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Abstract. Unmanned air vehicles often resort to a low-cost inertial measurement unit (IMU) in an inertial navigation 
system (INS) to estimate position and velocity. Stand-alone INS operation yields unbounded estimation errors that 
depend on IMU's initial alignment errors, measurement noise, accelerometer bias, and rate-gyro drift. Such behavior 
motivates INS aiding by auxiliary position and velocity sensors to limit navigation error. Acceleration maneuvers and 
IMU rotation with respect to the vehicle are used to enhance the observability of INS error dynamics, in conjunction 
with Kalman filter-based sensor fusion to estimate position and velocity errors, IMU misalignment and sensor errors. 
This work investigates feedforward and feedback of error estimates for INS aiding. Feedforward integration is used to 
estimate IMU misalignment and sensor errors with adequate accuracy, and then switches to feedback integration for 
in-flight alignment (IFA), that is INS reset and IMU calibration during operation. A Monte Carlo simulation provides 
evidence supporting the approach and encourages implementation in low-cost unmanned air vehicles. 
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1. INTRODUCTION  
 

An inertial navigation system (INS) estimates position and velocity. The INS comprises computational resources 
and an inertial measurement unit (IMU) containing accelerometers and rate-gyros capable of measuring specific force 
and angular rate components. Gimbaled INS implementations (GINS) employ accurate mechanisms to isolate the IMU 
from the host vehicle’s motion and keep alignment with the navigation reference frame. A strapdown configuration 
(SDINS) employs an IMU rigidly attached to the host vehicle. The IMU sensors provide signals in discrete time and 
incremental form, and adequate numerical integration provides the desired estimates. The INS can track short-term, 
abrupt motions, but estimation errors grow unbounded during long operation periods due to the integration of low-
frequency errors such as accelerometer bias and rate-gyro drift, which are here assumed to be unknown, constant null 
offsets. Before entering navigation mode, IMU calibration and alignment – often relative to the North-East-Down frame 
– make use of leveling and gyrocompassing, which are based on reaction to gravity and earth rate sensing while the 
vehicle remains stationary at a known location on the ground. More recently, autonomous vehicles resort to a low-cost 
SDINS aided by additional sensors, and Kalman filter-based sensor fusion is employed to estimate navigation, IMU 
misalignment and sensor errors (Adam et al., 1999; Roumeliotis et al., 2002; Eck and Geering, 2000; Hafskjold et al., 
2000, and Wagner et al., 2003).  

Bar-Itzhack and Berman (1988) showed the lack of full observability when estimating IMU misalignment and 
sensor errors of a stationary GINS with velocity error measurements. Their analysis employed linear navigation and 
misalignment error dynamics augmented with random constant accelerometer bias and rate-gyro drift. Goshen-Meskin 
and Bar-Itzhack (1990) departed from the augmented computer-frame velocity error model of a GINS, investigated its 
observability, and indicated that the ability to maneuver is “a blessing in disguise”. That is, though IFA may seem to be 
less accurate and more complicated than alignment at rest, maneuvers during the IFA phase can excite latent error 
dynamics. Acceleration maneuvers in a GINS were modeled by a concatenation of piece-wise constant (PWC) specific 
force segments to circumvent the trajectory-dependent, numerical computation of the observability Grammian of a 
linear time-varying model. Observability analysis of the PWC linear error dynamics was based on determining the rank 
of the stripped observability matrix (SOM) after each acceleration segment (Goshen-Meskin and Bar-Itzhack, 1990; Lee 
et al., 1993). SOM analysis disregarded the actual model mismatch arising from linearization errors during operation 
and its effect on error estimation accuracy.  

Rotorcraft and aerial vehicles with vectorized thrust are capable of PWC acceleration segments without significant 
attitude maneuvers. Goshen-Meskin and Bar-Itzhack (1990) claimed that covariance simulation and real IFA results 
showed that the exact nature of acceleration maneuvers is not influential, but their mere existence is paramount for 
accurate GINS misalignment and IMU error estimation. Thus, insights from SOM analysis seem to apply to other 
GINS-equipped vehicles and maneuvers. On the other hand, SDINS-equipped vehicles without vectorized thrust must 
conduct attitude maneuvers to generate accelerations. It is intuitive that maneuvers in acceleration and IMU attitude 
should enhance estimation accuracy, but continuously changing IMU attitude violates the assumption of PWC 
dynamics, which precludes SOM analysis.  

