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Abstract. A considerable amount of researches have focused on the problem of modal parameters estimation. The 
paper presents, both, the basic formulation and numerical implementation of the time-domain multivariable 
autoregressive with exogenous input (ARX) model applied to modal analysis identification. The ARX parameter 
matrices are calculated via least- squares minimizing process. The proposed method is valid for multi input-multi 
output (MIMO) experimental modal tests. Natural frequencies, damping factors and mode shapes are estimated. In 
order to present the main characteristics of the method, numerical simulation of a mechanical system is conduced to 
obtain the input and output sets of data to be used in the test and to compare the difference between the exact and 
identified system’s parameters. 
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1. INTRODUCTION  
 
       Parametric system identification is the field of modeling dynamic systems from experimental data (Söderström and 
Stoica, 1989 and Ljung, 1987). References (Söderström and Stoica, 1989 and Ljung, 1987) approach the subject in a 
more general form, i.e., a model is fitted to the recorded data by assigning suitable numerical values to its parameters. 
Such application in modal analysis is of great importance and has an enormous field of interest in both practical and 
scientific applications see for example references (Maia and Silva, 1997, Gontier et al., 1993 and Juang, 1997). Modal 
parametric identification deals with the problem of estimating natural frequencies, damping factors and mode shapes of 
vibratory systems. Most usable experimental data in modal tests are naturally the impulsive responses (IR) or input-
output data which are obtained from the action of impact hammer or shakers and accelerometers mounted on the 
structure to be analyzed. 

The mathematical model commonly used for mechanical system is a time invariant matrix second order differential 
equation. The above references suggest the use of the discrete-time auto-regressive (AR) or auto-regressive with 
exogenous input (ARX) models to fit, respectively, the provided IRs and input-output data. The principal characteristic 
of these approaches is the using of least squares (LS) minimization procedure to calculate the coefficient matrices of 
such models. 

Multiple input and multiple output (MIMO) modal testing has many advantages when compared to single input and 
single output techniques, especially when dealing with larger structures. The force from multiple inputs allows a more 
uniform distribution of excitation energy throughout the structure, improving the accuracy of identified modal 
parameters and reducing the testing time. The problem has attracted much attention because of its broad application in 
many fields.  
    The present work shows the result of using a multivariable ARX identification process for the determination of modal 
parameters of vibratory systems valid for the MIMO situation. In order to evaluate the capabilities and limitations of the 
presented method, simulated data is generated to obtain results of application of the technique.  
 
2. BASIC FORMULATION 
 
2.1. Dynamic System Equations 
 

The motion of a f degrees of freedom linear time invariant mechanical system is dictated by the following second 
order matrix differential equation, 

 
( ) )()()( tttt fzKzCzM =++ &&&                                                                                                                                       (1)         

 
where M, C e K are the ff ×  mass, damping and stiffness matrices, respectively. The 1×f  vectors z(t) e f(t) 
represent, respectively, the generalized displacement and the external forcing which acts on the system. Equation (1) 
can be expressed in an equivalent continuous time state form (Maia and Silva, 1997 and Gountier et al., 1993) as, 



 
    )()()( ttt fxBxA =+&                                                                                                                                                       (2) 
 
where { }Tttt )()()( zzx &= is the n x 1 state vector, with  n = 2 f, the index T denotes vector transposition and 
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are, the first and second, nn×  matrices and the third 1×n  vector. The 1×m  vector u(t) represents the m non null 
efforts of the input and the mf ×  matrix fU  is an ordering input matrix. The term 0 denotes null vector and null 
matrix of appropriated dimensions. 

The dynamic Eq. (2) of the free system, 
 

0xBxA =+ )()( tt&                                                                                                                                                         (4) 

has a solution which is assumed to be of the form t
j

jet λΨ=)(x , leading to the standard eigenvalue problem, 

( ) 0=Ψ+ jj BAλ .                                                                                                                                                        (5) 

Solutions of such a problem are found to be a set of n eigenvalues (or poles) jλ  and n associated eigenvectors jΨ . If 
the system is assumed to be underdamped, the eigenvalues appear in complex conjugate pairs such as, 
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where the terms jj λω = , jjj ωλξ )Re(= denote, respectively, natural frequency and damping factor and 1−=i . 

Due to the nature of state vector { }Tttt )()()( zzx &= , the solution set of the eigenvalue-eigenvector problem is 

condensed in a nn×  spectral matrix Λ  and a nn×  modal matrix Ψ  which have the following form, 
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The symbol * denotes complex conjugation, and the ff ×  matrices, { }fdiag λλ ,,1 L=Λ  and [ ]fφφφ L21=Φ  

contain, respectively,  the poles jλ  and corresponding mode shapes jφ  of the system, for j=1,2,…,f. 
The modal matrix Ψ  has the following orthogonality properties (Maia and Silva, 1997), , 
 

IΨAΨ =T  and ΛΨBΨ −=T                                                                                                                                     (8) 
 
where In is the nn×  identity matrix. 

