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Abstract.An innovative method for measuring the volumetric fraction and interfacial area in oil-water flows by acoustic
sensing and neural network processing is proposed in this work. Synthetic data, obtained from numerical simulations
of the acoustic differential equation, were used to demonstrate the feasibility of the proposed method. The geometrical
distribution of the phases within the flow is mapped by the local acoustic propagation velocity, considered in the govern-
ing differential equation. This equation is solved numerically by the Finite Difference Method with boundary conditions
reproducing the excitation/measurement strategy. A significant number of propagation velocities distributions were con-
sidered in the solution of the equation in order to construct a database from which the neural model parameters could be
adjusted. The neural model is constructed to map the features extracted from the signals delivered by four acoustic sen-
sors, placed on the external boundary of the sensing domain, into the corresponding volumetric fraction and interfacial
area. These features correspond to the time of arrival of the acoustic wave and the corresponding amplitudes and times of
the first three peaks. Numerical results show that the neural model can be trained in a reasonable computational time and
it is capable of assessing the values of the volumetric fraction and the interfacial area of examples in the test database.
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1. INTRODUCTION

The acoustic sensing of industrial processes appears an extremely interesting technique, mainly in applications invol-
ving transport and manipulation of multiphase flow. Therefore, physical parameters (flow rate, density, viscosity, volu-
metric fraction, temperature and others) can be measured and it is possible to obtain more complete information on the
phenomenology of the process, normally expressed through images directly mounted or reconstructed from acoustic re-
sponses signals (Lynch, 1991). Amongst the main advantages of the acoustic sensing (robustness, immunity to electric
noises, low cost and others), the possibility of having a non-intrusive and non-invasive sensing is fundamental for some
applications where more direct interventions are not possible. In the case of the acoustic sensing, the property that the
ultrasound has to cross different materials allows sensing to be performed by a simple contact with the walls of the tubing.

Thus, it is possible to conclude that the present work has great importance in researches, as one of its objectives is the
development of a numerical tool for the acoustic sensing of multiphase flow. More specifically, it aims to determine and
quantify how the fields of acoustic sensing are established, in view of their interaction with the flow, as well as with the
geometry of the tubing. This is, in fact, a very important problem due to the multiplicity of two-phase interfaces between
different acoustic impedances, which it also generates multiple phenomena of reflection, absorption and scattering, so
that the structure of the signal obtained as a response to the excitement can be sufficiently complex and its processing
extremely delicate.

Such a numerical simulator to study the acoustic propagation in heterogeneous media was developed allowing for the
accomplishment of some numerical tests to form a database for the training of artificial neural networks. Specifically, the
aim is to implement neural networks that, from the distribution of acoustic variables (arrival times of the acoustic wave,
amplitude of the acoustic signals and others), are capable of supplying parameters of the two-phase flow, amongst which
the volumetric fraction and the interfacial area are certainly most important.

According to the literature, as well as to the numerical results obtained in this work, the flow of phases with different
acoustic properties makes the propagation of acoustic waves extremely complex as well as the interpretation of their
response signals. This interpretation can be performed according to two distinct approaches:

(i) through tomographic reconstruction, i.e., calculation of the internal distribution of the acoustic impedance from the
measurements of acoustic intensity (Schlaberg, Podd and Hoyle 2000);

(ii) use of artificial neural networks adjusted from a database of training to map the set of possible measurements of
acoustic variable on the corresponding topological parameters of the flow.

Both cases are about the solution of an inverse and intrinsically ill-conditioned problem. Therefore, to obtain responses
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in realistic experimental conditions, concerning the level of noises, for example, the use of techniques of numerical
regularization is essential. The tomographic approach, which is generally implemented off-line, allows applying some
techniques based on redundant measurements (Rolnik and Seleghim, 2002; Tichonov, 1963) or TSVD (Truncated Singular
Value Decomposition - Press et al., 1992). On the other hand, the use of neural networks has the bad conditioning
associated with the adjustment of their internal parameters, which can be made a priori, even if it demands similar methods
of regularization. Consequently, once trained, the neural network "learns" to regularize the inverse problem and can be
implemented in real time.

The main objective of this work is to verify the possibility, through numerical simulations, of developing a methodo-
logy for the non-intrusive measurement of the volumetric fraction and the interfacial area of liquid-liquid two-phase flows,
using acoustic sensing and solving the associated inverse problem. Therefore, the problem was investigated through the
development and training of neural networks for the solution of the inverse problem.