This investigation confirms the benefit of both IMU rotation and PWC acceleration segments on estimation 
accuracy relative to a GINS undergoing the same acceleration maneuvers. The reader should note that optimal 
maneuver design for IFA is not within the scope of this work. Instead of a strapdown configuration, here the IMU 
rotates relative to the host vehicle. IMU rotation does not require the accurate mechanism of a gimbaled INS because 
what matters is to change the direction of the inertial sensors’ sensitive axes relative to gravity and earth angular rate. 



Hence, the host vehicle need not maneuver away from the desired path for observability enhancement during IFA. The 
IMU can be locked in a known attitude relative to the vehicle following the IFA phase. The approach has been inspired 
by Lee et al. (1993), which employed SOM analysis and concatenated PWC segments of IMU attitude for multiposition 
alignment on the ground. Notice that vehicle attitude is a by-product of the conventional strapdown configuration at all 
times, whereas during IFA phase the present approach produces IMU attitude. The inertial sensors are assumed to be 
aligned with the IMU frame Sb. 

The second purpose of this investigation is to evaluate two sensor fusion configurations, feedforward and feedback 
of navigation and IMU sensor error estimates based on aiding position and velocity sensors. Feedforward aiding 
employs a Kalman filter linearized about the diverging INS estimates, and removes a posteriori the estimated position 
and velocity errors from the INS output. On the other hand, feedback aiding employs in-flight INS reset and IMU 
calibration, thus resulting in an extended Kalman filter linearized about the corrected INS output. This work initially 
resorts to feedforward integration to estimate misalignment and IMU errors with sufficient accuracy, and then switches 
to feedback integration for INS reset and IMU calibration.  

Section 2 presents the navigation and attitude equations, and briefly describes the multirate algorithm and the 
computer-frame velocity error model for use in the Kalman filter. Section 3 discusses both sensor fusion configurations. 
Section 4 presents the simulation of stationary and IFA phase of both GINS and rotating IMU mechanizations, and 
shows the results of the Monte Carlo simulation of switching from feedforward to feedback of error estimates, and 
analyzes the results. Finally, conclusions are found in Section 5.  
 
2. INERTIAL NAVIGATION, ATTITUDE, AND LINEARIZED DYNAMICS FOR SENSOR FUSION 
 

The following coordinate frames have their origins at the center of the earth: Si is the inertial frame, Se is the earth-
fixed geographic frame and Ss is the navigation reference frame. Angular rates to recognize are the constant inertial 
earth rate Ωω =ei  of Se relative to Si, and the inertial rate ωω =si  of Ss relative to Si. The transport rate is 

Ωωρω −==se . Position is denote by vector R, and a superscript indicates the coordinate frame in which the time 
derivative of a vector is observed. Neglecting measurement errors, accelerometers provide the specific force: 
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gm=gm(R) is the gravitational pull toward the earth center due to mass attraction, and 
ii
R  is the inertial second 

derivative, i.e., inertial acceleration. Inertial velocity is: 
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R=  is the terrestrial velocity observed from the earth-fixed coordinate frame Se. From Eq. (2), inertial 

acceleration is: 
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The rate of terrestrial velocity as observed from the navigation frame Ss is 
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Substitution in Eq. (1) and rearranging yields the navigation equation in vector form: 
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g=g(R) is the local plumb-bob gravity vector. Specific force measurements, a gravity model, and knowledge of 

initial conditions Ve(0) and R(0) are needed to numerically obtain the solution to Eq. (5) − the inertial estimates Ve,INS(t) 
and RINS(t). Equation (5) is often mechanized to reflect the choice of Ss≡SNED. The U.S. Department of Defense World 
Geodetic System (DoD WGS-84) approximates the earth’s shape by a geocentric reference ellipsoid, which models 
earth radius Re, curvature radii RE and RN along East and North directions, respectively, and gravity (Siouris, 1993). 
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Latitude λ, longitude Λ, and altitude h describe the terrestrial position. From Eq. (5), the continuous-time navigation 
equations are: 
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0 −+= λλ  is a sufficiently accurate approximation of gravity. Inaccurate 
knowledge about gravity is not among the most significant sources of errors in stand-alone, low-cost INS operation 
where the effect of IMU errors strongly exceed those due to gravity errors (Jekeli, 1997). Use of accelerometer data in 
Eq. (6) needs attitude determination, i.e. the transformation from Sb to SNED according to mbsp

b
INSNEDNEDsp ADA ,,,, = . The 

subscript m indicates a measured value, whereas INS means the INS stand-alone solution. One approach is to compute 
the direction cosine matrix (DCM) from angular rate measurements and the initial alignment )0(,
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The entries in skew-symmetric (cross product form) matrix bi
mb ,Ω  are the components of the angular rate sensed by 

the IMU’s rate-gyro triad. Likewise, skew symmetric matrix NEDi
INSNED ,Ω  relates to the components of NEDi

