 12]. The first part, the forward problem of EIT consists of
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modeling boundary electrical data as an explicit function of the resistivity (or conductivity) in the domain. The second
part, the inverse problem of EIT consists of computing the internal resistivity distribution from boundary electrical data.

Approaches to solve the inverse problem for reconstruction of EIT fall into several categories like: the non-iterative
methods that are frequently used to obtain difference images, are fast, have low computational cost and lead to inexact
results [1, 13, 14]; the iterative methods that consider the nonlinear relation that exists between the electrical potentials
and electrical resistivity, are promising for obtaining more accurate results and have high computational cost. The iterative
solutions generally follow similar categories [15, 16, 17].

The present work evaluates the performance of a probabilistic algorithm based on the Simulated Annealing method
(SA) to obtain absolute resistivity distributions in a 2-D domain. The SA differs from the traditional search methods, no
evaluation of objective function derivatives is needed and has the possibility to escape from a local minimum through
the use of Metropolis criterion for acceptance of new points in the search space. The developed algorithm solves the
inverse problem of EIT by solving direct problems. The search is accomplished by the metropolis algorithm [18]. It is
assumed that the random image that minimizes an index, which is a function of the difference between the measured
electrical potential on the boundary and calculated electrical potential, is the closest to the distribution of real resistivity.
This makes the method especially attractive when the index to be extremized present multiple local minimum [19]. The
SA allows to use restrictions on the solution space.

The next sections of the paper are organized as follow. Section 2 shows the mathematical governing equations of EIT.
In section 3 is briefly explained how the domain is modeled using FEM. Section 4 describes in more details the Simulated
Annealing method and its formulation for the application in EIT. The methodology of performed tests and its results are
shown in section 4 and section 5, respectively. Finally, section 6 draws the conclusions.

2. MATHEMATICAL MODEL OF THE DOMAIN AND ELECTRODES

The domain is considered a bi-dimensional region closed Ω and limited by a contour surface ∂Ω. The resultant
electrostatic field is governed by the Maxwell’s equations. To reduce the complexity of the EIT problem some simplifying
hypotheses must be adopted. If the domain is related to a body section, Poisson’s equation can be used to represent the
electrical potential φ(x, y) inside of Ω.

∇ · (σ∇φ) = 0 (1)

To limit the infinite number of solutions φ(x, y) of Eq. (1), boundary conditions are applied on ∂Ω. In EIT the electrical
potential measurements and injection currents are made through l electrodes fixed on certain points of ∂Ω, thus, the
following boundary conditions can be stated

σ
∂φ(σ)

∂n̂
=

{
Ji, i = 1, 2, · · · , l
0, in the other points of ∂Ω (2)

wheren̂ is an outward normal vector to ∂Ω. The Eq. (1) is a complex nonlinear partial differential equation, such that
it is impossible to get a general analytic solution for an arbitrary resistivity distribution and irregular boundary shape.
Therefore, numerical techniques are indicated. The Finite Elements Method (FEM) is a well accepted and powerful
numerical method to solve the forward EIT problem.

To model the whole domain Ω it is necessary modeling the interaction of the electrodes in ∂Ω too. The complete
electrode model takes into account both the shunting effect of the electrode and the contact impedance between the
electrodes and the domain. Additionally to Eq. (1), electrode model equations are stated

∫

∂Ωj

σ
∂φ

∂n̂
= Ij , j = 1, 2, · · · , l (3)

σ
∂φ

∂n̂
= 0, (4)

φ + zj σ
∂φ

∂n̂
= Vj , j = 1, 2, · · · , l (5)

where Ij in Eq. (3) represents the electrical current that flow through the jth electrode. In Eq. (5) zj is the effective contact
impedance between the jth electrode and medium and V is the electrical potential in the electrodes.