The networks are trained with synthetic data from numerical simulations. For the accomplishment of such simulations,
a numerical tool capable of calculating the acoustic propagation in heterogeneous media was developed. This simulator
was used to construct a database constituted of distributions of acoustic contrast (ratio between the acoustic propagation
impedances) randomly generated. For each numerical test performed, the volumetric fraction and the interfacial area
were obtained, besides four acoustic signals, from which the arrival times of the acoustic pulses, the amplitude of the
three highest peaks of each signal, as well as their arrival times. After concluding this stage, the implementation of
neural networks and studies was performed to obtain optimized architectures regarding the problem. Next, the training
of the best models with examples extracted from the database was realized, in order to determine the parameters, such
as volumetric fraction and interfacial area. In particular, it was possible to verify that these models can be trained in a
reasonable computational time. The reliable intervals for the neural networks responses were found to be compatible with
future practical applications.

2. STATEMENT OF THE PROBLEM

The basic idea is to apply an excitation pulse through a piezoelectric element and to capture the corresponding res-
ponses through measuring piezoelectric elements. As previously mentioned, despite the excitation pulse being simple
in shape, a Dirac delta, for example, the measured responses usually have a complex shape due to multiple echoes
and diffraction associated with the multiphase mixture and pipe walls. Since the speed of sound is much higher than
the velocities of the multiphase flow, which is a good assumption in liquid-liquid mixtures, the equation describing the
propagation of acoustic waves can be written as (Kinsler and Frey, 1962)

∂2P (t,−→x )
∂t2

− c2(−→x )∇2P (t,−→x ) = 0, para(t,−→x ) ∈ R+ × Ω (1)

VariablesP andc represent the acoustic pressure and the local speed of sound, respectively. It is important to stress
that the local speed of sound maps the phase distribution within the measurement volume indicated byΩ. The initial and
boundary conditions modeling the excitation/measurement strategy are given by

P (0,−→x ) =

{
1, se−→x ∈ Lexc

0, se−→x ∈ Ω− Lexc

(2)

−→n .
−→∇P (t,−→x ) = 0, para(t,−→x ) ∈ R∗+ × ∂Ω (3)

Rk(t) =
∮

s∈Lk

P (t,−→x )ds, paraLk ∈ ∂Ω (4)

Lexc in Eq. (2) denotes the excitation element.Rk(t) andLk in Eq. (4) represent, respectively, the response signal
and thek − th measuring element (which may correspond toLexc).

Equations (1) to (4) constitute an ill-posed inverse problem, as P and c are unknown in the measurement volume V and
the boundary conditions are known only partially, i.e. local average values on the measuring elements. Given specifics
experimental conditions, the number and extension of the measuring elements for instance, the satisfactory reconstruction
of the geometric structure of the flow is still an open question. It is more likely that, under strict mathematical conditions,
this reconstruction is not possible from the response signals obtained from a practical sensor configuration.

The acoustic pressure signals acquired in this work through numerical simulations have a very complex structure, even
in response to an only Dirac-type pulse, applied to the point of intersection of the positive half-axis of the abscissas with
the boundary of the domain (circular geometry).
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Such complexity is due to the multiple echoes in the walls of the tubing as well as to the reflections and dispersion of
the acoustic wave. Another factor that influences the form of the signals is the configuration of the fluid, as the acoustic
propagation speed is different in both continuous (water) and dispersed (oil) phases. As the geometric distribution of the
phases in the fluid is mapped by the local speed of propagation considered in the differential equation that governs the
problem, the acoustic propagation speed was used in water, that is,cágua= 1, 48Km

s and in oil,cóleo = 1, 7Km
s (oil of

engine SAE 30). In this work four responses signalsRk, k = 1, ..., 4, given by Eq. (4) were obtained by numerical tests.
The positions of the measurement elementsLk ∈ ∂Ω, k = 1, ..., 4 can be seen in Fig. 1. It can be observed that

the measurement elementL1 is responsible for the application of the Dirac pulse and also for the attainment of a signal.
ElementsLk, k = 2, 3, 4 only acquire acoustic signals.

m e a s u r e m e n t  d o m i n i u m

e x cLL =1

2L

3L

4L
 D i r a c

Figure 1. Position of the measurement elements in the circular geometry.

Some characteristics of these signals, such as arrival time,T , of the acoustic wave in each measurement element,
amplitude of the three highest peaks of each signal,A1, A2 andA3 , as well as arrival time of the peaks, indicated by
T1, T2 andT3 in Fig. 2, were extracted to characterize the complexity of the signal in a sufficient level for the inference
of both interfacial area and volumetric fraction.
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2T

T
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p r e s s u r e

t i m e

Figure 2. Acoustic signal and respective extracted characteristics.