INSNED ,ω :  
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INSINSINS ,, λλΛ &&  are from the INS stand-alone solution to Eq. (6). The INS stand-alone solution to Eq. (6) and Eq. (7) 
is computed by a multirate algorithm to reduce the computational burden. The algorithm processes IMU discrete-time 
measurements, that is angular and thrust velocity increments occurring between sensor samples (Bar-Itzhack, 1978; 
Savage, 1998; Waldmann, 2003). Coning errors arise because finite rotations do not commute, sculling errors are due to 
incorrect thrust velocity computation as coordinate frames rotate between data samples, and scrolling errors arise from 
velocity and position updates occurring at distinct rates. Though complex, with intricate compensation terms to 
attenuate such errors, Savage’s multirate approach has been utilized due to its enhanced accuracy. Thrust velocity 
increments from the accelerometers are transformed from Sb to SNED at a high sampling rate, and terrestrial velocity and 
position are solved at intermediate and slow rates, respectively. The fast acquisition rate of incremental inertial samples 
and attitude computation has been set to 400Hz. The INS terrestrial velocity and position are computed at the 
intermediate and slow rates 1/Tint=200Hz and 1/Tnav=100Hz, respectively. The stand-alone inertial solution diverges due 
to errors in IMU data and erroneous processing by the multirate algorithm, thus causing linearization errors and model 
mismatch in the Kalman filter used for fusion of the INS solution with aiding sensors.  
 
2.1. The computer frame velocity error model for Kalman filter-based sensor fusion 
 

Figure 1 shows the most relevant NED coordinate frames and misalignment angles for a brief description of this 
error model. True, computed, and platform frames, St, Sc, and Sp, respectively, are located at the actual and estimated 
positions. Sc is perfectly known, albeit it is incorrect. If initial alignment and inertial data were error free, the integration 
of Eq. (7) would produce b

tD . However, accelerometer bias and rate-gyro drift yield b
INSNED

b
p DD ,= . δθ is a small 

misalignment angle vector due to errors in the estimated position. δθ rotates St into alignment with Sc, and is represented 
in Sc as:  
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RE and RN are the earth’s curvature radii, and ∆RE and ∆RN are position errors. The small misalignment angle vector 
ψ is due to rate-gyro drift, and rotates Sc into alignment with Sp. Use of the computer frame Sc for the error model is 



attractive because it renders the misalignment rate 
c
ψ  uncoupled from both position and terrestrial velocity errors. The 

total misalignment angle φ=δθ+ψ from St to Sp can be estimated from Eq. (9) using the INS solution to Eq. (6), and the 
Kalman filter estimates of ψ and ∆R.  
 

 
Figure 1 – True, computed, and platform NED coordinate frames and respective misalignment angles 

 
Assuming a spherical earth and the IMU path in the vicinity of the earth’s surface, the computer-frame position error 

model was obtained and further elaborated to show its equivalence to the computer-frame velocity error model 

(Waldmann, 2004). The latter describes the error dynamics with a structure uBxAx NEDNED ∆+∆=∆
•

)t(')t(''
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with the Kalman filter framework. IMU sensor errors are additive accelerometer bias ∇b, rate-gyro drift εb, and white 
noise n: 
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To estimate the errors in IMU sensors, assuming full observability, the above error vector was augmented with a 

random constant model of ∇b and εb. Noting Eq. (10), the augmented dynamics is: 
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3. INDIRECT FEEDFORWARD AND FEEDBACK INS AIDING 
 