3. USE OF FEM IN EIT

An inverse problem can be solved iteratively using the solution of its corresponding forward problem. In the particular
case of EIT a model that predicts the internal electrical potential distribution given the electrical current excitation and the
internal resistivity distribution of the domain must be adopted, known as forward problem. We use the FEM to discretize
the domain, including the electrodes.
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The finite elements meshes used to divide Ω have m nodes and n triangular plain finite elements with constant
resistivity ρi, i = 1, 2, · · · , n and linear interpolation functions [11]. The domain is discretized in such a way that regions
experimenting high modification in the resistivity have smaller elements. Refined meshes in this way lead to more accurate
models. The domain is divided in FE by using the mesh generation software

The matrix Ỹ i(ρ−1
i ) ∈ R3×3 is denominated local conductivity matrix of the ith element. Considering e the element

height, Ai the element area and the resistivity being homogeneous and isotropic the components of the local resistivity
matrix are given by

[Ỹ i(ρ−1
i ](k,m) =

eρ−1
i

4Ai
(ξk ξm + τk τm) (k, m = 1, 2, 3) (6)

with

ξ1 = (y2 − y3) , τ1 = (x3 − x2)
ξ2 = (y3 − y1) , τ2 = (x1 − x3) (7)
ξ3 = (y1 − y2) , τ3 = (x2 − x1)

The electrodes are discretized in 2-D finite elements following the work of Hua [20], in which are solved Eq. (3), Eq. (4)
and Eq. (5) with the aid of the FEM. Electrode model take into account the low metal resistivity and the contact impedance
between metal and medium. The interface between the electrode and medium is discretized using two quadrangular finite
elements with 6 nodes in total. To determine the local conductivity matrix of the electrode it is followed the same procedure
used to find the local conductivity matrix of the elements of Ω then

Ỹ
e

j =
b ρ−1

j

t




a
2 0 0 −a

2
a 0 −a

sim a
2

−a
2
2a


 (8)

where a is element width, t is the thickness of contact interface and b is the interface thickness (perpendicular to a and t).
It is defined

zj =
ρj−1

t
(9)

as the effective contact impedance in [Ωm2]−1. The matrix Ȳ
e
j represents the local conductivity matrix of the electrode

written in terms of global coordinates. Then, the summation of all local matrices of the elements and the electrodes is
equivalent to the application of the variational principle in the discretized domain [22] and the global conductivity matrix
Y (ρ−1) ∈ Rm×m is determined

Y (ρ−1) =
n∑

i=1

[
Ỹ i(ρ−1

i )
]

+
l∑

j=1

[
Ȳ

e
j (zj)

]
(10)

After assembling the global conductivity matrix (Eq. (10)) we have m nodes, l electrodes and n elements in which p
currents are injected. Thus, the matrix containing unknown nodal electrical potentials v(ρ−1) = [v1 · · ·vj · · ·vp], vj ∈
Rm corresponding to each applied current pattern is solved through the linear system equations given by

Y V = C (11)

where ρp ∈ Rn+l is any particular resistivity distribution for which it is calculated y, and c = [c1 · · · cj · · · cp], cj ∈
Rm is the matrix of linearly independent bipolar current patterns. On numerical simulations and experimental tests c is

C =




−I 0 · · · +I
0 −I · · · 0

+I 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · −I
0 0 · · · 0




(12)

To solve the equation that governs the forward problem, Eq. (11) , it is necessary to eliminate the singularity of matrix
Y , this can be made by choosing an arbitrary node with null value (ground). The imposition of this boundary condition
it is made by equaling to zero the row and column of the matrix Y corresponding to selected node and attributing to the
intersection element the unitary value [16].
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4. SIMULATED ANNEALING

In 1953, the Simulated Annealing (SA) method was first proposed by Metropolis [18]. It is an algorithm for the
efficient simulation of the evolution of a solid to thermal equilibrium. In short, the SA algorithm is based on the analogy
between the simulation of the annealing of solids and the problem of solving large combinatorial optimization processes
[23, 24]. The annealing denotes a thermal cooling process that starts with a crystal in liquid state, at high temperature,
followed by the slow and gradual reduction of the temperature until the solidification point is reached when the system
achieves a state of "minimal energy". Minimal states of energy are characterized for a structural state of the material
undergone to annealing that would not be obtained if the cooling was not gradual. In conditions less careful of cooling the
material would be crystallized by an "locally minimal energy", in other words, the atomic structure of the material would
be irregular and weak, with some imperfections.