3. NEURAL NETWORK MODELS

A neural network can be defined as a nonlinear mapping of an input onto an output vector space. This is achieved
through layers of activation functions or neurons in which the input coordinates are summed according to specific weights
and bias to produce single output or firing values. In this work, a feed forward network was used for which there is no
recursiveness, i.e. the input vector of a specific neuron layer is formed only by the firing values of the preceding layer, as
shown in Fig. 3.

Formally, if the activation function ofi-th neuron in thej-th layer is indicated byFi,j(.), its outputsi,j can be
calculated from the outputs of the preceding layersi,j−1 and the corresponding biasbi,j and weightswi,k,j−1 (the second
subscriptk indicates the neuron in the(j − 1)-th layer from which the connection is being established), according to the
expression
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Figure 3. Schematic representation of a feed forward neural network mapping a five-coordinate input vector onto a
three-coordinate output vector.

si,j = Fi,j

(
bi,j +

∑

k

wi,k,j−1sk,j−1

)
(5)

After denoting the network’s input and output values, respectively, byηi, andξi, the mapping relation of one onto
another can be calculated by successively applying Eq. 5, which for the example in Fig. 3 results

ξi = Fi,3

(
bi,3 +

4∑

k

wi,k,2Fk,2

(
bk,2 +

5∑
m

wk,m,1Fm,1

(
bm,3 +

5∑
n

wm,n,0ηn

)))
(6)

Equation (6) makes it clear that the relation betweenηi, andξi, is unambiguously defined by choosing the activation
functions and by setting the bias and weights. Among many, a very important characteristic of neural networks is the
so-called learning potential, i.e. the possibility of adjusting the bias and weights through a convenient training rule to
closely reproduce pre-assigned pairs of input/output values. The back-propagation is probably the most used training
heuristics and is particularly well adapted to feed forward architectures. It is based on the iterative application of a
discrete gradient descent algorithm, computed from the first derivatives of a conveniently defined error function whose
arguments are the parameters of the network (weights and bias). In general lines the basic steps of the back-propagation
procedure implemented in this work are the following:

(i) Initialize the parameters of the networkbi,j andwi,k,j with random numbers;

(ii) From a training data set with pre-assigned input/output pairs take thep-th (ηp
i , δp

i ) pair, calculate the outputs of the
network with the same input and form the pair(ηp

i , ξp
i );

(iii) Calculate the error between the desired(δp
i ) and the obtained(ξp

i ) output values according to the Euclidean norm:

e =
√∑

i

(δp
i − ξp

i )2 (7)

(iv) Calculate the derivatives of errore with respect tobi,j andwi,k,j ;

(v) Modify the network parameters according to the steepest descent strategy and a specified learning rateγ:

bi,j ← bi,j − γ
∂e

∂bi,j
(8)

wi,k,j ← wi,k,j − γ
∂e

∂wi,k,j
(9)
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(vi) Iterate from 2 to 5, successively modifyingbi,j andwi,k,j , until a defined number of learning epochs (cycles) or a
convenient stopping criterion has been achieved.

The performance of a neural network is profoundly affected by its internal architecture (number of hidden layers and
number of neurons in each one) and the type of interconnections (feed-forward, recursive, winner-take-all, etc.). The exact
shape of the activation function has limited effects on the overall performance and is usually set according to the needs
of the training heuristics (a sigmoid function in the case of back-propagation method). There is no general mathematical
theory but rather a number of empirical rules to be considered when constructing such models.

The neural networks used in this work were implemented in Neural Networks Toolbox of Matlab 6.0 in an AMD
Athlon (TM) XP 2600+ computer with 2,08 GHz and 1,5 GB RAM. The architecture of the neural network was defined
from preliminary studies in the following way: input layer, two intermediate layers and an output layer. The number
of neurons of the intermediate layers was adjusted to enable the nets to learn complex tasks for the gradual extraction
of significant information from the inputs (Haykin, 1999; Hagan, Demuth and Beale, 1996). The architecture of the
neural network used was 24 - 15 - 11 -2. The activation functions used in neural network are the tangent sigmoid in the
intermediate layers and the linear function in the output layer. Each neuron of the output layer is responsible for estimating
one of the following parameters of the dispersed two-phase flow: interfacial area and volumetric fraction. The training
procedure comprehended the acquisition of acoustic pressure signals of the flow of interest for each numerical simulation
performed and the extraction of some particularities that characterize the complexity of the signal in a level sufficient for
the inference of the interfacial area and the volumetric fraction to compose the training set.