The continuous lines in Fig. 2 depict a feedfoward, indirect Kalman filter-based fusion of INS estimates with aiding 
position and terrestrial velocity, which are output by the processing of observables within the aiding sensors. The term 
“indirect” refers to error state estimation rather than estimation of the full state. The dashed lines indicate the feedback 
configuration, in which the INS is reset during operation by subtracting the estimates of misalignment and IMU errors. 
Noting that subscript a indicates aiding sensor, and measurement y is the difference between the INS solution and the 
aiding position and velocity, then: 
 

eeINSeINS VVVRRR ∆+=∆+= ,  ,   
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Representation of the above aiding differences in the NED coordinate frame yields: 
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Ideally, µ and η are white and uncorrelated noise processes in the aiding sensors. However, the processing of 
observables gives rise to correlation in time and among components of aiding position and velocity. Such correlations 
are not considered here in the statistical model of measurement errors. Thus, the discrete-time measurement equation in 
the aided-INS Kalman filter is yj=[∆RNED(j)T ∆Ve,NED(j)T]T=H∆xj+vj, where vj is a zero-mean, white sequence with 
diagonal covariance R , and H=diag(I6,O6x9). 
 

 
Figure 2 - Indirect feedforward INS-aiding architecture. V is herein used to denote the terrestrial velocity Ve. 

 
The transformed measurements Asp,NED,m, and INS solution-dependent parameters Ve,INS, RINS and b

INSpD ,  in Eq. (11) 
have been updated at rate 1/Tnav=100Hz. A(t) has been discretized to produce the state transition matrix, that is 

)2/T)kT((T)kT( navnavnavnavk AIAI ++=Φ . Uncertainty in kΦ  has been translated into an additive, zero-mean, white 
noise sequence wk with diagonal covariance matrix Q, which is related to the linearization error about the diverging INS 
solution. Q demanded tuning. Filter estimates and respective covariance matrix have been propagated forward in time 
also with frequency 1/Tnav. Their updates at rate 1/Ta =1Hz occurred when aiding measurements became available. The 
caret superscript indicates the filter estimate of the error state ∆x, and P is the filter-computed covariance of the 
estimation error. The implemented Kalman filter equations and corresponding computation rates are: 
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Update available – 1/Ta=1Hz: 
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Return to propagation stage. 
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P0 reflected the initial uncertainty in the estimation error. The diagonal form of Z represents the impact of IMU 

errors ∇NED and εNED on the uncertainty about initial misalignment angle ψNED(0). Due to model mismatch, the residual 

sequence 
^

jjj
−−= xHyr ∆  at instants multiple of Ta has been monitored to ensure statistical consistency (Bar-Shalom 

and Li, 1993). Adequate tuning of Q should produce a zero-mean, white, Gaussian residual sequence with covariance 
matrix RHHPS jj += − T . Had a position or velocity residual component been found outside ±3 times the square root 
of the corresponding element in the diagonal of S, the corresponding position or velocity error variance in P was reset to 
(3m)2 and (0.3m/s)2, respectively. The corresponding off-diagonal elements in P were also altered to keep the cross-
correlation coefficients unchanged by the reset.  

 
3.1. Maneuvers for observability enhancement 

 
Goshen-Meskin and Bar-Itzhack (1990) modeled maneuvers during the IFA phase of a GINS with 20 seconds, 

piece-wise constant (PWC), 0.1g specific force segments. Consequently, IDb
p = , and A23 in (11) was the single PWC, 

significantly time-varying block in A(t). IMU rotation, however, violates conditions for valid SOM analysis because 
b
pD  in B(t) varies continuously. The impact of PWC acceleration segments and IMU rotation on estimation accuracy, 

both at a known location on the ground and during IFA, is gauged with the filter-computed standard deviation of the 
estimation error and, as in Pittelkau (2005), one realization. Aiding position and velocity measurements, respectively Ra 
and Ve,a, have been generated from ground-truth corrupted by additive Gaussian, zero-mean, white noise with 
covariance matrix R . IMU rotation with respect to the vehicle has been simulated with IMU attitude ground-truth in 
terms of yaw, pitch, and roll relative to the NED coordinate frame (Bar-Itzhack, 1977): 
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The GINS stand-alone solution was simulated by enforcing that ψ≡θ≡φ≡0, generating IMU data, and solving Eq. (6) 
and Eq. (7). In this case, NX b ≡ , EYb ≡ , and DZb ≡ . Each rate-gyro has been corrupted by drift εXb=εYb=εZb=2°/h 
and additive zero-mean, white noise with standard deviation σε=1°/h, and integrated between consecutive sensor 
samples to yield the incremental angular measurements. Given the initial position and terrestrial velocity, and ground 
acceleration DEN V,V,V &&&  which the IMU was subject to, the NED ground-truth specific force tspA ,NED,  was obtained 