The physical analogy between the annealing of solids and an optimization problem would be the next:

• The system energy ε⇔ objective function F of the optimization problem,

• system state ⇔ solution of optimization problem,

• current system state ⇔ candidate solution,

• minimal energy configuration ⇔ optimal solution,

• the system temperature T ⇔ control parameter

The central point of the algorithm is focused on the process of probabilistic acceptance of a nearby solution that may
represent an increase in F (higher cost). Summarizing, the algorithm is basically characterized by two operations: the
first one is the reduction of the value of the control parameter T successively along the iterations based on a determined
annealing function ; the second one is the realization of the cycle of generation and acceptation of solutions and equivalent
to the Metropolis Algorithm, in such a way that the solutions corresponding to the thermal equilibrium be found to each
temperature. The algorithm ends when a determined stopping criterion is satisfied.

The heuristic parameters should be well adjusted to improve the performance (i.e, efficiency, convergence, speed) as
also the efficacy (i.e, quality of the found solutions) of the algorithm. Amongst these parameters are:

• The initial temperature, T0, must be a value high enough such that all the candidate solutions in the neighborhood
(both: the ones which improve and the ones that get worse the objective function) have a probability next to 1 of
being chosen.

• It is required to determine a (cooling schedule) that defines the evolution of T during an limited number of iterations.
In this work the geometric cooling is used, whose general formula is given by

Tk+1 = αTk (13)

The factor α is a constant next to the unitary value and is the temperature decay rate. The value of the cooling factor
α defines the convergence of the SA. If α is sufficiently high, the probability to converge to a global optimal point
increases and the computational time increases unnecessarily. The more commonly used values are between 0.9
and 0.99 [25].

• the number of iterations to reach the equilibrium at certain temperature, Nt. The simplest criterion is to make a
fixed number of iterations before the temperature is changed.

• the simplest stopping criterion is the pre-definition of the total number of iterations N be executed by the algorithm.
However, this criterion needs to be chosen carefully together with the other parameters so that the algorithm reaches
sufficiently low temperatures that guarantee the convergence.

4.1 SA and the EIT inverse problem

It is assumed that for the minimization of the objective function, the image, ρ, will converge to the requested original
image. In that way, the quadratic error between electrical potentials, measured and computed, was chosen as objective
function and the problem is described by a nonlinear optimization model,

min
ρ∈ Ω

F (ρ)

F (ρ) =
1
2

∥∥Vm − Vc(ρ)
∥∥2

2
(14)



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

In EIT it is possible to include additional information in the reconstruction problem. In the present work it was possible
to include restrictions in the solution space. This additional information was used. The search covers the entire domain
of the impedance distribution restricting the space solution between a limited superior vector and limited inferior vector
whose values are defined according prior information about the problem.

The restrictions are imposed to obtain the new candidate point (candidate configuration). New candidate point is
generated around the current point applying random moves along each coordinate direction, in turn and satisfying the
imposed limits [26]. Let F (ρ) be the function to minimize and let a1 < ρ1 < b1, a2 < ρ2 < b2, . . . , an < ρn < bn be
its variables, each ranging in a finite, continuous interval. Therefore, starting from the point ρi, generate a random point
ρ′ along the direction h

ρ′ = ρi + rγhβh (15)

where r is a random number generated in the range [−1, 1] by a pseudo-random number generator; βh is the vector of the
hth coordinate direction; and γh is the component of the step vector γ along the same direction.

If the hth coordinate of ρ′ lies outside the limits, that is, if ρ′h < ah or ρ′h > bh, then a new random point in this
direction must to be generated. With this, it is guaranteed the probability of accepting a new point that is out of the
imposed limits is null and that whole restricted domain is covered.