4. NUMERICAL SIMULATIONS

Considering the geometry of the problem, mainly the layout of the measurement elements, it is justifiable to disregard
the axial variations of form to obtain a bidimensional equation. Therefore, making the terms of Eq. 1 explicit for a
bidimensional problem, where , one obtains

∂2P

∂t2
− c2

0c
2(x, y)

(
∂2P

∂x2
+

∂2P

∂y2

)
= 0, emΩ (10)

whereP is the acoustic pressure,c(x, y) is the local speed acoustic propagation,t is the time,c0 is the reference speed,
Ω is the domain of the problem and(x, y) represents a point in the interior ofΩ. In the bidimensional formulation, the
interfacial area and the volumetric fraction are calculated, respectively, by

Γ(t) =
∑

Pi(t)
A

(11)

α(t) =
∑

Ai(t)
A

(12)

wherePi andAi are the instantaneous perimeter and the area of all the circumscribed drops in the transversal section of
the tubing, respectively, andA is the total area of the transversal section.

4.1 Discretization of the differential equation in polar coordinates

To perform numerical simulations in circular section pipes of radiusR, eq. 10 was written in polar coordinates,r and
θ, wherex = r cos θ andy = r sin θ obtaining

∂2P

∂t2
− c2

0c
2(r, θ)

[
∂2P

∂r2
+

1
r

∂P

∂r
+

1
r2

∂2P

∂θ2

]
= 0, (13)

Equation 13 was non-dimensional and discretized using the Finite Differences Method, obtaining

1
∆t2

(
P k

i,j − 2P k−1
i,j + P k−2

i,j

)− c2
i,j

∆r2

(
P k

i+1,j − 2P k
i,j + P k

i−1,j

)−
c2
i,j

ri,j

1
2∆r

(
P k

i+1,j − P k
i−1,j

)− c2
i,j

r2
i,j

1
∆θ2

(
P k

i,j+1 − 2P k
i,j + P k

i,j−1

)
= 0 (14)
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wherei andj indicate the coordinates in the mesh in ther andθ directions, respectively,∆t = 10−7, ∆r =
R

N
and

∆θ =
2π

M
, whereN andM are the numbers of points in[0, R] and[0, 2π] intervals, in ther andθ directions, respectively.

Equation 13 presents a problem: it is not defined forr = 0. There exist at least three different ways to overcome this
situation, according to Davis (1979):

(i) avoiding the fall of nodes of the mesh onto the point wherer = 0;

(ii) using L’Hôpital’s rule to eliminate the indefinition;

(iii) using cartesian coordinates in the central point.

The third alternative was used in this work, and its principle is the discretization of Eq. 13 in the central point using
cartesian coordinates, i.e., Eq. 10 inr = 0 was applied to the numerical model of the circular pipe, while Eq. 14 was
utilized in the other points of the mesh, generating a linear system whose unknowns are the nodal values ofP ’s.

Concerning the application of this strategy, special care must be taken in the partitioning of the interval[0, 2π]. The
number of points in this interval must be defined in such a way that two segments of straight line are contained in the
cartesian axis. It can be observed in Fig 4. that the mesh defined in the circular domain possesses two orthogonal segments
AB andCD contained in a cartesian axis. (AB in axisx andCD in axisy).

x

y

AB

C

D

i

j

Figure 4. Mesh in polar coordinates.

4.2 Storage and solution of linear systems

For the storage of the matrices of linear systems, the idea presented by Press et al. (1992) in the book Numerical
Recipes was used. It consists of a method of storage indexed by lines, where only nonzero elements of the matrix are
stored. Therefore, assuming a dimension matrixN ×N , two vectors are used:

(i) a vector of real elements (with simple or double precision), responsible for storing the nonzero values of the matrix;

(ii) a vector of entire elements, responsible for the storage of the indices of the nonzero values.

The main advantage of this technique, beyond optimizing the use of the memory, is that the stored data can be accessed
faster, considerably reducing the time spent on the resolution of the linear system. Concerning the assembly of the storage
vectors, the algorithm suggested by Press et al. (1992) is based on the sweepings of all original array elements to identify
those different from zero, requiring therefore, an excessively long time. In the present work, the subroutine developed for
the storage of the nonzero elements of the matrix was based on the idea of Press et al. (1992) and also on the knowledge
of the structure of the matrix. Thus, the two vectors of storage were built directly, significantly reducing the time of
calculations.