 
Eq. (2) can be written in a more usual form in the context of system identification as, 
 

)()()( ttt uBxAx +=&                                                                                                                                                   (9) 
 

where BAA 1−−=  and   )(1 tfAB −=  are  nn×  matrices. It can be easily shown, using the orthogonality properties of 
the modal matrix Ψ  described by Eq. (8), that matrix A provides a full description of the system , i.e., matrix A can be 
diagonalized by matrix Ψ  as 1−= ΨΛΨA . 

The observation equation in continuous time is given by, 
 

)()( tt xCy =                                                                                                                                                               (10) 
 
where y(t) is the 1×l   output measurement vector and C is the nl ×  output influence matrix. 
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2.2. Transfer Function in the s-Plane 
 
Pre-multiplying Eq. (2) by TΨ and using the modal transformation )()( tt ηΨx = , where the n x 1 vector )(tη is the 

so called modal coordinates, leads to, 
 

)()()( ttt TTT fΨΨηBΨηΨAΨ =+&                                                                                                                          (11) 
 
Considering the orthogonally properties of modal matrixΨ  given by Eq. (8) and taking the Laplace transform of 

two sides of the resulting equation yields, 
 
( ) )()( sss T FΨηΛI =−                                                                                                                                             (12) 

 
where )(sF  is the Laplace transform of  )(tf . 

Substituting the value )()( 1 ss XΨη −= in Eq. (12), leads to the original coordinate X(s) in the s-plane as follows, 
 

( ) )()( 1 sss T FΨΛIΨX −
−=                                                                                                                                      (13) 

 
Pre-multiplying Eq. (13) by matrix C, and taking the Laplace transform of both sides of Eq. (10), assuming 
[ ]0IC l=  and [ ]Tmf 0IU = and substituting them in above equation, leads to the input-output relationship in the s-

plane, 
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where H(s) is the ml ×  transfer function matrix and )(sU  is the Laplace transform of u(t). 

From the above input-output relationship, the generic element )(sHij  represents the response of the output i to the 
applied input j. The response can be expanded in the following form, 
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where ijφ is an element of matrix Φ  and jkikkr φφ=  is the residue associated to pole jλ . 

 
3. LEAST SQUARES MULTIVARIABLE ARX METHOD 

 
The input-output relationship of a linear system may be alternatively described by a finite multivariable ARX 

difference model (Söderström and Stoica, 1989 and Ljung, 1987) as, 
 

)()1()()()1()( 101 LkkkLkkk LL −++−+=−++−+ uBuBuByAyAy LL                                                         (16) 
 

where matrices iA  and iB  are ARX coefficient matrices of dimension, respectively, equal to ll ×  and lm× . The term 
L is the order of ARX model and it is assumed to be greater than the order n of the dynamical system which is been 
identified, i.e., nL > . 

For an amount of NLk += ,,2,1 L  input-output measurements and considering nLN >> , Eq. (16) leads to the 
following matrix equation, 
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or in a more compactly expression as, 
 

yXΘ =                                                                                                                                                                      (18) 
 
where [ ]0111 BBBAAAΘ LL −− −−−= LLLL  is a ( )( )mLlLl 1++×  matrix that contains the ARX 
coefficients matrices , X is a ( )( ) NmLlL ×++ 1  matrix that contains the input-output data and 

[ ])()2()1( NLLL +++= yyyy L  is the l x N matrix that contains only output data. 
In general, Eq. (18) represents a over-determined system of algebraic linear equations from which the matrix of 

ARX coefficients matrices Θ  are calculated via least-squares minimization as, 
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In order to estimate the modal parameters of the dynamical system, the z-transform is applied to both sides of Eq. 

(16), giving the following equation, 
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where Il is the l x l identity matrix, Y(z) and  U(z) are, respectively, the z-transform of  y(k) e u(k) and H(z) is the ml ×  
transfer function in the z-domain. Parallel to what was shown in the former section for the s-plane, a generic element of 
matrix H(z) can be expressed in a partial fraction expansion form as, 
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where jz  is one of a totality of lL z-poles of the multivariable ARX model described by Eq. (16). When a n order 
dynamical system is identified using the above ARX model, n of those jz  poles are directly associated with the 
dynamics of the system, whereas nlL − are purely computational ones do not bringing any major information about the 
system behavior. The s-poles jλ are used to estimate the modal parameters of the system and they are related to 

corresponding z-poles jz as, 
 
      t

j
jez ∆= λ                                                                                                                                                                   (23) 

 
where t∆ is the sampling time. 