For each direction u, u = 1, 2, · · · , n, the new step vector component γ ′
u is

γ ′u =





γu

(
1 + ζ

Mau /Mt−0.6
0.4

)
if Mau

> 0.6Mt,
γu

1 + ζ
0.4−Mau /Mt

0.4

if Mau < 0.4Mt,

γu otherwise

(16)

where ζ is a constant parameter that controls the step variation along each uth direction. The aim of these variations in
step length is to maintain the average percentage of accepted moves Ma at about one-half of the total number of moves
Mt, both for a same value of T . [26, 27, 28] give a more detailed discussion about it.

The values of the objective function for ρ′ and ρi configurations denoted as F (ρi) and F (ρ′) are calculated through
Eq. (14). In the minimization problem, if

∆F = F (ρ′)− F (ρi) < 0 (i.e., ρ′ is better) (17)

then, the new movement is accepted, otherwise, it is accepted with a probability P (i)

P (i) = exp

(
−∆F

Ti

)
(18)

where Ti is the control parameter (temperature) in the ith iteration.
The EIT forward problem is used to calculate Vc(ρ) that, through Eq. (14), is part of Eq. (17). This means that for

each transition in the space of solutions Eq. (11) is solved first to get vc(ρ), then, it is calculated F (ρ) based on Eq. (14).
After this, the metropolis criterion is used to accept or reject a new configuration, as mentioned above.

After (Nt ∗n) iterations, it is changed the value of T according to the chosen annealing function and the cooling factor
α as defined in Eq. (13), and a new step vector γ is calculated by the Eq. (16).

5. METHODOLOGY AND TESTS

5.1 numerical phantom

A numerical phantom was used to simulate the data acquired by an EIT system. The data was used to test the image
reconstruction algorithm. The phantom is FEM discretized domain, whose distribution of resistivity ρ∗ is chosen. It
allows to get the electrical potentials Vm in ∂Ω through the l electrodes for each one of the p injected current patterns.
That is, to find the electrical potentials in the electrodes the forward problem for each p injected current patterns is solved
by Eq. (11) and the vector vm contains only the electrodes electrical potentials. Then, these electrical potentials are
used for the image estimation through the implemented SA algorithm which is compared with the image of resistivity
distribution ρ∗ chosen for the numerical phantom.

The algorithm for solving the inverse problem in both, numerical and experimental tests, is implemented using C
language and the FE meshes are generated by Gmsh on a Linux operational system. In order to avoid inverse crimes, the
mesh used in the phantom domain must have more elements than the mesh used to solve the inverse problem.
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Figure 1. Adopted method for injecting currents and reading electrical potentials

5.2 Numerical data tests

The aim of the numerical data tests is to identify an stable algorithm to be used with experimentally obtained data.
All tests are made with a circular domain of 300 mm of diameter and the object is also circular with diameter of 60 mm.
The injected current is 2mA, bipolar and the method shown in Fig. 1 (this figure corresponds to one current load case) is
adopted for injecting currents and reading electrical potentials.

5.2.1 Test 1

For solving the forward problem with the numerical phantom the domain is discretized by 222 nodes, 362 2-D
triangular elements and 16 electrodes and the resistivity value of the background is 17Ωm. The resistivity value of the
object (target) is 1000Ωm. The finite elements mesh used to solve the inverse problem has 122 nodes, 170 elements and
16 electrodes. Figure 2(a) shows the image that will be reconstructed, the background (blue) and target (red) regions, and
Fig. 2(b) presents the finite elements mesh of the inverse problem. The initial temperature T0 is 0.05, the cooling factor
α is 0.8, stopping criterion is 40 iterations, the number of iterations at each temperature Nt is 15, the parameter ζ that
controls the step variation is 1, the resistivity values are between 17Ωm and 1000 Ωm and the initial value for resistivity
distribution of the domain ρ0 is 20Ωm and 0.02Ωm2 for the electrode parameters.
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Figure 2. (a) requested original image and (b) FE mesh of inverse problem to test 1.