from Eq. (6). From IMU attitude ground-truth in Eq. (17), tsp
t
b AD ,NED,  has been computed, and each accelerometer 

corrupted by bias ∇Xb=∇Yb=∇Zb=3mg and additive zero-mean, white noise with standard deviation σ∇=1mg. Integration 
between consecutive sensor samples resulted in the incremental thrust velocity measurements. As an example, the true 
position error of the stand-alone INS for a stationary GINS at a known location is seen in Figure 3. Error divergence is 
the main motivation for fusion of low-cost INS and aiding sensors. 
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Figure 3 – Stationary GINS true position error (m). North (dash), East (continuous), and altitude (dot). 
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Motion 1 aimed to show whether a constant, long-duration acceleration can enhance observability, though its 
ultimate velocity is surely not attainable by a low-cost host vehicle. With λ(0)=23°12′S, Λ(0)=45°52′W, and h(0)=600m 
as the initial location at ITA facilities, Motion 1 consisted of constant ground acceleration a=5m/s2 (Bar-Itzhack, 1977): 
 

]s][200,0[t       ]s/m[ at300VVV DEN ∈+=−==  (18) 
 

With the same initial location and terrestrial velocity, Motion 2 comprised five PWC, 40s ground acceleration 
segments as shown in Tab. 1.  
 
4. FEEDFORWARD ESTIMATION, SWITCH TO FEEDBACK, AND INS CALIBRATION: RESULTS 
 

Making use of solely the indirect feedforward fusion seen in Fig. 2, Tab. 2 summarizes the effect of the maneuvers 
on one realization of the estimation error of IMU sensor errors and misalignment at t=200s, and respective filter-
computed standard deviation. The results show that the combination of concatenated acceleration maneuvers in distinct 
directions and rotating the IMU provide the most accurate estimates. The simulations showed that error propagation of a 
GINS at rest and in cruise are seen to be similar because of negligible horizontal specific forces in both conditions. 
Thus, Tab.2 display only the case of the stationary GINS. 
 

Table 1 - Motion 2 ground acceleration segments 
 
 
 
 
 
 

 
 

Table 2 – Effect of maneuvers on accelerometer bias, rate-gyro drift, and INS misalignment estimation error after 200s 
Indirect feedforward of error estimates only. 

 
 
Maneuver 

∇Xb 
mg 

∇Yb 
mg 

∇Zb 
mg 

εXb 
deg/h 

εYb 
deg/h 

εZb 
deg/h 

φN 
arcsec 

φE 
arcsec 

φD 
arcsec 

Stationary GINS (IMU)          
Est. Error –2.5972 –0.6968 –0.0069 0.0352 –0.2800 –5.0900 -143 590 –4.45E3 

Std. Dev. 2.8401 2.8400 0.0136 0.2784 2.1150 5.8900 589 534 2.76E4 
Accelerated GINS          

Est. Error 1.6918 –3.4092 –0.6778 0.1579 –0.2059 –0.5456 123 425 –1890 Motion 1 

Std. Dev. 5.6623 3.0535 0.9536 0.9101 0.7899 3.2297 256 468 1276 

           

Est. Error 0.2395 –0.0265 0.0659 –0.0514 –0.1418 0.3506 –7.77 –56.0 –48.1 Motion 2 

Std. Dev. 0.1031 0.0704 0.0266 0.0916 0.0818 0.3727 12.9 18.8 38.0 
Rotating IMU, stationary host           

Est. Error –0.0849 –0.1080 –0.0278 –0.5973 –1.3490 –0.5518 –12.4 –10.7 –1.10E4 

Std. Dev. 0.0679 0.1010 0.0222 0.9960 2.6080 0.9822 15.7 19.9 1.86E4 

Rotating IMU and Motion 2          
Est. Error –0.0341 –0.0485 –0.0555 0.0321 0.0100 0.0016 –24.5 –3.92 –9.82 