Alternatively, Eq. (21) can be written in terms of a companion matrix as, 
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where l0 e ml×0 represent, respectively, the l x l and l x m null matrices. Equation (24) can be written in a more 
compactly form as, 
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where 
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is the lL x lL companion matrix and 
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are, respectively, lL x l and lL x m matrices. 

Equation (19) gives the matrix of ARX coefficients matrices which is used to build the companion matrix A~ . The 
eigenvalue problem of companion matrix A~  can be written from Eq. (25), 

 
[ ] 0AI =− imLiz φ

~~                                                                                                                                                       (28) 
 

Which leads to the calculation of the z-poles jz , where lL – n of then (computational poles) may be separated from the 
identification process.  

The n s-poles jλ associated with the corresponding n z-poles jz of the system  are easily calculated using Eq. (23). 

Then, the natural frequencies jω  and modal damping jξ  are estimated from jλ  according to Eq. (6). Finally, the f 

associated eigenvectors jφ
~  of companion matrix A~  can be used to estimate the mode shapes jφ  using the following 

relation, (Maia and Silva, 1997), 
 

jj z φφ )(~ I=                                                                                                                                                                (29) 

where jφ
~  is a lL x 1 vector and jφ  is a l x 1 vector. 

 



4. RESULTS 
 
This section demonstrates the performance of the presented multivariable ARX algorithm. A simple seven degrees 

of freedom model, shown in Fig. (1), consisting of seven masses connected in series by seven springs and dampers is 
used to generate the simulated data sets. Adoption of the model’s parameters as Kgmm 1.071 ==L , mNsc 2= and 

mNk 250= , leads to the exact values of natural frequencies and damping factors shown in Table 1. The experience 
consists of exciting simultaneously blocks 1 and 5 by means of two different white noise input signals of zero mean and 
same amplitude and taking numerically all the seven corresponding system’s blocks displacements, thus producing a set 
of 2-input and 7-outputs data measurements. Additive noise with Gaussian distribution, with zero mean and adjusted 
variance as to produce a RMS noise to signal ratio of the order of 0.4 per cent is added to seven output signals. 

 

 
Figure 1. Seven degrees of freedom model 

 
The discretization interval t∆ used is 0.027 seconds. The parameters used in the identification process are 

2=m inputs, 7=l outputs, 4=L  and 246=N for a total number of samples  250=+ NL , resulting in a 24638×  
matrix X  and a 2828× companion matrix A~ . The identified natural frequencies and damping factors are derived from 
the eigenvalues of A~ . Also, in accordance to Eq.(29), the modal shapes are estimated from the eigenvectors of A~ . 

In order to obtain unbiased model parameters estimation, a model is fitted whose order is larger than the number of 
modes that are actually present. The separation between the system and spurious modes is based on the repetition of 
system’s modes for different values of L. The identified natural frequencies and damping ratios are shown in Tab. 1 and 
the corresponding estimated modal shapes are shown in Fig. 2. 

 
Table 1. Exact and identified modal parameters 

 
Mode Exact 

natural 
frequency 

jnf  (Hz) 

Identified 
natural 
frequency 

jnf  (Hz) 

Exact 
damping 
factor jξ  

Identified 
damping 
factor jξ  

1 1.6636 1.6635 0.0418 0.0418 
2 4.9182 4.9188 0.1236 0.1236 
3 7.9577 7.9669 0.2000 0.1981 
4 10.6495 10.7504 0.2677 0.2709 
5 12.8759 13.0265 0.3236 0.3442 
6 14.5395 14.6161 0.3654 0.1686 
7 15.5677 15.5182 0.3913 0.4369 

 
It can be seen from Table 1 a very good correlation between the identified and exact parameters, even in the 

presence of noise added to the data, displaying the accuracy of the method for the given simulation. The identified mode 
shapes of the system displayed in figure 2 are also in very good agreement with those exacted from the original system. 
The high discrepancy in the damping factor estimation for the sixth mode is attributed to the presence of noise added to 
the data. 
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Figure 2. Identified Mode Shapes of the System 

 
 
5. CONCLUSION 

 
The ability to deal effectively with multivariable system is one of the most important characteristics of system 

identification. The multivariate ARX method has been proved to be an useful tool for estimation of modal parameters 
for MIMO tests. This work shows the identification of accurate natural frequencies, damping factors and mode shapes 
obtained by the present method using simulated data. The main difficulty of such a method is the distinction between 
the system and spurious modes. 
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