The linear systems were solved by the Method of Pre-Conditioned Bi-Conjugated Gradients (PBCG), which is a
generalization of the Method of the Conjugated Gradient, with the advantage of solving any linear system since the
matrix is not singular. In the implementation, a ready routine of PBCG of the computational package Numerical recipes
in Fortran (Press et al., 1992) was used.
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5. RESULTS AND DISCUSSION

The results of the training of the neural networks showed that they are capable of reproducing the input/output relation
of the data of the training set, for both volumetric fraction and interfacial area. To evaluate the generalization capacity
of RNAs, the characteristic data of numerical tests with new distributions of local speed of acoustic propagation were
presented to the neural networks. A good correlation among the input and output data could be observed for the cases of
volumetric fraction and interfacial area, as seen in the following sub-section.

5000 numerical simulations were performed (4000 used in the training of neural networks and 1000 to test the net-
work’s generalization capacity) to compose the database from which the characteristics of the signals supplied to the
RNA were extracted. The training set was composed of 4000 examples, where each one represented a numerical test
performed. To evaluate the generalization ability of the RNAs, the characteristic data of 1000 new numerical tests with
new distributions of local speed of acoustic propagation were presented to the neural networks. The learning rate used in
the neural network was 0,1 and the training time was 15 hours, approximately. The network was trained during 200000
epochs, since after that the variation of the error stabilized, as shown in Fig. 5. Although the error of training of the neural
network was not so small (of the order of10−1), it could provide good test results, which will be further shown.

E p o c h s

D e c r e a s e  o f  t h e  e r r o r  E r r o r

Figure 5. Decrease of the error during the training of the neural network to estimate the volumetric fraction and the
interfacial area for the data obtained for circular geometry.

Figure 6 shows the comparison among the values estimated for the neural network and the numerical values for the
volumetric fraction and the interfacial area, respectively, for the data extracted from the signals obtained in the circular
geometry, referring to the examples contained in the test set. In the graph, the straight linex = y represents the ideal
result and the blue points are the values estimated through the neural network.

The straight lines represented in the graphs by the black line are the ones that better represent the correlation among
the values estimated by the RNA and numerical values. The equation for the case of the volumetric fraction isy =
0, 6054x+0, 0674 and for the interfacial area it isy = 0, 5539x+0, 3688 (Yong, 1962; Doebelin, 1990). The correlation
coefficient among the values of the volumetric fraction was 0,7, while for the interfacial area it was 0,65. It is possible to
observe that the data are correlated and the neural network is capable of providing good results.

The standard deviation of the volumetric fraction values is 0,06, while for the interfacial area it is 0,33. Therefore, it is
possible to plot the straight linesy = 0, 6054x + (0, 0674± 3× 0, 06) that form an envelope around the points referring
to the values of the volumetric fraction and the straight linesy = 0, 5539x + (0, 3688 ± 3 × 0, 33) around the values of
the interfacial area, as it can be seen in the graphs of Fig. 7, which show the reliable interval of the results obtained by the
RNA.
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Figure 6. Comparison between the values estimated by the neural network and the numerical values for the volumetric
fraction and the interfacial area, respectively.
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Figure 7. Reliable interval of the results supplied by the RNA for the values of the volumetric fraction and the interfacial
area, respectively.

6. CONCLUSIONS

A new methodology for the non-intrusive measurement of the volumetric fraction and the interfacial area of two-
phase flow was proposed in this work, using acoustic sensoring and solving the inverse problem associated through
the development and training of artificial neural networks. The mathematical model was constructed from the acoustic
propagation equations. The geometric distribution of the phases inside the flow was mapped by the local speed of acoustic
propagation, considered in the differential equation that governs the problem. This equation was numerically solved by
the Finite Differences Method with the boundary conditions reproducing the strategy of pulse/echo.

The neural networks were trained with data derived from numerical simulations. For the realization of such simula-
tions, a numerical tool was developed to calculate the acoustic propagation in heterogeneous ways. A significant number
of distributions (random) of acoustic propagation speeds were considered in the solution of the differential equation to
construct a database, from which the parameters of the neural network (weights and bias) could be adjusted. More
specifically, the neural models were constructed to map characteristics extracted from signals obtained from four acoustic
sensors, located in the external boundary of the sensoring domain, estimating the corresponding volumetric fraction and
interfacial area. These characteristics correspond to the amplitude and the arrival times of the three highest peaks of the
acoustic wave.
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After concluding this stage, the implementation of artificial neural networks and preliminary studies were carried
out aiming to obtain architectures optimized regarding the problem. After that, the training of the best models with
examples extracted from the database was performed to determine the volumetric fraction and the interfacial area, which
are important parameters of the two-phase flow.

The results of the neural networks were quite satisfactory, as they showed to be capable of estimating the values of the
volumetric fraction and the interfacial area for examples that were presented to them in the training. It was also verified
that these models are trained in a reasonable computational time.
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