Std. Dev. 0.0361 0.0727 0.0486 0.2070 0.0830 0.1586 10.7 11.1 17.2 

 
Figure 4 shows the ±1–sigma filter–computed standard deviation of the estimation error (i.e. filter uncertainty) and 

one realization of IMU sensor error estimation for Motion 2 combined with IMU rotation. Figure 5 shows the 
corresponding misalignment. The figures clearly indicate the significant estimation error in the initial acceleration 
segments, which precluded the use of indirect feedback fusion and INS calibration with estimates of IMU errors and 
misalignment right from the start. Such attempts failed because of filter divergence. The same was observed both for 
GINS and rotating IMU mechanizations. Thus, switching from feedforward to feedback of error estimates and the 
corresponding IMU calibration occured at t=195s. Figure 5 shows how the maneuvers improved the misalignment 
estimation accuracy, notably in azimuth, which is weakly observable when the IMU is stationary on the ground. After 
the switch to feedback of error estimates, the INS solution to the attitude DCM computed with Eq. (7) was corrected 
with the estimated misalignment as follows. Recalling Eq. (9) and Fig. 2:  
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Figure 4 – Bias (g0) and drift (deg/h) estimation error − motion 2 and rotating IMU, indirect feedforward fusion. 
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Figure 5 - Misalignment estimation error (arcsec) - motion 2 and rotating IMU, indirect feedforward fusion. 

 
Throughout the simulation, both before and after switching from feedforward to the feedback configuration the 

accuracy of the estimated DCM was evaluated by two performance measures. A convergence index J indicated how 
close the estimated DCM was from the ground-truth, whereas an orthogonality index F measured the degree of 
orthonormality of the rows (columns) of the estimated DCM:  
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Figure 6 and Fig. 7 depict the statistics of a Monte Carlo simulation with 20 realizations concerning the position 

estimation error, and velocity estimation error, respectively. The results are indeed encouraging regarding the concept 
of IFA with a rotating IMU relative to the vehicle. Figure 8 shows a typical realization of both position and velocity 
errors at the INS output seen in Fig.2. Previous results showed that feedforward of the error estimates compensate for 
most of the errors, and the compensated INS signals are then sent to other subsystems on-board the host vehicle. 
However, linearization errors in the filter model about the diverging INS output continue to increase. Filter divergence 
is then avoided by switching to the feedback configuration. Then, IMU calibration by means of removal of estimated 
biases and drifts, and INS output correction with the estimated misalignment, velocity, and position errors result in a 
drastic reduction of INS output error. In this condition, the filter model is linearized about a far less incorrect trajectory. 
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Figure 6 – Monte Carlo simulation. Position estimation error (m) - motion 2 and rotating IMU. 
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Figure 7 – Monte Carlo simulation. Velocity estimation error (m/s) - motion 2 and rotating IMU. 
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Figure 8 – One realization of INS position and velocity output error - motion 2 and rotating IMU – switch at t=195s. 

 
Figure 9 shows the performance indices regarding the computation of the DCM. The results depict a typical 

realization, and the Monte Carlo simulation with 20 realizations, the mean, the minimum, and the maximum index 
value. Notice the positive effect of the initial maneuvers on DCM estimation accuracy. 
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Figure 9 – DCM estimation performance indices - motion 2 and rotating IMU – switch at t=195s. 

 
5. CONCLUSION 

 
The results showed the benefit of continuously rotating the IMU during the stationary initial alignment on the 

ground at a known location for faster, more accurate estimation of accelerometer bias. Previous work by Lee et al. 
(1993) investigated PWC, multiposition initial alignment rather than continuously changing IMU attitude. IMU rotation 
does not demand the fine engineering, delicate assembly, and accurate moving parts found in a GINS.  



Lack of observability caused by insufficient IMU maneuvering produced optimistic filter performance and biased 
estimation. Such detrimental qualities were significantly mitigated by means of combining IMU rotation with PWC 
acceleration segments. Thus, improved estimates of accelerometer bias, misalignment, especially in azimuth, and rate-
gyro drift become available after maneuvers. Then, a switch from feedforward configuration to a feedback one took 
place, and the error estimates employed for on-the-fly IMU calibration and removal of misalignment.  

The diverging stand-alone INS solution causes model mismatch in the Kalman filter, which was neglected in a 
previous covariance analysis of PWC dynamics during the IFA phase by Goshen-Meskin and Bar-Itzhack (1990). The 
indirect feedforward approach with the linearized Kalman filter is only appropriate for short-term applications because 
model mismatch may cause filter divergence. For long duration applications, the extended Kalman filter arises by 
means of INS reset. In such a case, the results show that caution should be exercised when designing the feedback logic 
for INS reset. Full removal of misalignment, accelerometer bias, and rate−gyro drift estimates should occur after the 
diagonal values of filter covariance P decay to safe values determined by simulation to avoid filter divergence.  
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