5.2.2 Test 2

The aim of this test is to check whether the algorithm identifies that the object was moved to a different region. The
resistivity value of the background is 10Ωm and for the target region is 500Ωm. For solving the forward problem with
the numerical phantom the domain is discretized by 547 nodes, 980 elements and 16 electrodes. The finite elements mesh
used to solve the inverse problem has 229 nodes, 344 elements and 16 electrodes. Figure 3(a) shows the image that will
be reconstructed, the background (blue) and target (red) regions, and Fig. 3(b) presents the finite elements mesh of the
inverse problem. T0 is 100, α is 0.9, stopping criterion is 20 iterations, Nt is 30, ζ is 2, the resistivity limits are between
10Ωm and 600 Ωm and ρ0 is 12Ωm and 0.02Ωm2 for the electrodes.

5.3 Experimental data tests

The procedure for the experimental data tests is similar to the used for the numerical data, except that the electrical
potentials Vm where measured. A current source injected 2 mA peak sinusoidal current of 125 kHz on pair of electrodes.
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Figure 3. (a) requested original image and (b) FE mesh of inverse problem to test 2

The electrodes were attached to the boundary of a cylindrical container with 300mm of inner diameter containing a 0.3
g/L saline solution (NaCl). Its resistivity is approximately 17Ωm. The currents are injected and electrical potentials are
measured through a data acquisition board, following the current patterns represented in Fig. 1. The aim of these tests is to
identify a circular glass object with 32mm of diameter and resistivity equal to 106Ωm approximately, which is immersed
into the container. The 30 electrodes are rectangular with 35mm high and 10mm wide.

5.3.1 Test 3

The object was positioned at the center of container as shown in Fig. 4(b). The FE mesh used for the inverse problem
has 409 nodes, 636 elements and 30 electrodes (see Fig. 4(a)). The test was run using T0 equal 5, α equal 0.99, maximum
number of iterations equal 50 iterations, Nt equal 30, ζ equal 1, the resistivity limits equal 10Ωm and 200 Ωm, ρ0 equal
25Ωm and electrode parameters equal 0.02Ωm2.

(a) (b)

Figure 4. (a) FE mesh for the inverse problem and (b) used configuration for test 3

6. RESULTS

Figures 5(a), 5(b), 6(a) and 6(b) show images and the objective function histories obtained by SA algorithm for the
test 1 and 2. In tests 1 and 2 the position and size of the virtual object were recovered properly and the amplitude reached
the expected value (both basal and perturbed region). However, due to the not very refined meshes and to the difficulty to
tune the SA parameters some elements did not reach the upper limit. For test 1 the elapsed time was 468 minutes and final
objective function was 0.48, and for test 2 was 605 minutes and the final objective function was 0.0015. The objective
function of test 2 converged faster than the one of test 1.

Figures 7(a) and Fig. 7(b) show image and the objective function history obtained by SA algorithm for the test 3.
The position of the object was recovered properly but its diameter resulted bigger than expected, it is probably related to
the poorly refined mesh and lack of accurate prior information. The region of higher resistivity was identified but some
elements around this region (that would not have) acquired a resistivity value higher than expected one. However due to
the discretization and to the difficulty to tune the SA parameters not all of elements reached the upper limit. The elapsed
time was 503 minutes and final objective function was 6.35.

7. CONCLUSIONS

An EIT algorithm based on SA method was implemented for image estimation. With numerical data good results were
obtained. The feasibility of the algorithm was demonstrated. The performance of the algorithm when using experimental
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Figure 5. (a) FE mesh for the inverse problem and (b) used configuration for test 1
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Figure 6. (a) FE mesh for the inverse problem and (b) used configuration for test 2
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Figure 7. (a) FE mesh for the inverse problem and (b) used configuration for test 3

data was good because the algorithm identified the higher resistivity region although the mesh has poor discretization.
The SA algorithm allows to include restrictions to the solution space and introducing prior information without using
classicalregularization techniques. The processing time is high and future works will attempt to diminish the processing
time. The spatial resolution of the image may improve through the introduction of prior information, for instance, through
the use of an anatomical atlas, and the use of more refined meshes.
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